首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously demonstrated that Akt was required for repetitive ischemia (RI)-induced coronary collateral growth (CCG) in healthy rats but was not activated by RI in the metabolic syndrome (JCR:LA-cp rats) where CCG was impaired. Here we hypothesized that failure of angiotensin type I receptor (AT?R) blockers to restore Akt activation is a key determinant of their inability to completely restore CCG in the metabolic syndrome. Therefore, we investigated whether adenovirus-mediated delivery of constitutively active Akt (MyrAkt-Adv) in conjunction with AT?R blockade (candesartan) was able to restore RI-induced CCG in JCR:LA-cp rats. Successful myocardial MyrAkt-Adv delivery was confirmed by a >80% transduction efficiency and an approximately fourfold increase in Akt expression and activation. CCG was assessed by myocardial blood flow measurements in the normal and collateral-dependent zones. MyrAkt-Adv alone significantly increased RI-induced CCG in JCR:LA-cp rats (~30%), but it completely restored CCG in conjunction with administration of candesartan. In contrast, dominant negative Akt (DN-Akt-Adv) reversed the beneficial effect of candesartan on CCG in JCR:LA-cp rats. We conclude that optimal restoration of coronary collateral growth in JCR:LA-cp rats requires a combination of AT?R blockade with constitutive Akt activation. These findings may carry implications for metabolic syndrome patients in need of coronary revascularization.  相似文献   

2.
We investigated the role of receptor tyrosine kinases in Ang II-stimulated generation of reactive oxygen species (ROS) and assessed whether MAP kinase signaling by Ang II is mediated via redox-sensitive pathways. Production of ROS and activation of NADPH oxidase were determined by DCFDA (dichlorodihydrofluorescein diacetate; 2 micromol/L) fluorescence and lucigenin (5 micromol/L) chemiluminescence, respectively, in rat vascular smooth muscle cells (VSMC). Phosphorylation of ERK1/2, p38MAP kinase and ERK5 was determined by immunoblotting. The role of insulin-like growth factor-1 receptor (IGF-1R) and epidermal growth factor receptor (EGFR) was assessed with the antagonists AG1024 and AG1478, respectively. ROS bioavailability was manipulated with Tiron (10(-5) mol/L), an intracellular scavenger, and diphenylene iodinium (DPI; 10(-6) mol/L), an NADPH oxidase inhibitor. Ang II stimulated NADPH oxidase activity and dose-dependently increased ROS production (p < 0.05). These actions were reduced by AG1024 and AG1478. Ang II-induced ERK1/2 phosphorylation (276% of control) was decreased by AG1478 and AG1024. Neither DPI nor tiron influenced Ang II-stimulated ERK1/2 activity. Ang II increased phosphorylation of p38 MAP kinase (204% of control) and ERK5 (278% of control). These effects were reduced by AG1024 and AG1478 and almost abolished by DPI and tiron. Thus Ang II stimulates production of NADPH-inducible ROS partially through transactivation of IGF-1R and EGFR. Inhibition of receptor tyrosine kinases and reduced ROS bioavaliability attenuated Ang II-induced phosphorylation of p38 MAP kinase and ERK5, but not of ERK1/2. These findings suggest that Ang II activates p38MAP kinase and ERK5 via redox-dependent cascades that are regulated by IGF-1R and EGFR transactivation. ERK1/2 regulation by Ang II is via redox-insensitive pathways.  相似文献   

