首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Domains are the building blocks of proteins and play a crucial role in protein-protein interactions. Here, we propose a new approach for the analysis and prediction of domain-domain interfaces. Our method, which relies on the representation of domains as residue-interacting networks, finds an optimal decomposition of domain structures into modules. The resulting modules comprise highly cooperative residues, which exhibit few connections with other modules. We found that non-overlapping binding sites in a domain, involved in different domain-domain interactions, are generally contained in different modules. This observation indicates that our modular decomposition is able to separate protein domains into regions with specialized functions. Our results show that modules with high modularity values identify binding site regions, demonstrating the predictive character of modularity. Furthermore, the combination of modularity with other characteristics, such as sequence conservation or surface patches, was found to improve our predictions. In an attempt to give a physical interpretation to the modular architecture of domains, we analyzed in detail six examples of protein domains with available experimental binding data. The modular configuration of the TEM1-beta-lactamase binding site illustrates the energetic independence of hotspots located in different modules and the cooperativity of those sited within the same modules. The energetic and structural cooperativity between intramodular residues is also clearly shown in the example of the chymotrypsin inhibitor, where non-binding site residues have a synergistic effect on binding. Interestingly, the binding site of the T cell receptor beta chain variable domain 2.1 is contained in one module, which includes structurally distant hot regions displaying positive cooperativity. These findings support the idea that modules possess certain functional and energetic independence. A modular organization of binding sites confers robustness and flexibility to the performance of the functional activity, and facilitates the evolution of protein interactions.  相似文献   

2.
Peptide-recognition modules (PRMs) are used throughout biology to mediate protein–protein interactions, and many PRMs are members of large protein domain families. Recent genome-wide measurements describe networks of peptide–PRM interactions. In these networks, very similar PRMs recognize distinct sets of peptides, raising the question of how peptide-recognition specificity is achieved using similar protein domains. The analysis of individual protein complex structures often gives answers that are not easily applicable to other members of the same PRM family. Bioinformatics-based approaches, one the other hand, may be difficult to interpret physically. Here we integrate structural information with a large, quantitative data set of SH2 domain–peptide interactions to study the physical origin of domain–peptide specificity. We develop an energy model, inspired by protein folding, based on interactions between the amino-acid positions in the domain and peptide. We use this model to successfully predict which SH2 domains and peptides interact and uncover the positions in each that are important for specificity. The energy model is general enough that it can be applied to other members of the SH2 family or to new peptides, and the cross-validation results suggest that these energy calculations will be useful for predicting binding interactions. It can also be adapted to study other PRM families, predict optimal peptides for a given SH2 domain, or study other biological interactions, e.g. protein–DNA interactions.  相似文献   

3.
Protein-protein interactions mediated by modular protein domains are critical for cell scaffolding, differentiation, signaling, and ultimately, evolution. Given the vast number of ligands competing for binding to a limited number of domain families, it is often puzzling how specificity can be achieved. Selectivity may be modulated by intradomain allostery, whereby a remote residue is energetically connected to the functional binding site via side chain or backbone interactions. Whereas several energetic pathways, which could mediate intradomain allostery, have been predicted in modular protein domains, there is a paucity of experimental data to validate their existence and roles. Here, we have identified such functional energetic networks in one of the most common protein-protein interaction modules, the PDZ domain. We used double mutant cycles involving site-directed mutagenesis of both the PDZ domain and the peptide ligand, in conjunction with kinetics to capture the fine energetic details of the networks involved in peptide recognition. We performed the analysis on two homologous PDZ-ligand complexes and found that the energetically coupled residues differ for these two complexes. This result demonstrates that amino acid sequence rather than topology dictates the allosteric pathways. Furthermore, our data support a mechanism whereby the whole domain and not only the binding pocket is optimized for a specific ligand. Such cross-talk between binding sites and remote residues may be used to fine tune target selectivity.  相似文献   

