首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 316 毫秒
1.
The molecular basis of how pathogenic bacteria cause disease has been studied by blending a well-developed genetic system with X-ray crystallography, protein chemistry, high resolution electron microscopy, and cell biology. Microbial attachment to host tissues is one of the key events in the early stages of most bacterial infections. Attachment is typically mediated by adhesins that are assembled into hair-like fibers called pili on bacterial surfaces. This article focuses on the structure-function correlates of P pili, which are produced by most pyelonephritic strains of Escherichia coli. P pili are assembled via a chaperone/usher pathway. Similar pathways are responsible for the assembly of over 30 adhesive organelles in various Gram-negative pathogens. P pilus biogenesis has been used as a model system to elucidate common themes in bacterial pathogenesis, namely, the protein folding, secretion, and assembly of virulence factors. The structural basis for pilus biogenesis is discussed as well as the function and consequences of microbial attachment.  相似文献   

2.
The Cpx envelope stress response mediates adaptation to potentially lethal envelope stresses in Escherichia coli. The two-component regulatory system consisting of the sensor kinase CpxA and the response regulator CpxR senses and mediates adaptation to envelope insults believed to result in protein misfolding in this compartment. Recently, a role was demonstrated for the Cpx response in the biogenesis of P pili, attachment organelles expressed by uropathogenic E. coli. CpxA senses misfolded P pilus assembly intermediates and initiates increased expression of both assembly and regulatory factors required for P pilus elaboration. In this report, we demonstrate that the Cpx response is also involved in the expression of the type IV bundle-forming pili of enteropathogenic E. coli (EPEC). Bundle-forming pili were not elaborated from an exogenous promoter in E. coli laboratory strain MC4100 unless the Cpx pathway was constitutively activated. Further, an EPEC cpxR mutant synthesized diminished levels of bundle-forming pili and was significantly affected in adherence to epithelial cells. Since type IV bundle-forming pili are very different from chaperone-usher-type P pili in both form and biogenesis, our results suggest that the Cpx envelope stress response plays a general role in the expression of envelope-localized organelles with diverse structures and assembly pathways.  相似文献   

3.
The mechanical behavior of individual P pili of uropathogenic Escherichia coli has been investigated using optical tweezers. P pili, whose main part constitutes the PapA rod, composed of approximately 10(3) PapA subunits in a helical arrangement, are distributed over the bacterial surface and mediate adhesion to host cells. They are particularly important in the pathogenesis of E. coli colonizing the upper urinary tract and kidneys. A biological model system has been established for in situ measurements of the forces that occur during mechanical stretching of pili. A mathematical model of the force-versus-elongation behavior of an individual pilus has been developed. Three elongation regions of pili were identified. In region I, P pili stretch elastically, up to a relative elongation of 16 +/- 3%. The product of elasticity modulus and area of a P pilus, EA, was assessed to 154 +/- 20 pN (n=6). In region II, the quaternary structure of the PapA rod unfolds under a constant force of 27 +/- 2 pN (n approximately 100) by a sequential breaking of the interactions between adjacent layers of PapA subunits. This unfolding can elongate the pilus up to 7 +/- 2 times. In region III, pili elongate in a nonlinear manner as a result of stretching until the bond ruptures.  相似文献   

4.
Uropathogenic Escherichia coli produce heteropolymeric surface fibers called P pili, which present an adhesin at their tip that specifically recognizes globoside receptors on the host uroepithelium. The initial attachment step is thought to be essential for pathogenesis. P pili are composite fibers consisting of a thin tip fibrillum joined end to end to a rigid helical rod. Here we show that the ordered assembly of these structures requires the activity of two proteins that are minor components of the tip fibrillum, PapF and PapK. PapF is required for the correct presentation of the adhesin at the distal end of the tip fibrillum. PapK regulates the length of the tip fibrillum and joins it to the pilus rod. We propose that these subunits function as adaptors, by providing complementary surfaces to different substructures of the pilus and promoting their proper associations. In addition, the conversion of chaperone-subunit complexes into pili depends on PapF and PapK since a papF- papK- double mutation abolishes piliation. We suggest that in addition to the adaptor functions of PapF and PapK, they are also required to initiate the formation of tip fibrillae and pilus rods.  相似文献   

