首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1995,131(5):1261-1273
CP190, a protein of 1,096 amino acids from Drosophila melanogaster, oscillates in a cell cycle-specific manner between the nucleus during interphase, and the centrosome during mitosis. To characterize the regions of CP190 responsible for its dynamic behavior, we injected rhodamine-labeled fusion proteins spanning most of CP190 into early Drosophila embryos, where their localizations were characterized using time-lapse fluorescence confocal microscopy. A single bipartite 19- amino acid nuclear localization signal was detected that causes nuclear localization. Robust centrosomal localization is conferred by a separate region of 124 amino acids; two adjacent, nonoverlapping fusion proteins containing distinct portions of this region show weaker centrosomal localization. Fusion proteins that contain both nuclear and centrosomal localization sequences oscillate between the nucleus and the centrosome in a manner identical to native CP190. Fusion proteins containing only the centrosome localization sequence are found at centrosomes throughout the cell cycle, suggesting that CP190 is actively recruited away from the centrosome by its movement into the nucleus during interphase. Both native and bacterially expressed CP190 cosediment with microtubules in vitro. Tests with fusion proteins show that the domain responsible for microtubule binding overlaps the domain required for centrosomal localization. CP60, a protein identified by its association with CP190, also localizes to centrosomes and to nuclei in a cell cycle-dependent manner. Experiments in which colchicine is used to depolymerize microtubules in the early Drosophila embryo demonstrate that both CP190 and CP60 are able to attain and maintain their centrosomal localization in the absence of microtubules.  相似文献   

2.
gamma-tubulin is a minor tubulin that is localized to the microtubule organizing center of many fungi and higher eucaryotic cells (Oakley, B. R., C. E. Oakley, Y. Yoon, and M. C. Jung. 1990. Cell. 61: 1289-1301; Stearns, T., L. Evans, and M. Kirschner. 1991. Cell. 65:825-836; Zheng, Y., M. K. Jung, and B. R. Oakley. 1991. Cell. 65:817-823). Here we show that gamma-tubulin is a component of a previously isolated complex of Drosophila proteins that contains at least two centrosomal microtubule- associated proteins called DMAP190 and DMAP60. Like DMAP190 and DMAP60, the gamma-tubulin in extracts of early Drosophila embryos binds to microtubules, although this binding may be indirect. Unlike DMAP190 and DMAP60, however, only 10-50% of the gamma-tubulin in the extract is able to bind to microtubules. We show that gamma-tubulin binds to a microtubule column as part of a complex, and a substantial fraction of this gamma-tubulin is tightly associated with DMAP60. As neither alpha- nor beta-tubulin bind to microtubule columns, the gamma-tubulin cannot be binding to such columns in the form of an alpha:gamma or beta:gamma heterodimer. These observations suggest that gamma-tubulin, DMAP60, and DMAP190 are components of a centrosomal complex that can interact with microtubules.  相似文献   

3.
The Dictyostelium centrosome is a nucleus associated body consisting of a box-shaped core surrounded by the corona, an amorphous matrix functionally equivalent to the pericentriolar material of animal centrosomes which is responsible for the nucleation and anchoring of microtubules. Here we describe CP250 a component of the corona, an acidic coiled coil protein that is present at the centrosome throughout interphase while disappearing during prophase and reappearing at the end of late telophase. Amino acids 756-1148 of the 2110 amino acids are sufficient for centrosomal targeting and cell cycle–dependent centrosome association. Mutant cells lacking CP250 are smaller in size, growth on bacteria is delayed, chemotaxis is altered, and development is affected, which, in general, are defects observed in cytoskeletal mutants. Furthermore, loss of CP250 affected the nuclear envelope and led to reduced amounts and altered distribution of Sun-1, a conserved nuclear envelope protein that connects the centrosome to chromatin.  相似文献   