3.
Cardiopulmonary bypass (CPB) causes acute lung injury. Reactive oxygen species (ROS) from NADPH oxidase may contribute to this injury. To determine the role of NADPH oxidase, we pretreated pigs with structurally dissimilar NADPH oxidase inhibitors. Low-dose apocynin (4-hydroxy-3-methoxy-acetophenone; 200 mg/kg, n = 6), high-dose apocynin (400 mg/kg, n = 6), or diphenyleneiodonium (DPI; 8 mg/kg) was compared with diluent (n = 8). An additional group was treated with indomethacin (10 mg/kg, n = 3). CPB was performed for 2 h with deflated lungs, complete pulmonary artery occlusion, and bronchial artery ligation to maximize lung injury. Parameters of pulmonary function were evaluated for 25 min following CPB. Blood chemiluminescence indicated neutrophil ROS production. Electron paramagnetic resonance determined the effect of apocynin and DPI on in vitro pulmonary endothelial ROS production following hypoxia-reoxygenation. Both apocynin and DPI attenuated blood chemiluminescence and post-CPB hypoxemia. At 25 min post-CPB with Fi(O(2)) = 1, arterial Po(2) (Pa(o(2))) averaged 52 +/- 5, 162 +/- 54, 335 +/- 88, and 329 +/- 119 mmHg in control, low-dose apocynin, high-dose apocynin, and DPI-treated groups, respectively (P < 0.01). Indomethacin had no effect. Pa(O(2)) correlated with blood chemiluminescence measured after drug administration before CPB (R = -0.60, P < 0.005). Neither apocynin nor DPI prevented the increased tracheal pressure, plasma cytokine concentrations (tumor necrosis factor-alpha and IL-6), extravascular lung water, and pulmonary vascular protein permeability observed in control pigs. NADPH oxidase inhibition, but not xanthine oxidase inhibition, significantly blocked endothelial ROS generation following hypoxia-reoxygenation (P < 0.05). NADPH oxidase-derived ROS contribute to the severe hypoxemia but not to the increased cytokine generation and pulmonary vascular protein permeability, which occur following CPB.  相似文献   

4.
Recent evidence suggests that reactive oxygen species (ROS) promote proliferation and migration of vascular smooth muscle (VSMC) and endothelial cells (EC). We tested the hypothesis that ROS serve as crucial messengers during coronary collateral development. Dogs were subjected to brief (2 min), repetitive coronary artery occlusions (1/h, 8/day, 21 day duration) in the absence (occlusion, n = 8) or presence of N-acetylcysteine (NAC) (occlusion + NAC, n = 8). A sham group (n = 8) was instrumented identically but received no occlusions. In separate experiments, ROS generation after a single 2-min coronary artery occlusion was assessed with dihydroethidium fluorescence. Coronary collateral blood flow (expressed as a percentage of normal zone flow) was significantly increased (71 +/- 7%) in occlusion dogs after 21 days but remained unchanged (13 +/- 3%) in sham dogs. Treatment with NAC attenuated increases in collateral blood flow (28 +/- 8%). Brief coronary artery occlusion and reperfusion caused ROS production (256 +/- 33% of baseline values), which was abolished with NAC (104 +/- 12%). Myocardial interstitial fluid produced tube formation and proliferation of VSMC and EC in occlusion but not in NAC-treated or sham dogs. The results indicate that ROS are critical for the development of the coronary collateral circulation.  相似文献   

5.
Hypoxia-inducible factor (HIF)-1 activation in response to hypoxia requires mitochondrial generation of reactive oxygen species (ROS). In contrast, the requirement of ROS for HIF-1 activation by growth factors like insulin remains unexplored. To explore that, insulin-sensitive hepatic cell HepG2 or cardiac muscle cell H9c2 cells were pretreated with NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI) or apocynin and HIF-1 activation was tested by electrophoretic mobility shift and reporter gene assay. Antioxidants DPI or apocynin completely blocked insulin-stimulated HIF-1 activation. The restoration of HIF-1 activation by H(2)O(2) in DPI-pretreated cells not only confirmed the role of ROS but also identified H(2)O(2) as the responsible ROS. The role of NADPH oxidase was further confirmed by greater stimulation of HIF-1 during simultaneous treatment of suboptimal concentration of insulin along with NADPH but not by NADH. The role of oxidant generated by insulin is found to inhibit the protein tyrosine phosphatase as suggested by the following observations. First, tyrosine phosphatase-specific inhibitor sodium vanadate compensates DPI-inhibited HIF-1 activity. Second, sodium vanadate stimulates HIF-1 activation with suboptimal concentration of insulin. Third, DPI and pyrrolidene dithiocarbamate (PDTC) blocks insulin-receptor tyrosine kinase activation. The activity of phosphatidylinositol 3-kinase as evidenced by Akt phosphorylation, involved in HIF-1 activation, is also dependent on ROS generation by insulin. Finally, DPI pretreatment blocked insulin-stimulated expression of genes like VEGF, GLUT1, and ceruloplasmin. Overall, our data provide strong evidence for the essential role of NADPH oxidase-generated ROS in insulin-stimulated activation of HIF-1.  相似文献   

