首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzyme laccase oxidises phenolic groups of lignin but not the non-phenolic ones. Redox mediators activate laccase towards the non-phenolic groups, particularly the benzyl alcohols. The oxidation step is performed by the oxidised form of the mediator, generated on its interaction with laccase. The oxidised mediator can follow an electron transfer, a radical hydrogen atom transfer or an ionic mechanism in the oxidation of the non-phenolic subunits. Support for these conclusions is provided by (i) investigating the product pattern with suitable probe substrates, (ii) measuring the intramolecular kinetic isotope effect. Determination of electrochemical properties and bond dissociation energies via semiempirical calculations enabled us to rationalise the origin of the different mechanistic behaviour of the mediators. Finally, a comparison of different laccase-mediator-systems (LMS), when applied to the delignification of wood pulp, indicates violuric acid as the most efficient mediator, in an oxidation that is selectively directed towards lignin only.  相似文献   

2.
The enzyme laccase oxidises phenolic groups of lignin but not the non-phenolic ones. Redox mediators activate laccase towards the non-phenolic groups, particularly the benzyl alcohols. The oxidation step is performed by the oxidised form of the mediator, generated on its interaction with laccase. The oxidised mediator can follow an electron transfer, a radical hydrogen atom transfer or an ionic mechanism in the oxidation of the non-phenolic subunits. Support for these conclusions is provided by (i) investigating the product pattern with suitable probe substrates, (ii) measuring the intramolecular kinetic isotope effect. Determination of electrochemical properties and bond dissociation energies via semiempirical calculations enabled us to rationalise the origin of the different mechanistic behaviour of the mediators. Finally, a comparison of different laccase-mediator-systems (LMS), when applied to the delignification of wood pulp, indicates violuric acid as the most efficient mediator, in an oxidation that is selectively directed towards lignin only.  相似文献   

3.
4.
Iron(II) exacerbates the effects of oxidative stress via the Fenton reaction. A number of human diseases are associated with iron accumulation including ischemia-reperfusion injury, inflammation and certain neurodegenerative diseases. The functional properties and localization in plasma membrane of cells and endosomes suggest an important role for the divalent metal transporter DMT1 (also known as DCT1 and Nramp2) in iron transport and cellular iron homeostasis. Although iron metabolism is strictly controlled and the activity of DMT1 is central in controlling iron homeostasis, no regulatory mechanisms for DMT1 have been so far identified. Our studies show that the activity of DMT1 is modulated by compounds that affect its redox status. We also show that both iron and zinc are transported by DMT1 when expressed in Xenopus laevis oocytes. Radiotracer uptake and electrophysiological measurements revealed that H2O2 and Hg2+ treatments result in substantial inhibition of DMT1. These findings may have a profound relevance from a physiological and pathophysiological standpoint. Present address for D.T.: Department of Neurology, Cecil B. Day Laboratory for Neuromuscular Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA  相似文献   

5.

In this mini-review we present an environmental iron mobility/transport scheme consisting of inter-related controls, whereby the first coordination shell of iron modulates the iron redox potential (E1/2), and the oxidation state of iron controls the chemistry of the first coordination sphere and therefore the immediate chemical environment of the iron. Siderophores (microbially generated iron specific chelators) may be viewed as iron redox mediators. Siderophore chelation of environmental iron in a reduced (Fe(II)) oxidation state results in facile air oxidation of iron due to the negative redox potentials observed for Fe-siderophore complexes. This solubilizes the iron and locks it into a specific coordination environment, thereby preventing hydrolysis and precipitation. The high-spin Fe3+ → Fe+ electron transfer process may be viewed as a switch that controls the thermodynamic stability and kinetic lability of the first coordination shell. Reduction of iron(III)-siderophore complexes to iron(II)-siderophore complexes decreases thermodynamic stability, increases the rate of siderophore ligand exchange, and increases the ease of siderophore donor atom protonation, thus facilitating a rapid turnover of the first coordination shell. Results are presented for iron-siderophore pH and oxidation state dependent speciation studies that are relevant to environmental and microbial iron mobility and transport.  相似文献   

6.
7.
Bisphenol A was oxidized to monoquinone and bisquinone derivatives by Fremy’s salt, a radical oxidant, though salcomine and alkali did not catalyze the oxidation by molecular oxygen. Bisphenol A, bisphenol B, and 3,4'-(1-methylethylidene)bisphenol were converted to their monoquinone derivatives in the presence of tyrosinase at 25°C at pH 6.5, but not to the bisquinone derivatives under these conditions.  相似文献   

