首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental vaccine strategies for cancer immunotherapy   总被引:10,自引:0,他引:10  
Recently, cancer immunotherapy has emerged as a therapeutic option for the management of cancer patients. This is based on the fact that our immune system, once activated, is capable of developing specific immunity against neoplastic but not normal cells. Increasing evidence suggests that cell-mediated immunity, particularly T-cell-mediated immunity, is important for the control of tumor cells. Several experimental vaccine strategies have been developed to enhance cell-mediated immunity against tumors. Some of these tumor vaccines have generated promising results in murine tumor systems. In addition, several phase I/II clinical trials using these vaccine strategies have shown extremely encouraging results in patients. In this review, we will discuss many of these promising cancer vaccine strategies. We will pay particular attention to the strategies employing dendritic cells, the central player for tumor vaccine development.  相似文献   

2.
The lack of immunogenicity of most malaria antigens and the complex immune responses required for achieving protective immunity against this infectious disease have traditionally hampered the development of an efficient human malaria vaccine. The current boom in development of recombinant viral vectors and their use in prime-boost protocols that result in enhanced immune outcomes have increased the number of malaria vaccine candidates that access pre-clinical and clinical trials. In the frontline, adenoviruses and poxviruses seem to be giving the best immunization results in experimental animals and their mutual combination, or their combination with recombinant proteins (formulated in adjuvants and given in sequence or being given as protein/virus admixtures), has been shown to reach unprecedented levels of anti-malaria immunity that predictably will be somehow reproduced in the human setting. However, all this optimism was previously seen in the malaria vaccine development field without many real applicable results to date. We describe here the current state-of-the-art in the field of recombinant adenovirus research for malaria vaccine development, in particular referring to their use in combination with other immunogens in heterologous prime-boost protocols, while trying to simultaneously show our contributions and point of view on this subject.  相似文献   

3.
There is no licenced vaccine against any human parasitic disease and Plasmodium falciparum malaria, a major cause of infectious mortality, presents a great challenge to vaccine developers. This has led to the assessment of a wide variety of approaches to malaria vaccine design and development, assisted by the availability of a safe challenge model for small-scale efficacy testing of vaccine candidates. Malaria vaccine development has been at the forefront of assessing many new vaccine technologies including novel adjuvants, vectored prime-boost regimes and the concept of community vaccination to block malaria transmission. Most current vaccine candidates target a single stage of the parasite's life cycle and vaccines against the early pre-erythrocytic stages have shown most success. A protein in adjuvant vaccine, working through antibodies against sporozoites, and viral vector vaccines targeting the intracellular liver-stage parasite with cellular immunity show partial efficacy in humans, and the anti-sporozoite vaccine is currently in phase III trials. However, a more effective malaria vaccine suitable for widespread cost-effective deployment is likely to require a multi-component vaccine targeting more than one life cycle stage. The most attractive near-term approach to develop such a product is to combine existing partially effective pre-erythrocytic vaccine candidates.  相似文献   

4.
Vaccination is the attempt to mimic certain aspects of an infection for the purpose of causing an immune response that will protect the individual from that infection. Malaria, a disease responsible for immense human suffering, is caused by infection with Plasmodium spp. parasites, which have a very complex life cycle--antigenically unique stages infect different tissues of the body. It is a parasitic disease for which no successful vaccine has been developed so far, despite considerable efforts to develop a subunit vaccine that offers protective immunity. Due to the spread of drug-resistant malaria, efforts to develop an effective vaccine have become increasingly critical. DNA vaccination provides a stable and long-lived source of protein vaccine capable of inducing both antibody- and cell-mediated immune responses to a wide variety of antigens. Injected DNA enters the cells of the host and makes the protein, which triggers the immune response. According to present needs, the flexibility of DNA vaccine technology permits the combination of multiple antigens from both the preerythrocytic and erythrocytic stages of malaria parasite. DNA vaccines with genes coding for different antigenic parts of malaria proteins have been created and presently some of these are undergoing field trials. The results from these trials will help to determine the likelihood of success of this technology in humans. This review presents an update of the studies carried out in malaria using DNA vaccine approach, the challenges, and the future prospects.  相似文献   