4.
A novel 450-kDa coiled-coil protein, CG-NAP (centrosome and Golgi localized PKN-associated protein), was identified as a protein that interacted with the regulatory region of the protein kinase PKN, having a catalytic domain homologous to that of protein kinase C. CG-NAP contains two sets of putative RII (regulatory subunit of protein kinase A)-binding motif. Indeed, CG-NAP tightly bound to RIIalpha in HeLa cells. Furthermore, CG-NAP was coimmunoprecipitated with the catalytic subunit of protein phosphatase 2A (PP2A), when one of the B subunit of PP2A (PR130) was exogenously expressed in COS7 cells. CG-NAP also interacted with the catalytic subunit of protein phosphatase 1 in HeLa cells. Immunofluorescence analysis of HeLa cells revealed that CG-NAP was localized to centrosome throughout the cell cycle, the midbody at telophase, and the Golgi apparatus at interphase, where a certain population of PKN and RIIalpha were found to be accumulated. These data indicate that CG-NAP serves as a novel scaffolding protein that assembles several protein kinases and phosphatases on centrosome and the Golgi apparatus, where physiological events, such as cell cycle progression and intracellular membrane traffic, may be regulated by phosphorylation state of specific protein substrates.  相似文献   

5.
Previous studies suggested that the transition from an incompetent to a competent meiotic state during the course of oogenesis in the mouse involved a G2/M-like cell cycle transition (Wickramasinghe et al, 1991. Dev. Biol. 143, 162). The present studies tested the hypothesis that centrosome phosphorylation, an event normally induced by MPF, is required for this developmental transition and the expression of meiotic competence in cultured growing mouse oocytes. Multiple fluorescence labeling techniques were used to evaluate centrosome number, phosphorylation status, and microtubule nucleating capacity in competent and incompetent oocytes. Experimental conditions were established for reversibly altering the phosphorylation status of the centrosomes and the effects of these treatments on meiotic resumption were examined. Phosphorylated centrosomes nucleating short microtubules were observed in competent oocytes, whereas nonphosphorylated centrosomes and interphase microtubule arrays were found in incompetent oocytes. Upon recovery from nocodazole-induced microtubule depolymerization, short microtubules formed from centrosomes in competent oocytes, whereas long microtubules reappear in the cytoplasm of incompetent oocytes. Perturbation of the phosphorylation state of oocytes with activators of protein kinase A or protein kinase C resulted in the formation of long interphase microtubules in competent oocytes while centrosome phosphorylation was maintained. Treatment of competent oocytes with the phosphorylation inhibitor 6-dimethylaminopurine also led to formation of long microtubules, although under these conditions centrosomes were dephosphorylated. When competent oocytes were treated simultaneously with puromycin and the phosphodiesterase inhibitor isobutyl methylxanthine (IBMX) for 6 hr, centrosomes became dephosphorylated; centrosomes were rephosphorylated when competent oocytes were further cultured in IBMX without puromycin. Conditions that induced centrosome dephosphorylation in competent oocytes resulted in the loss of the ability to express meiotic competence in culture, whereas maintenance of centrosome phosphorylation in these oocytes was correlated with the ability to resume meiosis. These results suggest that the G2/M transition that occurs when mouse oocytes progress from an incompetent to a competent state in vivo involves the phosphorylation of centrosomes and that the maintenance of centrosome phosphorylation is required for the in vitro expression of meiotic competence.  相似文献   

6.
We have identified a putative 35-kilodalton protein that colocalizes with microtubules and displays a unique spatial and temporal distribution during the cell cycle of HeLa cells. This protein has been given the designation MSA-35. MSA-35 first appears in association with microtubules and centrosomes of interphase cells exhibiting centrosome separation as a prelude to cell division. This protein is found in conjunction with kinetochore microtubules throughout their appearance. MSA-35 transiently associates with interpolar microtubules following anaphase and the pattern of MSA-35 reactivity in telophase cells suggests that there are at least seven domains within the intercellular bridge. The distribution of MSA-35 during and following recovery from mitotic arrest with nocodazole suggest that it is also present at low levels in interphase cells, can associate with interphase centrosomes, and colocalizes with nascent microtubules. The complex spatial and temporal distribution of MSA-35 indicates that it may be necessary for a series of events in the mitotic process such as the bundling of microtubules.  相似文献   

