首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Correlation of gene histories in the human genome determines the patterns of genetic variation (haplotype structure) and is crucial to understanding genetic factors in common diseases. We derive closed analytical expressions for the correlation of gene histories in established demographic models for genetic evolution and show how to extend the analysis to more realistic (but more complicated) models of demographic structure. We identify two contributions to the correlation of gene histories in divergent populations: linkage disequilibrium, and differences in the demographic history of individuals in the sample. These two factors contribute to correlations at different length scales: the former at small, and the latter at large scales. We show that recent mixing events in divergent populations limit the range of correlations and compare our findings to empirical results on the correlation of gene histories in the human genome.  相似文献   

2.
Habitat-dependent population regulation and community structure   总被引:6,自引:0,他引:6  
Summary Density-dependence provides a causal link between processes acting at different levels of ecological organization. The linkage between density-dependent habitat use, population regulation and community organization is examined on the basis of qualitative and quantitative differences between habitats. These differences are expressed as characteristic shapes on isodars which are lines of equal fitness, and are plotted in density space as lines at every point of which the fitness of individuals in one habitat is equal to that of individuals in another. Isodars can be constructed for single species or modified to include the effects of interacting species. Isodars are easily analyzed by linear regression to differentiate between alternative modes of population regulation and to suggest patterns of community structure. Different isodars are causally related to different kinds of community structure, and suggest the existence of four new forms of community organization; equal, differential, switched and mixed preferences. A preliminary isodar analysis on a common rodent species demonstrates that population regulation depends upon habitat, and that mixed preferences probably organize the rodent community. Habitat-dependent population regulation has farreaching implications to studies of temporal and spatial scale, and to all ecological processes that are density-dependent.  相似文献   

3.
The living terebratulids, Terabratulina unguicula, Terebratalia transversa, Laqueus vancouverensis, and the rhynchonelid Hemithiris psittacea were studied in the San Juan Islands, Washington, U.S.A. Those results and a review of a the literature lead to the conclusion that most brachiopod populations experience episodic recruitment at intervals which may be irregular. The occurrence of juveniles attached to adults, brooding, and bi- or multimodal size-frequency distributions demonstrate that, contrary to a previously suggested hypothesis, adult brachiopods do not generally exclude juveniles from the same area. The commony observed rarity of small individuals is regarded as a product of local recruitment failure due to patchy distribution of larvae; it does not justify the assumption that brachiopods are unaffected by high post-larval juvenile mortality. However, the frequent rarity of small individuals confirms that this cannot be used as a criterion of transport in assemblages of fossil brachiopods.  相似文献   

4.
Models of population structure analyzed include: the uniform model (k populations all exchanging at a constant rate) and the multiuniform model (s clusters of k populations exchanging at different rates within and between clusters). Analogies of the latter model with trees of descent have been shown. The algorithm used allows exact solutions for the equilibrium variances and covariances in a variety of cases, including the circular stepping-stone model.Effects of multiple sources of stabilizing pressures have been shown in the multiuniform and the star model. The latter is of interest in situations of population radiation and of centripetal migration.  相似文献   

5.
Genetic diversity and population structure of teosinte   总被引:7,自引:0,他引:7       下载免费PDF全文
The teosintes, the closest wild relatives of maize, are important resources for the study of maize genetics and evolution and for plant breeding. We genotyped 237 individual teosinte plants for 93 microsatellites. Phylogenetic relationships among species and subspecific taxa were largely consistent with prior analyses for other types of molecular markers. Plants of all species formed monophyletic clades, although relationships among species were not fully resolved. Phylogenetic analysis indicated that the Mexican annual teosintes divide into two clusters that largely correspond to the previously defined subspecies, Z. mays ssp. parviglumis and ssp. mexicana, although there are a few samples that represent either evolutionary intermediates or hybrids between these two subspecies. The Mexican annual teosintes show genetic substructuring along geographic lines. Hybridization or introgression between some teosintes and maize occurs at a low level and appears most common with Z. mays ssp. mexicana. Phylogeographic and phylogenetic analyses of the Mexican annual teosintes indicated that ssp. parviglumis diversified in the eastern part of its distribution and spread from east to west and that ssp. mexicana diversified in the Central Plateau of Mexico and spread along multiple paths to the north and east. We defined core sets of collections of Z. mays ssp. mexicana and ssp. parviglumis that attempt to capture the maximum number of microsatellite alleles for given sample sizes.  相似文献   