6.
Hyperglycemia-induced generation of reactive oxygen species (ROS) can lead to cardiomyocyte apoptosis and cardiac dysfunction. However, the mechanism by which high glucose causes cardiomyocyte apoptosis is not clear. In this study, we investigated the signaling pathways involved in NADPH oxidase-derived ROS-induced apoptosis in cardiomyocytes under hyperglycemic conditions. H9c2 cells were treated with 5.5 or 33 mM glucose for 36 h. We found that 33 mM glucose resulted in a time-dependent increase in ROS generation as well as a time-dependent increase in protein expression of p22(phox), p47(phox), gp91(phox), phosphorylated IκB, c-Jun N-terminal kinase (JNK) and p38, as well as the nuclear translocation of NF-kB. Treatment with apocynin or diphenylene iodonium (DPI), NADPH oxidase inhibitors, resulted in reduced expression of p22(phox), p47(phox), gp91(phox), phosphorylated IκB, c-Jun N-terminal kinase (JNK) and p38. In addition, treatment with JNK and NF-kB siRNAs blocked the activity of caspase-3. Furthermore, treatment with JNK, but not p38, siRNA inhibited the glucose-induced activation of NF-κB. Similar results were obtained in neonatal cardiomyocytes exposed to high glucose concentrations. Therefore, we propose that NADPH oxidase-derived ROS-induced apoptosis is mediated via the JNK-dependent activation of NF-κB in cardiomyocytes exposed to high glucose.  相似文献   

7.
Protein kinase C (PKC), p38 MAP kinase, and mitogen-activated protein kinase-activated kinases 2 and 3 (MAPKAPK2 and MAPKAPK3) have been implicated in ischemic preconditioning (PC) of the heart to reduce damage following a myocardial infarct. This study examined whether extracellular signal-regulated kinase (Erk) 1, p70 ribosomal S6 kinase (p70 S6K), casein kinase 2 (CK2), and other hsp27 kinases are also activated by PC, and if they are required for protection in rabbit hearts. CK2 and hsp27 kinase activities declined during global ischemia in control hearts, whereas PC with 5 min ischemia and 10 min reperfusion increased their activities during global ischemia. Resource Q chromatography resolved two distinct peaks of hsp27 phosphotransferase activities; the first peak (at 0.36 M NaCl) appeared to correspond to the 55-kDa MAPKAPK2. Erk1 activity was elevated in both control and PC hearts after post-ischemic reperfusion, but no change was observed in p70 S6K activity. Infarct size (measured by triphenyltetrazolium staining) in isolated rabbit hearts subjected to 30 min regional ischemia and 2 h reperfusion was 31.0+/-2.6% of the risk zone in controls and was 10.3+/-2.2% in PC hearts (p<0.001). Neither the CK2 inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) nor the Mek1/2 inhibitor PD98059 infused during ischemia blocked protection by PC. The activation of CK2 and Erk1 in ischemic preconditioned hearts appear to be epiphenomena and not required for the reduction of infarction from myocardial ischemia.  相似文献   