5.
Vaccination is the attempt to mimic certain aspects of an infection for the purpose of causing an immune response that will protect the individual from that infection. Malaria, a disease responsible for immense human suffering, is caused by infection with Plasmodium spp. parasites, which have a very complex life cycle — antigenically unique stages infect different tissues of the body. It is a parasitic disease for which no successful vaccine has been developed so far, despite considerable efforts to develop a subunit vaccine that offers protective immunity. Due to the spread of drug-resistant malaria, efforts to develop an effective vaccine have become increasingly critical. DNA vaccination provides a stable and long-lived source of protein vaccine capable of inducing both antibody- and cell-mediated immune responses to a wide variety of antigens. Injected DNA enters the cells of the host and makes the protein, which triggers the immune response. According to present needs, the flexibility of DNA vaccine technology permits the combination of multiple antigens from both the preerythrocytic and erythrocytic stages of malaria parasite. DNA vaccines with genes coding for different antigenic parts of malaria proteins have been created and presently some of these are undergoing field trials. The results from these trials will help to determine the likelihood of success of this technology in humans. This review presents an update of the studies carried out in malaria using DNA vaccine approach, the challenges, and the future prospects.  相似文献   

6.
The induction of mucosal immunity is very important in conferring protection against pathogens that typically invade via mucosal surfaces. Delivery of a vaccine to a mucosal surface optimizes the induction of mucosal immunity. The apparent linked nature of the mucosal immune system allows delivery to any mucosal surface to potentially induce immunity at others. Oral administration is a very straightforward and inexpensive approach to deliver a vaccine to the mucosal lining of the gut. However, vaccines administered by this route are subject to proteolysis in the gastrointestinal tract. Thus, dose levels for protein subunit vaccines are likely to be very high and the antigen may need to be protected from proteolysis for oral delivery to be efficacious. Expression of candidate vaccine antigens in edible recombinant plant material offers an inexpensive means to deliver large doses of vaccines in encapsulated forms. Certain plant tissues can also stably store antigens for extensive periods of time at ambient temperatures, obviating the need for a cold-chain during vaccine storage and distribution, and so further limiting costs. Antigens can be expressed from transgenes stably incorporated into a host plant's nuclear or plastid genome, or from engineered plant viruses infected into plant tissues. Molecular approaches can serve to boost expression levels and target the expressed protein for appropriate post-translational modification. There is a wide range of options for processing plant tissues to allow for oral delivery of a palatable product. Alternatively, the expressed antigen can be enriched or purified prior to formulation in a tablet or capsule for oral delivery. Fusions to carrier molecules can stabilize the expressed antigen, aid in antigen enrichment or purification strategies, and facilitate delivery to effector sites in the gastrointestinal tract. Many antigens have been expressed in plants. In a few cases, vaccine candidates have entered into early phase clinical trials, and in the case of farmed animal vaccines into relevant animal trials.  相似文献   

7.
Live recombinant vectors entered the AIDS vaccine field with the realization that live attenuated HIV vaccines posed too great a safety risk, and that subunit vaccines elicited antibodies which lacked the breadth or potency needed to induce sterilizing immunity. Vectored vaccines provided a means to bring the cellular arm of the immune system into play by mimicking natural viral infection. By delivering antigens within host cells, processing and presentation could occur for induction of cellular immune responses. This recombinant vector approach, either alone or combined with other strategies, has produced impressive results. Recombinants have been generated from DNA and RNA viruses and bacteria. With few exceptions, each vector poses some risk, yet each possesses unique features that make it attractive. In addition to safety, key considerations in vector selection have included previous success as a vaccine against the wild-type agent or other pathogens; ability to induce potent, persistent immune responses; ability to target mucosal inductive sites and antigen presenting cells; lack of integration into the host genome; presence of pre-existing immunity in people; ease of mucosal administration; cloning capacity; ease of engineering and production; and stability of the final product. Here we up-date the status of several live recombinant vectors that have shown good potential in pre-clinical studies. Some have progressed to human clinical trials, and others will shortly. The abundance of vectors, coupled with the complexity arising from use of combination regimens with other vaccine types and heterologous vectors, will necessitate selection of the most promising candidates for large-scale efficacy trials in people. The sooner comparative studies can be designed and implemented in which live recombinant vectors containing the same inserted genes are evaluated head-to-head, the closer we will be to an eventual vaccine.  相似文献   