5.
BackgroundUropathogenic Escherichia coli (UPEC) cause urinary tract infections (UTIs) in approximately 50% of women. These bacteria use type 1 and P pili for host recognition and attachment. These pili are assembled by the chaperone-usher pathway of pilus biogenesis.Scope of reviewThe review examines the biogenesis and adhesion of the UPEC type 1 and P pili. Particular emphasis is drawn to the role of the outer membrane usher protein. The structural properties of the complete pilus are also examined to highlight the strength and functionality of the final assembly.Major conclusionsThe usher orchestrates the sequential addition of pilus subunits in a defined order. This process follows a subunit-incorporation cycle which consists of four steps: recruitment at the usher N-terminal domain, donor-strand exchange with the previously assembled subunit, transfer to the usher C-terminal domains and translocation of the nascent pilus.Adhesion by the type 1 and P pili is strengthened by the quaternary structure of their rod sections. The rod is endowed with spring-like properties which provide mechanical resistance against urine flow. The distal adhesins operate differently from one another, targeting receptors in a specific manner.The biogenesis and adhesion of type 1 and P pili are being therapeutically targeted, and efforts to prevent pilus growth or adherence are described.General significanceThe combination of structural and biochemical study has led to the detailed mechanistic understanding of this membrane spanning nano-machine. This can now be exploited to design novel drugs able to inhibit virulence. This is vital in the present era of resurgent antibiotic resistance. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.  相似文献   

6.
Detailed analyses of the mechanisms that mediate binding of the uropathogenic Escherichia coli to host cells are essential, as attachment is a prerequisite for the subsequent infection process. We explore, by means of force measuring optical tweezers, the interaction between the galabiose receptor and the adhesin PapG expressed by P pili on single bacterial cells. Two variants of dynamic force spectroscopy were applied based on constant and non-linear loading force. The specific PapG-galabiose binding showed typical slip-bond behaviour in the force interval (30-100 pN) set by the pilus intrinsic biomechanical properties. Moreover, it was found that the bond has a thermodynamic off-rate and a bond length of 2.6 x 10(-3) s(-1) and 5.0 A, respectively. Consequently, the PapG-galabiose complex is significantly stronger than the internal bonds in the P pilus structure that stabilizes the helical chain-like macromolecule. This finding suggests that the specific binding is strong enough to enable the P pili rod to unfold when subjected to strong shear forces in the urinary tract. The unfolding process of the P pili rod promotes the formation of strong multipili interaction, which is important for the bacterium to maintain attachment to the host cells.  相似文献   

7.
The first step in the encounter between a host and a pathogen is attachment to the host epithelium. For uropathogenic Escherichia coli, these interactions are mediated by type 1 and P adhesive pili, which are long (approximately 1 microm) rods composed of more than 1000 protein subunits arranged in a helical structure. Here we used single-molecule atomic force microscopy to study the mechanical properties of type 1 pili. We found that type 1 pili readily extend under an applied force and that this extensibility is the result of unwinding the pilus rod's helical quaternary structure. The forced unraveling is also reversible, with helical rewinding taking place under considerable forces (approximately 60 pN). These data are similar to those obtained on P pili using optical tweezers, indicating that these are conserved properties of uropathogenic E. coli pili. We also show that our data can readily be reproduced using Monte Carlo simulation techniques based on a two-state kinetic model. This model provides a simple way to extrapolate the mechanical behavior of pili under a wide range of forces. We propose that type 1 pilus unraveling is an essential mechanism for absorbing physiological shear forces encountered during urinary tract infections and probably essential for adhesion and colonization of the bladder epithelium.  相似文献   