7.
A 190-kDa centrosomal protein interacts with microtubules when Drosophila embryo extracts are passed over microtubule-affinity columns. We have obtained a partial cDNA clone that encodes this protein. Using a fusion protein produced from the clone, we have developed a novel immunoaffinity chromatography procedure that allows both the 190-kDa protein and a complex of proteins that associates with it to be isolated in in a single step. For this procedure, the fusion protein is used as an antigen to prepare rabbit polyclonal antibodies, and those antibodies that recognize the 190-kDa protein with low affinity are selectively purified on a column containing immobilized antigen. These low-affinity antibodies are then used to construct an immunoaffinity column. When Drosophila embryo extracts are passed over this column, the 190-kDa protein is quantitatively retained and can be eluted in nearly pure form under nondenaturing conditions with 1.5 M MgCl2, pH 7.6. The immunoaffinity column is washed with 1.0 M KCl just before the elution with 1.5 M MgCl2. This wash elutes 10 major proteins, as well as a number of minor ones. We present evidence that these KCl-eluted proteins represent additional centrosomal components that interact with the 190-kDa protein to form a multiprotein complex within the cell.  相似文献   

8.
In animal cells, centrosomes nucleate microtubules that form polarized arrays to organize the cytoplasm. Drosophila presents an interesting paradox however, as centrosome-deficient mutant animals develop into viable adults. To understand this discrepancy, we analyzed behaviors of centrosomes and microtubules in Drosophila cells, in culture and in vivo, using a combination of live-cell imaging, electron microscopy, and RNAi. The canonical model of the cycle of centrosome function in animal cells states that centrosomes act as microtubule-organizing centers throughout the cell cycle. Unexpectedly, we found that many Drosophila cell-types display an altered cycle, in which functional centrosomes are only present during cell division. On mitotic exit, centrosomes disassemble producing interphase cells containing centrioles that lack microtubule-nucleating activity. Furthermore, steady-state interphase microtubule levels are not changed by codepleting both gamma-tubulins. However, gamma-tubulin RNAi delays microtubule regrowth after depolymerization, suggesting that it may function partially redundantly with another pathway. Therefore, we examined additional microtubule nucleating factors and found that Mini-spindles, CLIP-190, EB1, or dynein RNAi also delayed microtubule regrowth; surprisingly, this was not further prolonged when we codepleted gamma-tubulins. Taken together, these results modify our view of the cycle of centrosome function and reveal a multi-component acentrosomal microtubule assembly pathway to establish interphase microtubule arrays in Drosophila.  相似文献   

9.
We show here that type I protein kinase A is localized to microtubules during the entire cell cycle in epithelial (hepatoma, cervical carcinoma) and nonepithelial (myoblast) cell lines. The association of the type Ialpha regulatory subunit is very strong in all phases of mitosis, from prophase to cytokinesis. In interphase, the association appears weaker, reflecting perhaps a more dynamic molecular interaction. This regulatory subunit appears to recruit catalytic subunits as the latter are also associated with microtubules. BW1J hepatoma cells, stably transfected with either wild-type or mutant Ialpha regulatory subunit, are enriched in aberrant mitoses with multipolar spindles and in mono- or multinucleated giant cells. This suggests that type I protein kinase A could have a role in centrosome duplication and/or segregation, sister chromatid separation, or cytokinesis.  相似文献   

10.
Centrosomes are the main microtubule (MT)-organizing centers in animal cells, but they also influence the actin/myosin cytoskeleton. The Drosophila CP190 protein is nuclear in interphase, interacts with centrosomes during mitosis, and binds to MTs directly in vitro. CP190 has an essential function in the nucleus as a chromatin insulator, but centrosomes and MTs appear unperturbed in Cp190 mutants. Thus, the centrosomal function of CP190, if any, is unclear. Here, we examine the function of CP190 in Cp190 mutant germline clone embryos. Mitosis is not perturbed in these embryos, but they fail in axial expansion, an actin/myosin-dependent process that distributes the nuclei along the anterior-to-posterior axis of the embryo. Myosin organization is disrupted in these embryos, but actin appears unaffected. Moreover, a constitutively activated form of the myosin regulatory light chain can rescue the axial expansion defect in mutant embryos, suggesting that CP190 acts upstream of myosin activation. A CP190 mutant that cannot bind to MTs or centrosomes can rescue the lethality associated with Cp190 mutations, presumably because it retains its nuclear functions, but it cannot rescue the defects in myosin organization in embryos. Thus, CP190 has distinct nuclear and centrosomal functions, and it provides a crucial link between the centrosome/MT and actin/myosin cytoskeletal systems in early embryos.  相似文献   