8.
Mechanical strain is necessary for normal lung growth and development. Individuals with respiratory failure are supported with mechanical ventilation, leading to altered lung growth and injury. Understanding signaling pathways initiated by mechanical strain in lung epithelial cells will help guide development of strategies aimed at optimizing strain-induced lung growth while mitigating ventilator-induced lung injury. To study strain-induced proliferative signaling, focusing on the role of reactive oxidant species (ROS) and p42/44 mitogen-activated protein (MAP) kinase, human pulmonary epithelial H441 and MLE15 cells were exposed to equibiaxial cyclic mechanical strain. ROS were increased within 15 min of strain. N-acetylcysteine inactivated strain-induced ROS and inhibited p42/44 MAP kinase phosphorylation and strain-induced proliferation. PD98059 and UO126, p42/44 MAP kinase inhibitors, blocked strain-induced proliferation. To verify the specificity of p42/44 MAP kinase inhibition, cells were transfected with dominant-negative mitogen-activated protein kinase kinase-1 plasmid DNA. Transfected cells did not proliferate in response to mechanical strain. To determine whether strain-induced tyrosine kinase activity is necessary for strain-induced ROS-p42/44 MAP kinase signaling, genistein, a tyrosine kinase inhibitor, was used. Genistein did not block strain-induced ROS production or p42/44 MAP kinase phosphorylation. Gadolinium, a mechanosensitive calcium channel blocker, blocked strain-induced ROS production and p42/44 MAP kinase phosphorylation but not strain-induced tyrosine phosphorylation. These data support ROS production and p42/44 MAP kinase phosphorylation being involved in a common strain-induced signaling pathway, necessary for strain-induced proliferation in pulmonary epithelial cells, with a parallel strain-induced tyrosine kinase pathway.  相似文献   

9.
Lee MW  Park SC  Yang YG  Yim SO  Chae HS  Bach JH  Lee HJ  Kim KY  Lee WB  Kim SS 《FEBS letters》2002,512(1-3):313-318
To determine the apoptotic signaling pathway which tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) induced, we investigated the contribution of reactive oxygen species (ROS), p38 mitogen-activated protein (MAP) kinase and caspases in human adenocarcinoma HeLa cells. Here we show that upon TRAIL/Apo2L exposure there was pronounced ROS accumulation and activation of p38 MAP kinase, and that activation of caspases and apoptosis followed. Pretreatment with antioxidants such as glutathione or estrogen attenuated TRAIL/Apo2L-induced apoptosis through a reduction of ROS generation and diminished p38 MAP kinase and caspase activation. The p38 MAP kinase inhibitor SB203580 prevented apoptosis through a blockage of caspase activation, although ROS generation was not attenuated. Furthermore, the pan-caspase inhibitor Z-Val-Ala-DL-Asp-fluoromethyl ketone fully prevented apoptosis, while neither ROS accumulation nor p38 MAP kinase activation were affected. Therefore, our results suggest that TRAIL/Apo2L-induced apoptosis is mediated by ROS-activated p38 MAP kinase followed by caspase activation in HeLa cells.  相似文献   

10.
In RAW 264.7 macrophages lipopolysaccharide (LPS) stimulated the activation of p42 and p44 MAP kinases and their upstream activator mitogen-activated protein (MAP) kinase kinase (MAPKK), and induced the 69-kDa isoform of cyclo-oxygenase-2 (COX-2) and the 130-kDa isoform of nitric oxide synthase (iNOS). PD 098059, a specific inhibitor of the activation of MAPKK, prevented LPS-mediated activation of MAPKK (IC50 = 3.0 +/- 0.1 microM, n = 3) and p42/44 MAP kinases and substantially reduced the induction of COX-2 by approximately 40%-70%, but was without effect upon the induction of iNOS. In parallel, LPS also stimulated the activation of p38 MAP kinase and the MAPKAP kinase-2, a downstream target of p38 MAP kinase. SB 203580, a specific inhibitor of p38 MAP kinase prevented the activation of p38 MAP kinase (IC50 = 3.3 +/- 1.4 microM, n = 3) and MAPKAP kinase-2 by LPS and reduced the induction of COX-2 by approximately 50-90%, with no significant effect upon iNOS expression. These studies indicate the involvement of both the classical p42/44 MAP kinases and p38 MAP kinase in the regulation of COX-2 but not iNOS induction following exposure to LPS.  相似文献   