8.
Even before the partial success of a preventive HIV vaccine in a recent Phase III clinical trial, there had been an active research effort to determine one or more immune correlates of protection for HIV infection. This effort has been hampered by the lack of natural protective immunity against HIV. As a result, most of the studies have focused on long-term non-progressive infection or other clinical situations, none of which fully recapitulates protective immunity against HIV. Although this effort has been successful in defining characteristics of T cells in acute and non-progressive HIV infection, and has therefore greatly expanded our knowledge of the immunopathogenesis of AIDS, its success in defining immune correlates of protection is less clear. In this Opinion article we offer a perspective on how successful this effort has been in defining immune correlates of protection that have been, or will be, of use in the development of an HIV vaccine. Our view is that investing in an iterative approach to human vaccine efficacy trials of sufficient size and sampling frequency will improve the likelihood that an immune correlate of vaccine protection will be defined.  相似文献   

9.
With the spread of AIDS still rampant in many parts of the world, there is a global urgency to develop a vaccine against HIV-1. Without a doubt, developing an effective vaccine against the virus has been a monumental scientific challenge. Although advances in molecular biology and biotechnology over the years have enabled us to generate "designer antigens," our ability to transform them into successful vaccine candidates has been limiting. This review will be divided into three sections: First, the theoretical benefits and limitations of subunit protein vaccine strategy will be presented. Secondly, recent progress in our understanding of immune responses against AIDS vaccine candidates that incorporate recombinant proteins or peptides will be reviewed, mainly those that are designed to elicit humoral immune responses. Finally, some of the factors that must be considered in designing and evaluating future vaccine candidates will be discussed.  相似文献   

10.
A year after the initial outbreak of Covid-19 pandemic, several Phase III clinical trials investigating vaccine safety and efficacy have been published. These vaccine candidates were developed by different research groups and pharmaceutical companies with various vaccine technologies including mRNA, recombinant protein, adenoviral vector and inactivated virus-based platforms. Despite numerous successful clinical trials, participants enrolled in these trials are limited by trial inclusion and exclusion criteria, geographic location and viral outbreak situation. Many questions still remain, especially for specific subgroups, including the elderly, females with pregnancy and breastfeeding status, and adolescents. At the same time, vaccine efficacy towards asymptomatic infection and specific viral variants are still largely unknown. This review will cover vaccine candidates with Phase III clinical trial data released and discuss the scientific data available so far for these vaccine candidates for different subgroups of people and different viral variants.  相似文献   

11.
Plasmodium vivax is the most prevalent malaria parasite on the American continent. It generates a global burden of 80-100 million cases annually and represents a tremendous public health problem, particularly in the American and Asian continents. A malaria vaccine would be considered the most cost-effective measure against this vector-borne disease and it would contribute to a reduction in malaria cases and to eventual eradication. Although significant progress has been achieved in the search for Plasmodium falciparum antigens that could be used in a vaccine, limited progress has been made in the search for P. vivax components that might be eligible for vaccine development. This is primarily due to the lack of in vitro cultures to serve as an antigen source and to inadequate funding. While the most advanced P. falciparum vaccine candidate is currently being tested in Phase III trials in Africa, the most advanced P. vivax candidates have only advanced to Phase I trials. Herein, we describe the overall strategy and progress in P. vivax vaccine research, from antigen discovery to preclinical and clinical development and we discuss the regional potential of Latin America to develop a comprehensive platform for vaccine development.  相似文献   