8.
In the present work, Norway spruce wood (Picea abies L.) was reacted with a commercial Trametes versicolor laccase in the presence of potassium iodide salt or the phenolic compounds thymol and isoeugenol to impart an antimicrobial property to the wood surface. In order to assess the efficacy of the wood treatment, a leaching of the iodinated and polymerized wood and two biotests including bacteria, a yeast, blue stain fungi, and wood decay fungi were performed. After laccase-catalyzed oxidation of the phenols, the antimicrobial effect was significantly reduced. In contrast, the enzymatic oxidation of iodide (I) to iodine (I2) in the presence of wood led to an enhanced resistance of the wood surface against all microorganisms, even after exposure to leaching. The efficiency of the enzymatic wood iodination was comparable to that of a chemical wood preservative, VP 7/260a. The modification of the lignocellulose by the laccase-catalyzed iodination was assessed by the Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) technique. The intensities of the selected lignin-associated bands and carbohydrate reference bands were analyzed, and the results indicated a structural change in the lignin matrix. The results suggest that the laccase-catalyzed iodination of the wood surface presents an efficient and ecofriendly method for wood protection.  相似文献   

9.
10.
11.
The Oxidation of Aromatic Compounds by Fluorescent Pseudomonads   总被引:19,自引:7,他引:12  
  相似文献   

12.
13.
New data obtained by the author and other researchers on two different groups of obligately heterotrophic bacteria capable of inorganic sulfur oxidation are reviewed. Among culturable marine and (halo)alkaliphilic heterotrophs oxidizing sulfur compounds (thiosulfate and, much less actively, elemental sulfur and sulfide) incompletely to tetrathionate, representatives of the gammaproteobacteria, especially from the Halomonas group, dominate. Some denitrifying species from this group are able to carry out anaerobic oxidation of thiosulfate and sulfide using nitrogen oxides as electron acceptors. Despite the low energy output of the reaction of thiosulfate oxidation to tetrathionate, it can be utilized for ATP synthesis by some tetrathionate-producing heterotrophs; however, this potential is not always realized during their growth. Another group of marine and (halo)alkaliphilic heterotrophic bacteria capable of complete oxidation of sulfur compounds to sulfate mostly includes representatives of the alphaproteobacteria which are most closely related to nonsulfur purple bacteria. They can oxidize sulfide (polysulfide), thiosulfate, and elemental sulfur via sulfite to sulfate but neither produce nor oxidize tetrathionate. All of the investigated sulfate-forming heterotrophic bacteria belong to lithoheterotrophs, being able to gain additional energy from the oxidation of sulfur compounds during heterotrophic growth on organic substrates. Some doubtful cases of heterotrophic sulfur oxidation described in the literature are also discussed.  相似文献   

14.
The two principal bipyridyl herbicides, paraquat and diquat, were investigated for their influence on microsomal mixed-function oxidation (MFO) activities and on NADPH oxidation rates in lung, liver, and kidney preparations. In lung microsomal preparations, benzphetamine N-demethylation was found to be inhibited by paraquat and diquat in a concentration-dependent manner, but ethylmorphine N-demethylation was unaffected by these bipyridyls. In liver microsomal fractions, both benzphetamine and ethylmorphine N-demethylases were inhibited by paraquat and diquat. Neither bipyridyl affected MFO activity in kidney preparations. A kinetic investigation of the enzyme inhibition showed that only Vmax was affected by paraquat and diquat, providing the first evidence for noncompetitive inhibition by the bipyridyls. In all microsomal preparations, NADPH oxidation was stimulated significantly by paraquat and to an even greater extent by diquat in the absence or presence of benzphetamine or ethylmorphine. The influence of MFO substrates on the stimulation varied widely among the three organ systems. In lung, paraquat- or diquat-mediated stimulation of NADPH oxidation was equal in the absence of MFO substrates and in the presence of ethylmorphine, but the stimulation was increased in the presence of benzphetamine. Stimulation of NADPH oxidation by the bipyridyls, in liver as well as in kidney preparations, was equal in all situations in the absence of MFO substrates and in the presence of benzphetamine or ethylmorphine, although the quantity of this stimulation was greater in liver than in kidney fractions. It is apparent that the bipyridyls are potent stimulators of in vitro NADPH oxidation in microsomal preparations from several organs. The quantity of the NADPH oxidation stimulation seems to be a decisive factor in the inhibition of xenobiotic metabolism. Whether the stimulation of NADPH oxidation and the noncompetitive inhibition of xenobiotic metabolism play a significant role in bipyridyl toxicity are under further investigation.  相似文献   

15.
Both natural and anthropogenic processes are responsible for excessive organic loading of submerged soils, with detrimental environmental consequences. The often insufficient natural attenuation can be enhanced by exploiting microbial manganese cycles. This review describes how an anoxic oxidation of organic matter with concomitant reduction of MnO 2 can link up with a reoxidation of the resulting, soluble Mn(II) in oxic layers. The potentially attainable oxidation rates through these natural cycles are of the same order as the organic carbon accumulation rates. The microbiology and physiology of the responsible organisms are discussed, as well as examples of naturally occurring manganese cycles and the possibility to engineer this natural phenomenon.  相似文献   