11.
Fibroblasts possess receptors for compounds released during ischemia, including bradykinin. The aims of the present study were to investigate tyrosine kinase and p38 MAP kinase signalling in heart derived myofibroblasts in response to bradykinin and preconditioning ischemia. Fibroblasts from neonatal rat hearts were subjected to pharmacological agents and/or simulated ischemia. Cell viability was measured by the conversion of a tetrazolium salt to its formazan derivative. Preconditioning with 30 min of simulated ischemia followed by 30 min recovery resulted in an 85.4% +/- 7.8% increase in cell survival above that of cells treated with prolonged ischemia alone. Cells treated with bradykinin showed a 35% +/- 7.9 increase in cell survival after lethal ischemia. The B2 receptor antagonist Hoe 140 blocked the protective effect of bradykinin, but did not block preconditioning. The K(ATP) channel blocker glibenclamide and the mitochondria specific K(ATP) blocker 5, hydroxydecanoate, abolished the cytoprotection induced by both preconditioning and bradykinin. The non specific tyrosine kinase inhibitor genistein also abolished the cytoprotection. Effective blockade of cytoprotection was obtained with K(ATP) channel blockers and the tyrosine kinase inhibitor when these compounds were given prior to the preconditioning stimulus and not during the lethal insult. The stress activated protein kinase p38 MAP kinase was investigated by Western blotting and by the use of a specific inhibitor (SB203580). Preconditioning reduced phospho-p38 MAP kinase; in contrast, bradykinin administration markedly increased phosphorylation of p38 MAP kinase. SB203580 protected cells from lethal simulated ischemia. In conclusion, cell survival-signalling pathways activated by bradykinin or simulated ischemia in heart fibroblasts protect via the opening of K(ATP) channels and are independent of the stress-activated p38 MAP kinase and/or related to inhibition of this kinase.  相似文献   

12.
Yun MR  Im DS  Lee JS  Son SM  Sung SM  Bae SS  Kim CD 《Life sciences》2006,78(22):2608-2614
Endothelial expression of E-selectin is enhanced in diabetic patients with retinopathy, however, the underlying mechanisms are unclear. Therefore, this study was aimed to determine if endothelial expression of E-selectin is stimulated with serum from type 2 diabetic patients with retinopathy, and whether this process is related to NAD(P)H oxidase-derived oxidative stress. Serum was obtained from type 2 diabetic patients with (T2DR) or without (T2DM) retinopathy, and age-matched non-diabetic healthy person (Control). Serum was added to in vitro-grown human coronary artery endothelial cells (HCAEC), after which E-selectin expression, reactive oxygen species (ROS) production, and NAD(P)H oxidase activity were measured. Serum from T2DR induced a significantly higher expression of E-selectin than serum from T2DM and control in association with an enhanced production of ROS in HCAEC. T2DR serum enhanced E-selectin expression in a ROS-dependent manner since this process was significantly attenuated not only by tiron (1 mM), a superoxide scavenger, but also by DPI (10 micromol/L) and apocynin (100 micromol/L), inhibitors of NAD(P)H oxidase. Furthermore, the activity of NADH oxidase was markedly increased by T2DR serum, and this was accompanied by the enhanced membrane translocation of p47phox, a cytosolic subunit of NAD(P)H oxidase. These findings suggest that serum from T2DR induced up-regulation of E-selectin expression in HCAEC, and this process might be dependent on activation of endothelial NADH oxidase via an enhanced membrane translocation of p47phox.  相似文献   