12.
Schistosomiasis: forty years' war on the worm   总被引:9,自引:0,他引:9  
Schistosome vaccine candidates are now entering phase I clinical trials. In an attempt to illustrate the progress made towards control, and the definition of potential vaccines against schistosomiasis, André Capron reviews some of the major findings and observations that have led to a significant evolution of our concepts, together with the production of novel and promising tools. It is obvious that our most important advances have proceeded from the successful integration of convergent knowledge in biology, epidemiology and biotechnology. At this stage, nobody can predict what will be the outcome of the current trials, but an important step has certainly been made towards immunointervention in human schistosomiasis.  相似文献   

13.
The growing pandemic of human tuberculosis has not been affected significantly by the widespread use of the only currently available vaccine, bacille Calmette Guerin. Bacille Calmette Guerin protects uniformly against serious paediatric forms of tuberculosis and against adult pulmonary tuberculosis in some parts of the world, but there are clearly populations in high-burden countries which do not benefit from the current vaccination regimen. New tuberculosis vaccines will be essential for the ultimate control of this ancient disease. Research over the past 10 years has produced literally hundreds of new tuberculosis vaccine candidates representing all of the major vaccine design strategies; protein/peptide vaccines in adjuvants, DNA vaccines, naturally and rationally attenuated strains of mycobacteria, recombinant mycobacteria and other living vaccine vectors expressing genes coding for immunodominant mycobacterial antigens, and non-peptide vaccines. Many of these vaccines have been tested for immunogenicity and protective efficacy in mouse and guinea pig models of low-dose pulmonary tuberculosis. In addition, alternative routes of tuberculosis vaccine delivery (e.g. oral, respiratory, gene gun) and various combinations of priming or boosting an experimental vaccine with bacille Calmette Guerin have been examined in relevant animal models. One of the most promising of these vaccines is currently in Phase I trials in human subjects, and others are expected to follow in the near future. This review will summarise the most recent progress made toward the development and preclinical evaluation of novel vaccines for human tuberculosis.  相似文献   

14.
Traditional methods of controlling malaria with insecticides and parasiticides have been inadequate. The use of hybridoma and recombinant DNA technologies to study the malaria parasite has permitted the identification of several antigens which may elicit protective immune responses. Clincial trials have begun to evaluate the merits of these molecules as vaccine candidates. It is hoped that their large scale production in genetically engineered hosts will result in the development of an effective vaccine.  相似文献   

15.
Envisioning future strategies for vaccination against tuberculosis   总被引:1,自引:0,他引:1  
The design of tuberculosis vaccines has entered a new era. Although several new vaccine candidates will pass Phase I clinical trials within the next year, I believe that the most effective vaccination strategy will be to combine different vaccine candidates and to use a prime-boost approach. This strategy, however, would require several years of iterative vaccine trials, unless the process is expedited by the identification of reliable biomarkers for assessing vaccine efficacy. In this Essay, I briefly summarize past and present attempts to develop a vaccine against tuberculosis, and I describe, using imagined scenarios, the tuberculosis vaccination schemes that might become available from a large repertoire of candidate schemes in the near and distant future.  相似文献   

16.
In order to provide a rational basis for the development of a pre-erythrocytic malaria vaccine we have aimed at: (a) elucidating the mechanisms of protection, and (b) identifying vaccine formulations that best elicit protection in experimental animals and humans. Based on earlier successful immunization of experimental animals with irradiated sporozoites, human volunteers were exposed to the bites of large numbers of Plasmodium falciparum or P. vivax infected irradiated mosquitoes. The result of this vaccine trial demonstrated for the first time that a pre-erythrocytic vaccine, administered to humans, can result in their complete resistance to malaria infection. However, since infected irradiated mosquitoes are unavailable for large scale vaccination, the alternative is to develop subunit vaccines. The human trials using irradiated sporozoites provided valuable information on the human immune responses to pre-erythrocytic stages and studies on mice an excellent experimental model to characterize protective immune mechanisms. The circumsporozoite protein, the first pre-erythrocytic antigen identified, is present in all malaria species, displaying a similar structure, with a central region of repeats, and two conserved regions, essential for parasite development. Most pre-erythrocytic vaccine candidates are based on the CS protein, expressed in various cell lines, microorganisms, and recently the corresponding DNA. We and others have identified CS-specific B and T cell epitopes, recognized by the rodent and human immune systems, and used them for the development of synthetic vaccines. We used synthetic peptide vaccines, multiple antigen peptides and polyoximes, for immunization, first in experimental animals, and recently in two human safety and immunogenicity trials. We also report here on our work on T cell mediated immunity, particularly the protection of mice immunized with viral vectors expressing CS-specific cytotoxic CD8+ T cell epitopes, and the striking booster effect of recombinant vaccinia virus. To what degree CD8+ T cells, and/or other T cells specific for sporozoites and/or liver stage epitopes, contribute to pre-erythrocytic protective immunity in humans, remains to be determined.  相似文献   