6.
7.
Newton E. Morton 《Genetica》1995,96(1-2):139-144
There are three approaches to DNA identification: tectonic, halieutic and icarian, of which the tectonic is sensible, the halieutic impractical, and the icarian idiotic. The rationale and consequences of these approaches are detailed.Editor's commentsThe author captures the harsh tone that has often characterized the debate over the use of DNA for human identification. It should be mentioned that D.L. Hartl, E.S. Lander and R.C. Lewontin were invited to respond. The positions of these three authors are contained in their papers, listed in the Bibliography. Readers should note, in particular, Budowle and Lander (1994).  相似文献   

8.
The isonymy structure of the 48 states of the continental United States of America was studied using the surname distributions of 18 million telephone users, distributed in 247 towns. The shortest linear distance between nearest neighbor towns included in the sample was 12.0 km. The largest distance was 4,577 km. The number of different surnames found in the whole analysis was 899,585. Lasker's distance was found to be significantly but weakly correlated with the geographic distance, with r = 0.21 +/- 0.01. A dendrogram of the 48 states was built from the matrix of isonymy distances: it divides the US into several clusters, in general correlated with geography. A notable exception is California and New Jersey, which cluster together. Wisconsin is separated from all other states. An important cluster is formed by Texas, Colorado, New Mexico, Nevada, and Arizona, together with Illinois and Florida. It was observed that Hispanic surnames are among the most frequent in Illinois, as they are in New Jersey and California. No main distinction among the states clearly attributable to surnames of French origin was detected; however, New Hampshire, Vermont, and Maine which have a considerable number of these surnames belong to the same northeastern cluster. From the present analysis, the great mobility of the US population emerges clearly, and it seems relevant that the practical absence of isolation by distance is seen also considering only small towns. It appears that groups of different origin are well-mixed over the whole area of the United States. The values of isonymy indicate that the south-central area of the USA has the highest level of inbreeding. In fact, the heterogeneity in surname composition is greater in the coastal areas, particularly on the East Coast, than anywhere else in the USA.  相似文献   

9.
10.
The Norwegian red deer population (Cervus elaphus) was from the mid eighteenth to the early twentieth century drastically reduced in size and distribution but has the last century expanded both demographically and spatially. We have investigated genetic variation, differentiation and admixture in this spatially expanding ungulate population, using 14 microsatellites. The present genetic structure is moderate to strong with an average F ST = 0.08. Low M-ratios indicate loss of genetic variation in all localities and signals of a recent bottleneck was identified in 14 of 15 localities. Genetic distances between the localities indicate two main routes of dispersal during expansion, from the north–west and south–west, respectively. Bayesian assignment tests verify a break of the dataset in two, and demonstrate 99.9% probability for the existence of five sub-populations, which coincide well with five relict populations described by historic records. Computer simulations suggest that the observed genetic differentiation is recent rather than ancient, and that it may be explained by models of fragmentation or of founder events and subsequent merging rather than by models of recent bottlenecks in some particular demes within an ancient genetic structure.  相似文献   

11.
12.
13.
We examined genetic diversity and population structure in the American landmass using 678 autosomal microsatellite markers genotyped in 422 individuals representing 24 Native American populations sampled from North, Central, and South America. These data were analyzed jointly with similar data available in 54 other indigenous populations worldwide, including an additional five Native American groups. The Native American populations have lower genetic diversity and greater differentiation than populations from other continental regions. We observe gradients both of decreasing genetic diversity as a function of geographic distance from the Bering Strait and of decreasing genetic similarity to Siberians--signals of the southward dispersal of human populations from the northwestern tip of the Americas. We also observe evidence of: (1) a higher level of diversity and lower level of population structure in western South America compared to eastern South America, (2) a relative lack of differentiation between Mesoamerican and Andean populations, (3) a scenario in which coastal routes were easier for migrating peoples to traverse in comparison with inland routes, and (4) a partial agreement on a local scale between genetic similarity and the linguistic classification of populations. These findings offer new insights into the process of population dispersal and differentiation during the peopling of the Americas.  相似文献   