13.
The Cbl family of proteins negatively regulate signaling from tyrosine kinase-coupled receptors. Among the three members of this family, only c-Cbl and Cbl-b are expressed in hemopoietic cells. To examine the role of c-Cbl and Cbl-b in Fc epsilon RI signaling, mast cell cultures from wild-type, c-Cbl(-/-), and Cbl-b(-/-) mice were generated. Cell growth rates and cell surface expression of Fc epsilon RI were similar in the different cell populations. Compared with control cells, Cbl-b inactivation resulted in increases in Fc epsilon RI-induced Ca(2+) response and histamine release. Fc epsilon RI-induced tyrosine phosphorylation of total cellular proteins, Syk, and phospholipase C-gamma was also enhanced by Cbl-b deficiency, whereas receptor-initiated phosphorylation of Vav, JNK, and p38 kinases was not changed in these cells. In contrast to Cbl-b, c-Cbl deficiency had no detectable effect on Fc epsilon RI-induced histamine release or on the phosphorylation of total cellular proteins or Syk. The absence of c-Cbl increased the phosphorylation of ERK after receptor stimulation, but resulted in slightly reduced p38 phosphorylation and Ca(2+) response. These results suggest that Cbl-b and c-Cbl have divergent effects on Fc epsilon RI signal transduction and that Cbl-b, but not c-Cbl, functions as a negative regulator of Fc epsilon RI-induced degranulation.  相似文献   

14.
Since amlodipine, a long-acting Ca channel blocker, increases both NO and adenosine production in canine hearts, we investigated that amlodipine activates both ecto-5(')-nucleotidase responsible for adenosine production and NO synthase (NOS) for NO production in human umbilical venous endothelial cells (HUVECs), and its cellular signaling. We measured activities of ecto-5(')-nucleotidase and NOS in HUVECs in the condition with additions of xanthine (100 microM)+xanthine oxidase (1.6 x 10(-3)U/ml) in the presence or absence of amlodipine (1 x 10(-9)-1 x 10(-6)M). Amlodipine increased both ecto-5(')-nucleotidase and NOS activities. Xanthine+xanthine oxidase deactivated both NOS and ecto-5(')-nucleotidase, and amlodipine increased both activities of NOS and ecto-5(')-nucleotidase by 117+/-33% and 48+/-6%, respectively. Amlodipine phosphorylated p38MAP kinase and that an inhibitor of p38MAP kinase inhibited the amlodipine-induced activation of both NOS and ecto-5(')-nucleotidase. Furthermore, amlodipine increased both adenosine and NO production in the canine ischemic hearts. We concluded that amlodipine activates both NOS and ecto-5(')-nucleotidase via p38MAP kinase in vitro and enhances both NO and adenosine production in vivo.  相似文献   

15.
Cellular insulin stimulation generates a burst of H(2)O(2) that modulates protein-tyrosine phosphorylation in the insulin action pathway, in part by the inhibition of redox-sensitive protein-tyrosine phosphatases [J. Biol. Chem. 276 (2001) 21938]. Blocking the insulin-induced rise in H(2)O(2) with the NADPH oxidase inhibitor diphenyleneiodonium (DPI) strongly attenuated the activation of phosphatidylinositol 3' (PI 3')-kinase, Akt and GLUT4 translocation by insulin in 3T3-L1 adipocytes; however, under identical conditions, we observed a paradoxical increase in the activation of p42/p44 mitogen-activated protein (MAP) kinase. DPI inhibited the insulin-stimulated tyrosine phosphorylation of the insulin receptor and IRS-1/2, and also reduced the association of Grb2 with IRS-1, suggesting that the effect of DPI on MAP kinase activation occurred downstream of the IR and IRS proteins. DPI increased the insulin-stimulated phosphorylation of p42/p44 MAP kinase with no change in basal, and increased insulin-stimulated MAP kinase kinase (MEK) activity by a similar degree. DPI enhanced basal Grb2-Sos binding and reduced the effect of insulin to potentiate the dissociation of the Grb2-Sos complex, suggesting that the effect of DPI was mediated upstream of Raf-1. Cell treatment with dibutyryl cAMP significantly reduced the enhancement of MAP kinase activation in the presence of DPI. However, forskolin, acting in a PKA-independent manner, increased the insulin stimulation of MAP kinase and MEK, but fully abrogated the effect of DPI to enhance these insulin responses. PLCgamma inhibition with U73122 blocked the insulin stimulation of MAP kinase and MEK as well as the enhancing effect of DPI on these responses. PKC activation strongly stimulated MAP kinase and MEK activation, even in the presence of U73122, consistent with PKC acting downstream of PLCgamma. These data show that the insulin-stimulated oxidant signal differentially affects the two major downstream components of the insulin signaling pathway, PI 3'-kinase and MAP kinase, and cross-talk between insulin action, PLCgamma and, to a lesser extent, PKA modulates the net cellular effects of insulin-stimulated cellular H(2)O(2).  相似文献   