16.
17.
Lignin peroxidase from Phanerochaete chrysosporium was used to study the oxidation of aromatic compounds, including polycyclic aromatic hydrocarbons and heterocyclic compounds, that are models of moieties of asphaltene molecules. The oxidations were done in systems containing water-miscible organic solvents, including methanol, isopropanol, N, N-dimethylformamide, acetonitrile, and tetrahydrofuran. Of the 20 aromatic compounds tested, 9 were oxidized by lignin peroxidase in the presence of hydrogen peroxide. These included anthracene, 1-, 2-, and 9-methylanthracenes, acenaphthene, fluoranthene, pyrene, carbazole, and dibenzothiophene. Of the compounds studied, lignin peroxidase was able to oxidize those with ionization potentials of <8 eV (measured by electron impact). The reaction products contain hydroxyl and keto groups. In one case, carbon-carbon bond cleavage, yielding anthraquinone from 9-methylanthracene, was detected. Kinetic constants and stability characteristics of lignin peroxidase were determined by using pyrene as the substrate in systems containing different amounts of organic solvent. Benzyl alkylation of lignin peroxidase improved its activity in a system containing water-miscible organic solvent but did not increase its resistance to inactivation at high solvent concentrations.  相似文献   

18.
SoxAX enzymes couple disulfide bond formation to the reduction of cytochrome c in the first step of the phylogenetically widespread Sox microbial sulfur oxidation pathway. Rhodovulum sulfidophilum SoxAX contains three hemes. An electrochemical cell compatible with magnetic circular dichroism at near infrared wavelengths has been developed to resolve redox and chemical properties of the SoxAX hemes. In combination with potentiometric titrations monitored by electronic absorbance and EPR, this method defines midpoint potentials (Em) at pH 7.0 of approximately +210, −340, and −400 mV for the His/Met, His/Cys, and active site His/CysS-ligated heme, respectively. Exposing SoxAX to S2O42−, a substrate analog with Em ∼−450 mV, but not Eu(II) complexed with diethylene triamine pentaacetic acid (Em ∼−1140 mV), allows cyanide to displace the cysteine persulfide (CysS) ligand to the active site heme. This provides the first evidence for the dissociation of CysS that has been proposed as a key event in SoxAX catalysis.  相似文献   

19.
Redox homeostasis is a fundamental requirement for the maintenance of metabolism, energy generation, and growth in Saccharomyces cerevisiae. The redox cofactors NADH and NADPH are among the most highly connected metabolites in metabolic networks. Changes in their concentrations may induce widespread changes in metabolism. Redox imbalances were achieved with a dedicated biological tool overexpressing native NADH-dependent or engineered NADPH-dependent 2,3-butanediol dehydrogenase, in the presence of acetoin. We report that targeted perturbation of the balance of cofactors (NAD+/NADH or, to a lesser extent, NADP+/NADPH) significantly affected the production of volatile compounds. In most cases, variations in the redox state of yeasts modified the formation of all compounds from the same biochemical pathway (isobutanol, isoamyl alcohol, and their derivatives) or chemical class (ethyl esters), irrespective of the cofactors. These coordinated responses were found to be closely linked to the impact of redox status on the availability of intermediates of central carbon metabolism. This was the case for α-keto acids and acetyl coenzyme A (acetyl-CoA), which are precursors for the synthesis of many volatile compounds. We also demonstrated that changes in the availability of NADH selectively affected the synthesis of some volatile molecules (e.g., methionol, phenylethanol, and propanoic acid), reflecting the specific cofactor requirements of the dehydrogenases involved in their formation. Our findings indicate that both the availability of precursors from central carbon metabolism and the accessibility of reduced cofactors contribute to cell redox status modulation of volatile compound formation.  相似文献   

20.
A high‐rate of oxygen redox assisted by cobalt in layered sodium‐based compounds is achieved. The rationally designed Na0.6[Mg0.2Mn0.6Co0.2]O2 exhibits outstanding electrode performance, delivering a discharge capacity of 214 mAh g?1 (26 mA g?1) with capacity retention of 87% after 100 cycles. High rate performance is also achieved at 7C (1.82 A g?1) with a capacity of 107 mAh g?1. Surprisingly, the Na0.6[Mg0.2Mn0.6Co0.2]O2 compound is able to deliver capacity for 1000 cycles at 5C (at 1.3 A g?1), retaining 72% of its initial capacity of 108 mAh g?1. X‐ray absorption spectroscopy analysis of the O K‐edge indicates the oxygen‐redox species (O2?/1?) is active during cycling. First‐principles calculations show that the addition of Co reduces the bandgap energy from ≈2.65 to ≈0.61 eV and that overlapping of the Co 3d and O 2p orbitals facilitates facile electron transfer, enabling the long‐term reversibility of the oxygen redox, even at high rates. To the best of the authors' knowledge, this is the first report on high‐rate oxygen redox in sodium‐based cathode materials, and it is believed that the findings will open a new pathway for the use of oxygen‐redox‐based materials for sodium‐ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号