11.
Aurora-A kinase, also known as STK15/BTAK kinase, is a member of a serine/threonine kinase superfamily that includes the prototypic yeast Ipl1 and Drosophila aurora kinases as well as other mammalian and non-mammalian aurora kinases involved in the regulation of centrosomes and chromosome segregation. The Aurora-A gene is amplified and overexpressed in a wide variety of human tumors. Aurora-A is centrosome-associated during interphase, and binds the poles and half-spindle during mitosis; its over-expression has been associated with centrosome amplification and multipolar spindles. GFP-Aurora-A was used to mark centrosomes and spindles, and monitor their movements in living cells. Centrosome pairs labeled with GFP-Aurora-A are motile throughout interphase undergoing oscillations and tumbling motions requiring intact microtubules and ATP. Fluorescence recovery after photobleaching (FRAP) was used to examine the relative molecular mobility of GFP-Aurora-A, and GFP-labeled alpha-tubulin, gamma-tubulin, and NuMA. GFP-Aurora-A rapidly exchanges in and out of the centrosome and mitotic spindle (t(1/2) approximately 3 sec); in contrast, both tubulins are relatively immobile indicative of a structural role. GFP-NuMA mobility was intermediate in both interphase nuclei and at the mitotic spindle (t(1/2) approximately 23-30 sec). Deletion mapping identifies a central domain of Aurora-A as essential for its centrosomal localization that is augmented by both the amino and the carboxyl terminal ends of the protein. Interestingly, amino or carboxy terminal deletion mutants that maintained centrosomal targeting exhibited significantly slower molecular exchange. Collectively, these studies contrast the relative cellular dynamics of Aurora-A with other cytoskeletal proteins that share its micro-domains, and identify essential regions required for targeting and dynamics.  相似文献   

12.
We studied the possibility of using the spermatozoa of the loach Misgurnus fossilis L. for identification of centrosome proteins. It has been shown that the centrosome of the loach spermatozoa consists of a pair of centrioles of the standard structure and contains the marker protein gamma-tubulin, cytoplasmic microtubules branch out from it, and it does not contain any additional structures characteristic of the centrosomes of spermatozoa of many other fishes. A preparation enriched with intact centrosomes has been obtained from the loach spermatozoa. These centrosomes contained gamma-tubulin although they lost their ability to induce polymerization of microtubules. The preparation of loach centrosomes was successfully used to obtain a set of monoclonal antibodies against the mammalian centrosome. A new protein kinase LOSTEK was identified with the help of one of these monoclonal antibodies, SN2-3D2, which was localized in the centrosome and on then microtubules in both loach spermatozoa and cultured mammalian cells. Hence, the loach spermatozoa are a promising object for identification of new proteins of the mammalian centrosome.  相似文献   

13.
BACKGROUND: During asymmetric cell division in the Drosophila nervous system, Numb segregates into one of two daughter cells where it is required for the establishment of the correct cell fate. Numb is uniformly cortical in interphase, but in late prophase, the protein concentrates in the cortical area overlying one of two centrosomes in an actin/myosin-dependent manner. What triggers the asymmetric localization of Numb at the onset of mitosis is unclear. RESULTS: We show here that the mitotic kinase Aurora-A is required for the asymmetric localization of Numb. In Drosophila sensory organ precursor (SOP) cells mutant for the aurora-A allele aurA(37), Numb is uniformly localized around the cell cortex during mitosis and segregates into both daughter cells, leading to cell fate transformations in the SOP lineage. aurA(37) mutant cells also fail to recruit Centrosomin (Cnn) and gamma-Tubulin to centrosomes during mitosis, leading to spindle morphology defects. However, Numb still localizes asymmetrically in cnn mutants or after disruption of microtubules, indicating that there are two independent functions for Aurora-A in centrosome maturation and asymmetric protein localization during mitosis. Using photobleaching of a GFP-Aurora fusion protein, we show that two rapidly exchanging pools of Aurora-A are present in the cytoplasm and at the centrosome and might carry out these two functions. CONCLUSIONS: Our results suggest that activation of the Aurora-A kinase at the onset of mitosis is required for the actin-dependent asymmetric localization of Numb. Aurora-A is also involved in centrosome maturation and spindle assembly, indicating that it regulates both actin- and microtubule-dependent processes in mitotic cells.  相似文献   