16.
To understand the role of redox-sensitive mechanisms in vascular smooth muscle cell (VSMC) growth, we have studied the effect of N-acetylcysteine (NAC), a thiol antioxidant, and diphenyleneiodonium (DPI), a potent NADH/NADPH oxidase inhibitor, on serum-, platelet-derived growth factor BB-, and thrombin-induced ERK2, JNK1, and p38 mitogen-activated protein (MAP) kinase activation; c-Fos, c-Jun, and JunB expression; and DNA synthesis. Both NAC and DPI completely inhibited agonist-induced AP-1 activity and DNA synthesis in VSMC. On the contrary, these compounds had differential effects on agonist-induced ERK2, JNK1, and p38 MAP kinase activation and c-Fos, c-Jun, and JunB expression. NAC inhibited agonist-induced ERK2, JNK1, and p38 MAP kinase activation and c-Fos, c-Jun, and JunB expression except for platelet-derived growth factor BB-induced ERK2 activation. In contrast, DPI only inhibited agonist-induced p38 MAP kinase activation and c-Fos and JunB expression. Antibody supershift assays indicated the presence of c-Fos and JunB in the AP-1 complex formed in response to all three agonists. In addition, cotransfection of VSMC with expression plasmids for c-Fos and members of the Jun family along with the AP-1-dependent reporter gene revealed that AP-1 with c-Fos and JunB composition exhibited a higher transactivating activity than AP-1 with other compositions tested. All three agonists significantly stimulated reactive oxygen species production, and this effect was inhibited by both NAC and DPI. Together, these results strongly suggest a role for redox-sensitive mechanisms in agonist-induced ERK2, JNK1, and p38 MAP kinase activation; c-Fos, c-Jun, and JunB expression; AP-1 activity; and DNA synthesis in VSMC. These results also suggest a role for NADH/NADPH oxidase activity in some subset of early signaling events such as p38 MAP kinase activation and c-Fos and JunB induction, which appear to be important in agonist-induced AP-1 activity and DNA synthesis in VSMC.  相似文献   

17.
Elevation of blood homocysteine levels (hyperhomocysteinemia) is a risk factor for cardiovascular disorders. One of the mechanisms by which homocysteine induces atherosclerosis is to promote the proliferation of vascular smooth muscle cells (VSMCs) in a reactive oxygen species (ROS)-dependent manner. It has been shown that homocysteine induces the production of ROS through the activation of NAD(P)H oxidases in VSMCs. In this study, we investigated the signal transduction pathways involved in the activation of NAD(P)H oxidases. Homocysteine promoted DNA synthesis in VSMCs. Inhibition of ROS by N-acetyl-L-cysteine (an antioxidant) and apocynin (an inhibitor of NAD(P)H oxidases) significantly blocked homocysteine-induced proliferation in VSMCs. Homocysteine induced a rapid increase in the phosphorylation of p38-mitogen-activated protein kinase (p38 MAPK). p38 MAPK in turn activated NAD(P)H oxidases by inducing the phosphorylation of p47phox, resulting in the generation of ROS. ROS induced the phosphorylation of Akt, which was probably responsible for proliferation in VSMCs. These findings demonstrate that homocysteine induces an increase in the activity of NAD(P)H oxidases in VSMCs by activating p38 MAPK and enhancing the phosphorylation of p47phox.  相似文献   