14.
Discrete time models for density-regulated populations have been shown to exhibit periodic and chaotic motion in the absence of any external signal. We show how the genetic structure of a population can initiate bifurcations to periodic and chaotic trajectories. We investigate by simulation the dependence of this phenomenon on the strength of assortative mating, the level of heterozygosity, and the intensity of selection. The implications of internally generated chaos for population modeling are discussed.  相似文献   

15.
Personal naming practices exist in all human groups and are far from random. Rather, they continue to reflect social norms and ethno-cultural customs that have developed over generations. As a consequence, contemporary name frequency distributions retain distinct geographic, social and ethno-cultural patterning that can be exploited to understand population structure in human biology, public health and social science. Previous attempts to detect and delineate such structure in large populations have entailed extensive empirical analysis of naming conventions in different parts of the world without seeking any general or automated methods of population classification by ethno-cultural origin. Here we show how 'naming networks', constructed from forename-surname pairs of a large sample of the contemporary human population in 17 countries, provide a valuable representation of cultural, ethnic and linguistic population structure around the world. This innovative approach enriches and adds value to automated population classification through conventional national data sources such as telephone directories and electoral registers. The method identifies clear social and ethno-cultural clusters in such naming networks that extend far beyond the geographic areas in which particular names originated, and that are preserved even after international migration. Moreover, one of the most striking findings of this approach is that these clusters simply 'emerge' from the aggregation of millions of individual decisions on parental naming practices for their children, without any prior knowledge introduced by the researcher. Our probabilistic approach to community assignment, both at city level as well as at a global scale, helps to reveal the degree of isolation, integration or overlap between human populations in our rapidly globalising world. As such, this work has important implications for research in population genetics, public health, and social science adding new understandings of migration, identity, integration and social interaction across the world.  相似文献   

16.
Moringa is a genus of the tropical flowering plant family Moringaceae containing 13 diverse species. Among the different species, only Moringa oleifera L. is cultivated. This species has great potential in serving as a high-value crop for food, medicinal products, as well as fodder for animals, particularly in developing tropical regions of the world. In this study, the genetic diversity and population structure of world-wide collections of M. oleifera were investigated using DNA markers. A total of 19 microsatellite or simple sequence repeat (SSR) markers along with a partial sequence of the chloroplast gene atpB were used to study genetic diversity within 161 accessions of M. oleifera collected from Asia, Africa, North and South America, and the Caribbean. On average, 8.3 alleles/per SSR were amplified in each accession. A total number of 158 alleles were detected in 131 accessions collected from the wild in Pakistan and from 30 accessions obtained from ECHO (Florida). Observed heterozygosity varied from 0.16 to 0.86, with an average of 0.58, while the average PIC value was 0.59. Partial sequencing of chloroplast genes of 43 of 161 plants generated mixed patterns. These findings have demonstrated that there is a large genetic diversity present in wild collections of M. oleifera collected in Pakistan; whereas low genetic diversity is detected in cultivated accessions obtained from ECHO. Taken together, these results agree with previous reports that M. oleifera is native to the Indo-Pakistan ecological region, and provides sufficient diversity for genetic exploration as well as for genetic improvement efforts.  相似文献   

17.
Allozymes from individual aphids were used as markers to examine the structure of Brevicoryne brassicae colonies collected from field experiments at Horticulture Research International, Wellesbourne, during the summers of 1991, 1992 and 1993. Eighteen enzyme systems were examined using cellulose acetate electrophoresis, but only 6-phosphogluconate dehydrogenase (6-PGDH) showed polymorphism (three alleles) in the samples. There were significant differences in gene frequencies between populations at some sites within 1 kilometre and between times of sampling, with an increase in the proportion of the most common genotype AA later in the season, possibly due to selection during the summer of the best adapted clones. These changes in gene frequency might produce biased results in trials screening brassica crops against aphids.  相似文献   