8.
Uropathogenic strains of Escherichia coli assemble type 1 and P pili to colonize the bladder and kidney respectively. These pili are prototype structures assembled by the chaperone/usher secretion pathway. In this pathway, a periplasmic chaperone works together with an outer membrane (OM) usher to control the folding of pilus subunits, their assembly into a pilus fibre and secretion of the fibre to the cell surface. The usher serves as the assembly and secretion platform in the OM. The usher has distinct functional domains, with the N-terminus providing the initial targeting site for chaperone-subunit complexes and the C-terminus required for subsequent stages of pilus biogenesis. In this study, we investigated the molecular interactions occurring at the usher during pilus biogenesis and the function of the usher C-terminus. We provide genetic and biochemical evidence that the usher functions as a complex in the OM and that interaction of the pilus adhesin with the usher is critical to prime the usher for pilus biogenesis. Analysis of C-terminal truncation and substitution mutants of the P pilus usher PapC demonstrated that the C-terminus is required for proper binding of chaperone-subunit complexes to the usher and plays an important role in assembly of complete pili.  相似文献   

9.
Substituted bicyclic 2-pyridones, termed pilicides, are dipeptide mimetics that prevent pilus assembly in uropathogenic Escherichia coli. Here, we apply rational design to produce four classes of extended peptidomimetics based on two bioactive 2-pyridones. The key intermediate in the synthesis was an amino-functionalised 2-pyridone scaffold, which could be obtained via a mild and selective nitration and subsequent reduction. Procedures were then developed to further derivatize this amino-substituted core and a total of 24 extended peptidomimetics were synthesised and evaluated for chaperone affinity and in vivo antivirulence activity in P pili producing E. coli. Enhanced affinities for the target protein were observed within the generated set of compounds, while the ability to prevent pilus assembly in vivo was significantly decreased compared to the parent lead compounds. The results suggest that the limited in vivo potencies of the analogues are either uptake/distribution related or due to loss in binding specificity.  相似文献   

10.
Adhesion to host tissues is an initiating step in a majority of bacterial infections. In the case of Gram-negative bacteria this adhesion is often mediated by a specific interaction between an adhesin, positioned at the distal end of bacterial pili, and its receptor on the surface of the host tissue. Furthermore, the rod of the pilus, and particularly its biomechanical properties, is believed to be crucial for the ability of bacteria to withstand external forces caused by, for example, (in the case of urinary tract infections) urinary rinsing flows by redistributing the force to several pili. In this work, the adhesion properties of P-piliated E. coli and their dependence of pH have been investigated in a broad pH range by both the surface plasmon resonance technique and force measuring optical tweezers. We demonstrate that P piliated bacteria have an adhesion ability throughout the entire physiologically relevant pH range (pH 4.5 - 8). We also show that pH has a higher impact on the binding rate than on the binding stability or the biomechanical properties of pili; the binding rate was found to have a maximum around pH 5 while the binding stability was found to have a broader distribution over pH and be significant over the entire physiologically relevant pH range. Force measurements on a single organelle level show that the biomechanical properties of P pili are not significantly affected by pH.  相似文献   

11.
12.
Pathogenic bacteria assemble a variety of adhesive structures on their surface for attachment to host cells. Some of these structures are quite complex. For example, the hair-like organelles known as pili or fimbriae are generally composed of several components and often exhibit composite morphologies. In gram-negative bacteria assembly of pili requires that the subunits cross the cytoplasmic membrane, fold correctly in the periplasm, target to the outer membrane, assemble into an ordered structure, and cross the outer membrane to the cell surface. Thus, pilus biogenesis provides a model for a number of basic biological problems including protein folding, trafficking, secretion, and the ordered assembly of proteins into complex structures. P pilus biogenesis represents one of the best-understood pilus systems. P pili are produced by 80-90% of all pyelonephritic Escherichia coli and are a major virulence determinant for urinary tract infections. Two specialized assembly factors known as the periplasmic chaperone and outer membrane usher are required for P pilus assembly. A chaperone/usher pathway is now known to be required for the biogenesis of more than 30 different adhesive structures in diverse gram-negative pathogenic bacteria. Elucidation of the chaperone/usher pathway was brought about through a powerful combination of molecular, biochemical, and biophysical techniques. This review discusses these approaches as they relate to pilus assembly, with an emphasis on newer techniques.  相似文献   