18.
Cytosolic phospholipase A(2) (cPLA(2)) plays a pivotal role in mediating agonist-induced arachidonic acid (AA) release for prostaglandin (PG) synthesis during inflammation triggered by tumor necrosis factor-α (TNF-α). However, the mechanisms underlying TNF-α-induced cPLA(2) expression and PGE(2) synthesis in human tracheal smooth muscle cells (HTSMCs) remain unknown. Here, we report that TNF-α-induced cPLA(2) protein and mRNA expression, PGE(2) production, and phosphorylation of p42/p44 MAPK, p38 MAPK, and JNK1/2, which were attenuated by pretreatment with a ROS scavenger [N-acetyl-L-cysteine, (NAC)] and the inhibitors of NADPH oxidase [apocynin (APO) and diphenyleneiodonium chloride (DPI)], MEK1/2 (U0126), p38 MAPK (SB202190), and JNK1/2 (SP600125) or transfection with siRNA of Nox2, p47(phox) , MEK1, p42, p38, or JNK2. TNF-α-induced cPLA(2) expression was also inhibited by pretreatment with a selective NF-κB inhibitor [helenalin (HLN)] or transfection with dominant negative mutants of NF-κB inducing kinase (NIK) or IκB kinase (IKK)α/β. TNF-α-induced NF-κB translocation was blocked by pretreatment with NAC, DPI, APO, or HLN, but not by U0126, SB202190, or SP600125. In addition, pretreatment with curcumin (a p300 inhibitor) or transfection with p300 siRNA blocked cPLA(2) expression and PGE(2) synthesis induced by TNF-α. We further confirmed that p300 was associated with the cPLA(2) promoter which was dynamically linked to histone H4 acetylation stimulated by TNF-α, determined by chromatin immunoprecipitation assay. Association of p300 and histone H4 to cPLA(2) promoter was inhibited by U0126, SB202190, and SP600125. These results suggested that in HTSMCs, activation of p47(phox) , MAPKs, NF-κB, and p300 is essential for TNF-α-induced cPLA(2) expression and PGE(2) release.  相似文献   

19.
Stress is gaining increasing acceptance as an independent risk factor contributing to adverse cardiovascular outcomes. Potential mechanisms responsible for the deleterious effects of stress on the development and progression of cardiovascular disease remain to be elucidated. An established animal model of stress in humans is the prenatally stressed (PS) rat. We stressed rats in their third trimester of pregnancy by daily injections of saline and moving from cage to cage. Male offspring of these stressed dams (PS) and age-matched male control offspring (control) were further subjected to restraint stress (R) at 6 and 7 wk of age. Echocardiography revealed a significant decrease in fractional shortening in PS + R vs. controls + R (45.8 +/- 3.9 vs. 61.9 +/- 2.4%, PS + R vs. controls + R; P < 0.01; n = 12). Isolated adult rat ventricular myocytes from PS + R also revealed diminished fractional shortening (6.7 +/- 0.8 vs. 12.7 +/- 1.1%, PS + R vs. controls + R; P < 0.01; n = 24) and blunted inotropic responses to isoproterenol (P < 0.01; n = 24) determined by automated border detection. The p38 mitogen-activated protein (MAP) kinase inhibitor SB-203580 blocked p38 MAP kinase phosphorylation, reversed the depression in fractional shortening, and partially ameliorated the blunted adrenergic signaling seen in adult rat ventricular myocytes from PS + R. Phosphorylation of p38 MAP kinase in cardiac myocytes by stress may be sufficient to lead to myocardial dysfunction in animal models and possibly humans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号