4.
The three-dimensional structure of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from Rhodospirillum rubrum has been determined at 2.9 Å resolution by X-ray crystallographic methods. The MIR-electron density map was substantially improved by two-fold non-crystallographic symmetry averaging. The polypeptide chains in the dimer were traced using a graphics display system with the help of the BONES option in FRODO. The dimer has approximate dimensions of 50 x 72 x 105 Å. The enzyme subunit is a typical two-domain protein. The smaller, N-terminal domain consists of 137 amino acid residues and forms a central, mixed five-stranded β-sheet with α-helices on both sides of the sheet. The larger C-terminal domain consists of 329 amino acid residues. This domain has an eight-stranded parallel α/β barrel structure as found in triosephosphate isomerase and a number of other functionally non-related proteins. The active site in Rubisco determined by difference Fourier techniques and fitting of active site residues to the electron density map, is located at the carboxy-end of the β-strands in the α/β barrel of the C-terminal domain. There are few domain–domain interactions within the subunit. The interactions at the interface between the two subunits of the dimer are tight and extensive. There are tight contacts between the two C-terminal domains, which build up the core of the molecule. There are also interactions between the N-terminal domain of one subunit and the C-terminal domain of the second subunit, close to the active site.  相似文献   

5.
Left-handed Z-DNA is radically different from the most common right-handed B-DNA and can be stabilized by interactions with the Zα domain, which is found in a group of proteins, such as human ADAR1 and viral E3L proteins. It is well-known that most Zα domains bind to Z-DNA in a conformation-specific manner and induce rapid B–Z transition in physiological conditions. Although many structural and biochemical studies have identified the detailed interactions between the Zα domain and Z-DNA, little is known about the molecular basis of the B–Z transition process. In this study, we successfully converted the B–Z transition-defective Zα domain, vvZαE3L, into a B–Z converter by improving B-DNA binding ability, suggesting that B-DNA binding is involved in the B–Z transition. In addition, we engineered the canonical B-DNA binding protein GH5 into a Zα-like protein having both Z-DNA binding and B–Z transition activities by introducing Z-DNA interacting residues. Crystal structures of these mutants of vvZαE3L and GH5 complexed with Z-DNA confirmed the significance of conserved Z-DNA binding interactions. Altogether, our results provide molecular insight into how Zα domains obtain unusual conformational specificity and induce the B–Z transition.  相似文献   

6.
The Runt domain (RD) is the DNA-binding region of the Runx genes. A related protein, known as core binding factor β (CBFβ) also binds to the RD to enhance RD–DNA interaction by 6- to 10-fold. Here, we report results from molecular dynamics (MD) simulations of RD alone, as a dimer in complexes with DNA and CBFβ and in a ternary complex with DNA and CBFβ. Consistent with the experimental findings, in the presence of CBFβ the estimated free energy of binding of RD to the DNA is more favorable, which is shown to be due to more favorable intermolecular interactions and desolvation contributions. Also contributing to the enhanced binding are favorable intramolecular interactions between the ‘wing’ residues (RD residues 139–145) and the ‘wing1’ residues (RD residues 104–116). The simulation studies also indicate that the RD–CBFβ binding is more favorable in the presence of DNA due to a more favorable RD–CBFβ interaction energy. In addition, it is predicted that long-range interactions involving ionic residues contribute to binding cooperativity. Results from the MD calculations are used to interpret a variety of experimental mutagenesis data. A novel role for RD Glu116 to the RD–CBFβ interaction is predicted.  相似文献   