17.
In this review we discuss recent progress in the development, testing, and clinical evaluation of new vaccines against tuberculosis (TB). Over the last 20 years, tremendous progress has been made in TB vaccine research and development: from a pipeline virtually empty of new TB candidate vaccines in the early 1990s, to an era in which a dozen novel TB vaccine candidates have been and are being evaluated in human clinical trials. In addition, innovative approaches are being pursued to further improve existing vaccines, as well as discover new ones. Thus, there is good reason for optimism in the field of TB vaccines that it will be possible to develop better vaccines than BCG, which is still the only vaccine available against TB.  相似文献   

18.
Due to the complexity of the malaria life cycle and the stage-specificity of immunity, a malaria vaccine will most likely be multicomponent, directed against surface epitopes on sporozoites, infected erythrocytes, merozoites and gametes. The CSP antigen of sporozoites is best understood at the structural and immunochemical level and vaccine trials employing peptides derived from this protein are currently underway. To date, no antigenic diversity of the immunodominant repeat epitope of the CSP protein has been uncovered in natural isolates of P. falciparum, raising optimism for eventual applicability of the laboratory trials to a field vaccine. Numerous surface antigens on merozoites and gametes have been identified with monoclonal antibodies and shown to be potential vaccine targets based on in vitro and in vivo studies with these antibodies. The problem of antigenic diversity and parasite lability seems acute in the asexual blood stages, and perhaps also with transmission-blocking antigens of gametes. Ways must be found to identify invariant surface epitopes that are so critical to parasite survival that in the face of a potentially lethal immune response mutant organisms cannot alter the target epitope and evade destruction.  相似文献   

19.
Antigen design guided by high-resolution viral glycoprotein structures has successfully generated diverse vaccine candidates for COVID-19. Using conjugation systems to combine antigen design with computationally optimized nanoparticles, researchers have been able to display multivalent antigens with beneficial substitutions that elicited robust humoral immunity with enhanced neutralization potency and breadth. Here, we discuss strategies that have been used for structure-based design and nanoparticle display to develop COVID-19 vaccine candidates as well as potential next-generation vaccine candidates to protect against SARS-CoV-2 variants and other coronaviruses that emerge into the human population.  相似文献   

20.
Polyhistidine triad protein D (PhtD) has been described as a promising vaccine candidate for use against Streptococcus pneumoniae, but there has been a lack of examination of its structure and of which region(s) of the protein are targeted by protective immune responses. In this study, we purified recombinant truncated derivatives of PhtD and examined their secondary structural composition, as well as their capacity to bind antibodies from polyclonal murine serum generated against the full length protein. This allowed the identification of a particularly immunogenic fragment of PhtD, which was also purified and characterised. The truncated derivatives were tested as vaccine antigens in mouse models of pneumococcal sepsis and colonisation, using alum and E. coli heat labile toxin B subunit respectively as adjuvants. These experiments revealed that whilst the immunogenic region identified may be a promising candidate to protect against sepsis, the full length PhtD was ineffective at conferring significant protective immunity. These results are significant for the potential for PhtD to be used in novel vaccines, which are currently being tested in clinical trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号