13.
Attachment to host cells via adhesive surface structures is a prerequisite for the pathogenesis of many bacteria. Uropathogenic Escherichia coli assemble P and type 1 pili for attachment to the host urothelium. Assembly of these pili requires the conserved chaperone/usher pathway, in which a periplasmic chaperone controls the folding of pilus subunits and an outer membrane usher provides a platform for pilus assembly and secretion. The usher has differential affinity for pilus subunits, with highest affinity for the tip‐localized adhesin. Here, we identify residues F21 and R652 of the P pilus usher PapC as functioning in the differential affinity of the usher. R652 is important for high‐affinity binding to the adhesin whereas F21 is important for limiting affinity for the PapA major rod subunit. PapC mutants in these residues are specifically defective for pilus assembly in the presence of PapA, demonstrating that differential affinity of the usher is required for assembly of complete pili. Analysis of PapG deletion mutants demonstrated that the adhesin is not required to initiate P pilus biogenesis. Thus, the differential affinity of the usher may be critical to ensure assembly of functional pilus fibres.  相似文献   

14.
The genome of Lactococcus lactis strain IL1403 harbors a putative pilus biogenesis cluster consisting of a sortase C gene flanked by 3 LPxTG protein encoding genes (yhgD, yhgE, and yhhB), called here pil. However, pili were not detected under standard growth conditions. Over-expression of the pil operon resulted in production and display of pili on the surface of lactococci. Functional analysis of the pilus biogenesis machinery indicated that the pilus shaft is formed by oligomers of the YhgE pilin, that the pilus cap is formed by the YhgD pilin and that YhhB is the basal pilin allowing the tethering of the pilus fibers to the cell wall. Oligomerization of pilin subunits was catalyzed by sortase C while anchoring of pili to the cell wall was mediated by sortase A. Piliated L. lactis cells exhibited an auto-aggregation phenotype in liquid cultures, which was attributed to the polymerization of major pilin, YhgE. The piliated lactococci formed thicker, more aerial biofilms compared to those produced by non-piliated bacteria. This phenotype was attributed to oligomers of YhgE. This study provides the first dissection of the pilus biogenesis machinery in a non-pathogenic Gram-positive bacterium. Analysis of natural lactococci isolates from clinical and vegetal environments showed pili production under standard growth conditions. The identification of functional pili in lactococci suggests that the changes they promote in aggregation and biofilm formation may be important for the natural lifestyle as well as for applications in which these bacteria are used.  相似文献   

15.
P pili are important virulence factors in uropathogenic Escherichia coli. The Cpx two-component signal transduction system controls a stress response and is activated by misfolded proteins in the periplasm. We have discovered new functions for the Cpx pathway, indicating that it may play a critical role in pathogenesis. P pili are assembled via the chaperone/usher pathway. Subunits that go 'OFF-pathway' during pilus biogenesis generate a signal. This signal is derived from the misfolding and aggregation of subunits that failed to come into contact with the chaperone in the periplasm. In response, Cpx not only controls the stress response, but also controls genes necessary for pilus biogenesis, and is involved in regulating the phase variation of pap expression and, potentially, the expression of a panoply of other virulence factors. This study demonstrates how the prototypic chaperone/usher pathway is intricately linked and dependent upon a signal transduction system.  相似文献   

16.
Pilus biogenesis on the surface of uropathogenic Escherichia coli requires the chaperone/usher pathway, a terminal branch of the general secretory pathway. In this pathway, periplasmic chaperone-subunit complexes target an outer membrane (OM) usher for subunit assembly into pili and secretion to the cell surface. The molecular mechanisms of protein secretion across the OM are not well understood. Mutagenesis of the P pilus usher PapC and the type 1 pilus usher FimD was undertaken to elucidate the initial stages of pilus biogenesis at the OM. Deletion of residues 2 to 11 of the mature PapC N terminus abolished the targeting of the usher by chaperone-subunit complexes and rendered PapC nonfunctional for pilus biogenesis. Similarly, an intact FimD N terminus was required for chaperone-subunit binding and pilus biogenesis. Analysis of PapC-FimD chimeras and N-terminal fragments of PapC localized the chaperone-subunit targeting domain to the first 124 residues of PapC. Single alanine substitution mutations were made in this domain that blocked pilus biogenesis but did not affect targeting of chaperone-subunit complexes. Thus, the usher N terminus does not function simply as a static binding site for chaperone-subunit complexes but also participates in subsequent pilus assembly events.  相似文献   