7.
XRCC1 (X-ray cross-complementing group 1) is a DNA repair protein that forms complexes with DNA polymerase β (β-Pol), DNA ligase III and poly-ADP-ribose polymerase in the repair of DNA single strand breaks. The domains in XRCC1 have been determined, and characterization of the domain–domain interaction in the XRCC1-β-Pol complex has provided information on the specificity and mechanism of binding. The domain structure of XRCC1, determined using limited proteolysis, was found to include an N-terminal domain (NTD), a central BRCT-I (breast cancer susceptibility protein-1) domain and a C-terminal BRCT-II domain. The BRCT-Ilinker–BRCT-II C-terminal fragment and the linker–BRCT-II C-terminal fragment were relatively stable to proteolysis suggestive of a non-random conformation of the linker. A predicted inner domain was found not to be stable to proteolysis. Using cross-linking experiments, XRCC1 was found to bind intact β-Pol and the β-Pol 31 kDa domain. The XRCC1-NTD1–183 (residues 1183) was found to bind β-Pol, the β-Pol 31 kDa domain and the β-Pol C-terminal palm-thumb (residues 140–335), and the interaction was further localized to XRCC1-NTD1–157 (residues 1–157). The XRCC1-NTD1–183-β-Pol 31 kDa domain complex was stable at high salt (1 M NaCl) indicative of a hydrophobic contribution. Using a yeast two-hybrid screen, polypeptides expressed from two XRCC1 constructs, which included residues 36–355 and residues 1–159, were found to interact with β-Pol, the β-Pol 31 kDa domain, and the β-Pol C-terminal thumb-only domain polypeptides expressed from the respective β-Pol constructs. Neither the XRCC1-NTD1–159, nor the XRCC136–355 polypeptide was found to interact with a β-Pol thumbless polypeptide. A third XRCC1 polypeptide (residues 75–212) showed no interaction with β-Pol. In quantitative gel filtration and analytical ultracentrifugation experiments, the XRCC1-NTD1–183 was found to bind β-Pol and its 31 kDa domain in a 1:1 complex with high affinity (Kd of 0.4–2.4 µM). The combined results indicate a thumb-domain specific 1:1 interaction between the XRCC1-NTD1–159 and β-Pol that is of an affinity comparable to other binding interactions involving β-Pol.  相似文献   

8.
Protein–protein interactions are challenging targets for modulation by small molecules. Here, we propose an approach that harnesses the increasing structural coverage of protein complexes to identify small molecules that may target protein interactions. Specifically, we identify ligand and protein binding sites that overlap upon alignment of homologous proteins. Of the 2,619 protein structure families observed to bind proteins, 1,028 also bind small molecules (250–1000 Da), and 197 exhibit a statistically significant (p<0.01) overlap between ligand and protein binding positions. These “bi-functional positions”, which bind both ligands and proteins, are particularly enriched in tyrosine and tryptophan residues, similar to “energetic hotspots” described previously, and are significantly less conserved than mono-functional and solvent exposed positions. Homology transfer identifies ligands whose binding sites overlap at least 20% of the protein interface for 35% of domain–domain and 45% of domain–peptide mediated interactions. The analysis recovered known small-molecule modulators of protein interactions as well as predicted new interaction targets based on the sequence similarity of ligand binding sites. We illustrate the predictive utility of the method by suggesting structural mechanisms for the effects of sanglifehrin A on HIV virion production, bepridil on the cellular entry of anthrax edema factor, and fusicoccin on vertebrate developmental pathways. The results, available at http://pibase.janelia.org, represent a comprehensive collection of structurally characterized modulators of protein interactions, and suggest that homologous structures are a useful resource for the rational design of interaction modulators.  相似文献   

9.
Class I WW domains are present in many proteins of various functions and mediate protein interactions by binding to short linear PPxY motifs. Tandem WW domains often bind peptides with multiple PPxY motifs, but the interplay of WW–peptide interactions is not always intuitive. The WW domain–containing oxidoreductase (WWOX) harbors two WW domains: an unstable WW1 capable of PPxY binding and stable WW2 that cannot bind PPxY. The WW2 domain has been suggested to act as a WW1 domain chaperone, but the underlying mechanism of its chaperone activity remains to be revealed. Here, we combined NMR, isothermal calorimetry, and structural modeling to elucidate the roles of both WW domains in WWOX binding to its PPxY-containing substrate ErbB4. Using NMR, we identified an interaction surface between these two domains that supports a WWOX conformation compatible with peptide substrate binding. Isothermal calorimetry and NMR measurements also indicated that while binding affinity to a single PPxY motif is marginally increased in the presence of WW2, affinity to a dual-motif peptide increases 10-fold. Furthermore, we found WW2 can directly bind double-motif peptides using its canonical binding site. Finally, differential binding of peptides in mutagenesis experiments was consistent with a parallel N- to C-terminal PPxY tandem motif orientation in binding to the WW1–WW2 tandem domain, validating structural models of the interaction. Taken together, our results reveal the complex nature of tandem WW-domain organization and substrate binding, highlighting the contribution of WWOX WW2 to both protein stability and target binding.  相似文献   