18.
Understanding the influences of population structure, selection, and recombination on polymorphism and linkage disequilibrium (LD) is integral to mapping genes contributing to drug resistance or virulence in Plasmodium falciparum. The parasite's short generation time, coupled with a high cross-over rate, can cause rapid LD break-down. However, observations of low genetic variation have led to suggestions of effective clonality: selfing, population admixture, and selection may preserve LD in populations. Indeed, extensive LD surrounding drug-resistant genes has been observed, indicating that recombination and selection play important roles in shaping recent parasite genome evolution. These studies, however, provide only limited information about haplotype variation at local scales. Here we describe the first (to our knowledge) chromosome-wide SNP haplotype and population recombination maps for a global collection of malaria parasites, including the 3D7 isolate, whose genome has been sequenced previously. The parasites are clustered according to continental origin, but alternative groupings were obtained using SNPs at 37 putative transporter genes that are potentially under selection. Geographic isolation and highly variable multiple infection rates are the major factors affecting haplotype structure. Variation in effective recombination rates is high, both among populations and along the chromosome, with recombination hotspots conserved among populations at chromosome ends. This study supports the feasibility of genome-wide association studies in some parasite populations.  相似文献   

19.
Dispersal, gene flow, and population structure   总被引:35,自引:0,他引:35  
The accuracy of gene flow estimates is unknown in most natural populations because direct estimates of dispersal are often not possible. These estimates can be highly imprecise or even biased because population genetic structure reflects more than a simple balance between genetic drift and gene flow. Most of the models used to estimate gene flow also assume very simple patterns of movement. As a result, multiple interpretations of population structure involving contemporary gene flow, departures from equilibrium, and other factors are almost always possible. One way to isolate the relative contribution of gene flow to population genetic differentiation is to utilize comparative methods. Population genetic statistics such as FST, heterozygosity and Nei's D can be compared between species with differing dispersal abilities if these species are otherwise phylogenetically, geographically and demographically comparable. Accordingly, the available literature was searched for all groups that meet these criteria to determine whether broad conclusions regarding the relationships between dispersal, population genetic structure, and gene flow estimates are possible. Allozyme and mtDNA data were summarized for 27 animal groups in which dispersal differences can be characterized. In total, genetic data were obtained for 333 species of vertebrates and invertebrates from terrestrial, freshwater and marine habitats. Across these groups, dispersal ability was consistently related to population structure, with a mean rank correlation of -0.72 between ranked dispersal ability and FST. Gene flow estimates derived from private alleles were also correlated with dispersal ability, but were less widely available. Direct-count heterozygosity and average values of Nei's D showed moderate degrees of correlation with dispersal ability. Thus, despite regional, taxonomic and methodological differences among the groups of species surveyed, available data demonstrate that dispersal makes a measurable contribution to population genetic differentiation in the majority of animal species in nature, and that gene flow estimates are rarely so overwhelmed by population history, departures from equilibrium, or other microevolutionary forces as to be uninformative.  相似文献   

20.
With the expansion of offender/arrestee DNA profile databases, genetic forensic identification has become commonplace in the United States criminal justice system. Implementation of familial searching has been proposed to extend forensic identification to family members of individuals with profiles in offender/arrestee DNA databases. In familial searching, a partial genetic profile match between a database entrant and a crime scene sample is used to implicate genetic relatives of the database entrant as potential sources of the crime scene sample. In addition to concerns regarding civil liberties, familial searching poses unanswered statistical questions. In this study, we define confidence intervals on estimated likelihood ratios for familial identification. Using these confidence intervals, we consider familial searching in a structured population. We show that relatives and unrelated individuals from population samples with lower gene diversity over the loci considered are less distinguishable. We also consider cases where the most appropriate population sample for individuals considered is unknown. We find that as a less appropriate population sample, and thus allele frequency distribution, is assumed, relatives and unrelated individuals become more difficult to distinguish. In addition, we show that relationship distinguishability increases with the number of markers considered, but decreases for more distant genetic familial relationships. All of these results indicate that caution is warranted in the application of familial searching in structured populations, such as in the United States.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号