17.
致肾盂肾炎大肠杆菌粘附特性的研究   总被引:8,自引:0,他引:8  
本文对临床肾盂肾炎病人尿标本中分离的大肠杆菌132和136的粘附特性进行了系统的研究。受试菌的P血型阳性红细胞血凝试验阳性,能够与人的尿道上皮细胞粘附。利用致肾盂肾炎大肠杆菌P菌毛粘附基因群抗血清进行免疫学检测,两株菌的全菌ELISA结果阳性,免疫电镜证实该抗血清能与受试菌株的菌毛特异性结合。提取临床分离株的菌毛蛋白进行免疫印迹测定,仅有一条蛋白带显色,其分子量为16.6kd。致肾盂肾炎大肠杆菌的粘附特性是区别于其他大肠杆菌的重要特征,上述结果表明本文报告的两株大肠杆菌为致肾盂肾炎大肠杆菌。  相似文献   

18.
Biogenesis of a superfamily of surface structures by gram-negative bacteria requires the chaperone/usher pathway, a terminal branch of the general secretory pathway. In this pathway a periplasmic chaperone works together with an outer membrane usher to direct substrate folding, assembly, and secretion to the cell surface. We analyzed the structure and function of the PapC usher required for P pilus biogenesis by uropathogenic Escherichia coli. Structural analysis indicated PapC folds as a beta-barrel with short extracellular loops and extensive periplasmic domains. Several periplasmic regions were localized, including two domains containing conserved cysteine pairs. Functional analysis of deletion mutants revealed that the PapC C terminus was not required for insertion of the usher into the outer membrane or for proper folding. The usher C terminus was not necessary for interaction with chaperone-subunit complexes in vitro but was required for pilus biogenesis in vivo. Interestingly, coexpression of PapC C-terminal truncation mutants with the chromosomal fim gene cluster coding for type 1 pili allowed P pilus biogenesis in vivo. These studies suggest that chaperone-subunit complexes target an N-terminal domain of the usher and that subunit assembly into pili depends on a subsequent function provided by the usher C terminus.  相似文献   

19.
20.
Type IV pili (T4P) are filamentous surface appendages required for tissue adherence, motility, aggregation, and transformation in a wide array of bacteria and archaea. The bundle-forming pilus (BFP) of enteropathogenic Escherichia coli (EPEC) is a prototypical T4P and confirmed virulence factor. T4P fibers are assembled by a complex biogenesis machine that extrudes pili through an outer membrane (OM) pore formed by the secretin protein. Secretins constitute a superfamily of proteins that assemble into multimers and support the transport of macromolecules by four evolutionarily ancient secretion systems: T4P, type II secretion, type III secretion, and phage assembly. Here, we determine that the lipoprotein transport pathway is not required for targeting the BfpB secretin protein of the EPEC T4P to the OM and describe the ultrastructure of the single particle averaged structures of the assembled complex by transmission electron microscopy. Furthermore, we use photoactivated localization microscopy to determine the distribution of single BfpB molecules fused to photoactivated mCherry. In contrast to findings in other T4P systems, we found that BFP components predominantly have an uneven distribution through the cell envelope and are only found at one or both poles in a minority of cells. In addition, we report that concurrent mutation of both the T4bP secretin and the retraction ATPase can result in viable cells and found that these cells display paradoxically low levels of cell envelope stress response activity. These results imply that secretins can direct their own targeting, have complex distributions and provide feedback information on the state of pilus biogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号