10.
Cys2His2 zinc fingers (C2H2-ZFs) comprise the largest class of metazoan DNA-binding domains. Despite this domain''s well-defined DNA-recognition interface, and its successful use in the design of chimeric proteins capable of targeting genomic regions of interest, much remains unknown about its DNA-binding landscape. To help bridge this gap in fundamental knowledge and to provide a resource for design-oriented applications, we screened large synthetic protein libraries to select binding C2H2-ZF domains for each possible three base pair target. The resulting data consist of >160 000 unique domain–DNA interactions and comprise the most comprehensive investigation of C2H2-ZF DNA-binding interactions to date. An integrated analysis of these independent screens yielded DNA-binding profiles for tens of thousands of domains and led to the successful design and prediction of C2H2-ZF DNA-binding specificities. Computational analyses uncovered important aspects of C2H2-ZF domain–DNA interactions, including the roles of within-finger context and domain position on base recognition. We observed the existence of numerous distinct binding strategies for each possible three base pair target and an apparent balance between affinity and specificity of binding. In sum, our comprehensive data help elucidate the complex binding landscape of C2H2-ZF domains and provide a foundation for efforts to determine, predict and engineer their DNA-binding specificities.  相似文献   

11.
Many complex networks such as computer and social networks exhibit modular structures, where links between nodes are much denser within modules than between modules. It is widely believed that cellular networks are also modular, reflecting the relative independence and coherence of different functional units in a cell. While many authors have claimed that observations from the yeast protein–protein interaction (PPI) network support the above hypothesis, the observed structural modularity may be an artifact because the current PPI data include interactions inferred from protein complexes through approaches that create modules (e.g., assigning pairwise interactions among all proteins in a complex). Here we analyze the yeast PPI network including protein complexes (PIC network) and excluding complexes (PEC network). We find that both PIC and PEC networks show a significantly greater structural modularity than that of randomly rewired networks. Nonetheless, there is little evidence that the structural modules correspond to functional units, particularly in the PEC network. More disturbingly, there is no evolutionary conservation among yeast, fly, and nematode modules at either the whole-module or protein-pair level. Neither is there a correlation between the evolutionary or phylogenetic conservation of a protein and the extent of its participation in various modules. Using computer simulation, we demonstrate that a higher-than-expected modularity can arise during network growth through a simple model of gene duplication, without natural selection for modularity. Taken together, our results suggest the intriguing possibility that the structural modules in the PPI network originated as an evolutionary byproduct without biological significance.  相似文献   

12.
Adenosine deaminases acting on RNA (ADARs) hydrolytically deaminate adenosines (A) in a wide variety of duplex RNAs and misregulation of editing is correlated with human disease. However, our understanding of reaction selectivity is limited. ADARs are modular enzymes with multiple double-stranded RNA binding domains (dsRBDs) and a catalytic domain. While dsRBD binding is understood, little is known about ADAR catalytic domain/RNA interactions. Here we use a recently discovered RNA substrate that is rapidly deaminated by the isolated human ADAR2 deaminase domain (hADAR2-D) to probe these interactions. We introduced the nucleoside analog 8-azanebularine (8-azaN) into this RNA (and derived constructs) to mechanistically trap the protein–RNA complex without catalytic turnover for EMSA and ribonuclease footprinting analyses. EMSA showed that hADAR2-D requires duplex RNA and is sensitive to 2′-deoxy substitution at nucleotides opposite the editing site, the local sequence and 8-azaN nucleotide positioning on the duplex. Ribonuclease V1 footprinting shows that hADAR2-D protects ∼23 nt on the edited strand around the editing site in an asymmetric fashion (∼18 nt on the 5′ side and ∼5 nt on the 3′ side). These studies provide a deeper understanding of the ADAR catalytic domain–RNA interaction and new tools for biophysical analysis of ADAR–RNA complexes.  相似文献   

13.
Helix–hairpin–helix (HhH) is a widespread motif involved in non-sequence-specific DNA binding. The majority of HhH motifs function as DNA-binding modules, however, some of them are used to mediate protein–protein interactions or have acquired enzymatic activity by incorporating catalytic residues (DNA glycosylases). From sequence and structural analysis of HhH-containing proteins we conclude that most HhH motifs are integrated as a part of a five-helical domain, termed (HhH)2 domain here. It typically consists of two consecutive HhH motifs that are linked by a connector helix and displays pseudo-2-fold symmetry. (HhH)2 domains show clear structural integrity and a conserved hydrophobic core composed of seven residues, one residue from each α-helix and each hairpin, and deserves recognition as a distinct protein fold. In addition to known HhH in the structures of RuvA, RadA, MutY and DNA-polymerases, we have detected new HhH motifs in sterile alpha motif and barrier-to-autointegration factor domains, the α-subunit of Escherichia coli RNA-polymerase, DNA-helicase PcrA and DNA glyco­s­y­lases. Statistically significant sequence similarity of HhH motifs and pronounced structural conservation argue for homology between (HhH)2 domains in different protein families. Our analysis helps to clarify how non-symmetric protein motifs bind to the double helix of DNA through the formation of a pseudo-2-fold symmetric (HhH)2 functional unit.  相似文献   

14.
15.
Eps15 homology (EH) domains are universal interaction domains to establish networks of protein–protein interactions in the cell. These networks mainly coordinate cellular functions including endocytosis, actin remodeling, and other intracellular signaling pathways. They are well characterized in structural terms, except for the internal EH domain from human γ‐synergin (EHγ). Here, we complete the family of EH domain structures by determining the solution structure of the EHγ domain. The structural ensemble follows the canonical EH domain fold and the identified binding site is similar to other known EH domains. But EHγ differs significantly in the N‐ and C‐terminal regions. The N‐terminal α‐helix is shortened compared to known homologues, while the C‐terminal one is fully formed. A significant proportion of the remaining N‐ and C‐terminal regions are well structured, a feature not seen in other EH domains. Single mutations in both the N‐terminal and the C‐terminal structured extensions lead to the loss of the distinct three‐dimensional fold and turn EHγ into a molten globule like state. Therefore, we propose that the structural extensions in EHγ function as a clamp and are undoubtedly required to maintain its tertiary fold.  相似文献   

16.
Hho1p is assumed to serve as a linker histone in Saccharomyces cerevisiae and, notably, it possesses two putative globular domains, designated HD1 (residues 41–118) and HD2 (residues 171–252), that are homologous to histone H5 from chicken erythrocytes. We have determined the three-dimensional structure of globular domain HD1 with high precision by heteronuclear magnetic resonance spectroscopy. The structure had a winged helix–turn–helix motif composed of an αβααββ fold and closely resembled the structure of the globular domain of histone H5. Interestingly, the second globular domain, HD2, in Hho1p was unstructured under physiological conditions. Gel mobility assay demonstrated that Hho1p preferentially binds to supercoiled DNA over linearized DNA. Furthermore, NMR analysis of the complex of a deletion mutant protein (residues 1–118) of Hho1p with a linear DNA duplex revealed that four regions within the globular domain HD1 are involved in the DNA binding. The above results suggested that Hho1p possesses properties similar to those of linker histones in higher eukaryotes in terms of the structure and binding preference towards supercoiled DNA.  相似文献   

17.
cGMP-dependent protein kinase (PKG)-interacting proteins (GKIPs) mediate cellular targeting of PKG isoforms by interacting with their leucine zipper (LZ) domains. These interactions prevent aberrant signaling cross-talk between different PKG isotypes. To gain detailed insight into isotype-specific GKIP recognition by PKG, we analyzed the type II PKG leucine zipper domain and found that residues 40–83 dimerized and specifically interacted with Rab11b. Next, we determined a crystal structure of the PKG II LZ-Rab11b complex. The PKG II LZ domain presents a mostly nonpolar surface onto which Rab11b docks, through van der Waals interactions. Contact surfaces in Rab11b are found in switch I and II, interswitch, and the β1/N-terminal regions. This binding surface dramatically differs from that seen in the Rab11 family of interacting protein complex structures. Structural comparison with PKG Iα and Iβ LZs combined with mutagenic analysis reveals that GKIP recognition is mediated through surface charge interactions.  相似文献   

18.
The regulation of a series of cellular events requires specific protein–protein interactions, which are usually mediated by modular domains to precisely select a particular sequence from diverse partners. However, most signaling domains can bind to more than one peptide sequence. How do proteins create promiscuity from precision? Moreover, these complex interactions typically occur at the interface of a well-defined secondary structure, α helix and β sheet. However, the molecular recognition primarily controlled by loop architecture is not fully understood. To gain a deep understanding of binding selectivity and promiscuity by the conformation of loops, we chose the forkhead-associated (FHA) domain as our model system. The domain can bind to diverse peptides via various loops but only interact with sequences containing phosphothreonine (pThr). We applied molecular dynamics (MD) simulations for multiple free and bound FHA domains to study the changes in conformations and dynamics. Generally, FHA domains share a similar folding structure whereby the backbone holds the overall geometry and the variety of sidechain atoms of multiple loops creates a binding surface to target a specific partner. FHA domains determine the specificity of pThr by well-organized binding loops, which are rigid to define a phospho recognition site. The broad range of peptide recognition can be attributed to different arrangements of the loop interaction network. The moderate flexibility of the loop conformation can help access or exclude binding partners. Our work provides insights into molecular recognition in terms of binding specificity and promiscuity and helpful clues for further peptide design.  相似文献   

19.
Heat shock protein 90 (hsp90) drives heme insertion into the β1 subunit of soluble guanylate cyclase (sGC) β1, which enables it to associate with a partner sGCα1 subunit and mature into a nitric oxide (NO)-responsive active form. We utilized fluorescence polarization measurements and hydrogen-deuterium exchange mass spectrometry to define molecular interactions between the specific human isoforms hsp90β and apo-sGCβ1. hsp90β and its isolated M domain, but not its isolated N and C domains, bind with low micromolar affinity to a heme-free, truncated version of sGCβ1 (sGCβ1(1–359)-H105F). Surprisingly, hsp90β and its M domain bound to the Per-Arnt-Sim (PAS) domain of apo-sGC-β1(1–359), which lies adjacent to its heme-binding (H-NOX) domain. The interaction specifically involved solvent-exposed regions in the hsp90β M domain that are largely distinct from sites utilized by other hsp90 clients. The interaction strongly protected two regions of the sGCβ1 PAS domain and caused local structural relaxation in other regions, including a PAS dimerization interface and a segment in the H-NOX domain. Our results suggest a means by which the hsp90β interaction could prevent apo-sGCβ1 from associating with its partner sGCα1 subunit while enabling structural changes to assist heme insertion into the H-NOX domain. This mechanism would parallel that in other clients like the aryl hydrocarbon receptor and HIF1α, which also interact with hsp90 through their PAS domains to control protein partner and small ligand binding interactions.  相似文献   

20.
The yeast Spt10p activator is a putative histone acetyltransferase (HAT) possessing a sequence-specific DNA-binding domain (DBD) which binds to the upstream activation sequences (UAS elements) in the histone gene promoters. Spt10p binds to a pair of histone UAS elements with extreme positive cooperativity. The molecular basis of this cooperativity was addressed. Spt10p (640 residues) is an elongated dimer, but the isolated DBD (residues 283–396) is a monomer and binds non-cooperatively to DNA. A Spt10p fragment comprising the N-terminal domain (NTD), HAT domain and DBD (residues 1–396) binds cooperatively and is a dimer, whereas an overlapping Spt10p fragment comprising the DBD and C-terminal domains (residues 283–640) binds non-cooperatively and is a monomer. These observations imply that cooperative binding requires dimerization. The isolated NTD (residues 1–98) is a dimer and is responsible for dimerization. We propose that cooperativity involves a conformational change in the Spt10p dimer which facilitates the simultaneous recognition of two UAS elements. In vivo, deletion of the NTD results in poor growth, but does not prevent the binding at the HTA1 promoter, suggesting that dimerization is biologically important. Residues 1–396 are sufficient for normal growth, indicating that the critical functions of Spt10p reside in the N-terminal domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号