14.
Pai CY  Lei EP  Ghosh D  Corces VG 《Molecular cell》2004,16(5):737-748
Chromatin insulators, or boundary elements, affect promoter-enhancer interactions and buffer transgenes from position effects. The gypsy insulator of Drosophila is bound by a protein complex with two characterized components, the zinc finger protein Suppressor of Hairy-wing [Su(Hw)] and Mod(mdg4)2.2, which is one of the multiple spliced variants encoded by the modifier of mdg4 [mod(mdg4)] gene. A genetic screen for dominant enhancers of the mod(mdg4) phenotype identified the Centrosomal Protein 190 (CP190) as an essential constituent of the gypsy insulator. The function of the centrosome is not affected in CP190 mutants whereas gypsy insulator activity is impaired. CP190 associates physically with both Su(Hw) and Mod(mdg4)2.2 and colocalizes with both proteins on polytene chromosomes. CP190 does not interact directly with insulator sequences present in the gypsy retrotransposon but binds to a previously characterized endogenous insulator, and it is necessary for the formation of insulator bodies. The results suggest that endogenous gypsy insulators contain binding sites for CP190, which is essential for insulator function, and may or may not contain binding sites for Su(Hw) and Mod(mdg4)2.2.  相似文献   

15.
Homozygous mutations in the abnormal spindle-like, microcephaly-associatedASPM gene are the leading cause of autosomal recessive primary microcephaly. ASPM isthe putative human ortholog of the Drosophila melanogaster abnormal spindles gene(asp), which is essential for mitotic spindle function. Here, we report thatdownregulation of endogenous ASPM by siRNA decreases protein levels of endogenousBRCA1. ASPM localizes to the centrosome in interphase and to the spindle poles fromprophase through telophase. These findings indicate that ASPM may be involved inmitotic spindle function, possibly, through regulation of BRCA1.  相似文献   

16.
Disruption of the function of the A-type Aurora kinase of Drosophila by mutation or RNAi leads to a reduction in the length of astral microtubules in syncytial embryos, larval neuroblasts, and cultured S2 cells. In neuroblasts, it can also lead to loss of an organized centrosome and its associated aster from one of the spindle poles, whereas the centrosome at the other pole has multiple centrioles. When centrosomes are present at the poles of aurA mutants or aurA RNAi spindles, they retain many antigens but are missing the Drosophila counterpart of mammalian transforming acidic coiled coil (TACC) proteins, D-TACC. We show that a subpopulation of the total Aurora A is present in a complex with D-TACC, which is a substrate for the kinase. We propose that one of the functions of Aurora A kinase is to direct centrosomal organization such that D-TACC complexed to the MSPS/XMAP215 microtubule-associated protein may be recruited, and thus modulate the behavior of astral microtubules.  相似文献   

17.
Phosphorylation is one of the key mechanisms that regulate centrosome biogenesis, spindle assembly, and cell cycle progression. However, little is known about centrosome-specific phosphorylation sites and their functional relevance. Here, we identified phosphoproteins of intact Drosophila melanogaster centrosomes and found previously unknown phosphorylation sites in known and unexpected centrosomal components. We functionally characterized phosphoproteins and integrated them into regulatory signaling networks with the 3 important mitotic kinases, cdc2, polo, and aur, as well as the kinase CkIIβ. Using a combinatorial RNA interference (RNAi) strategy, we demonstrated novel functions for P granule, nuclear envelope (NE), and nuclear proteins in centrosome duplication, maturation, and separation. Peptide microarrays confirmed phosphorylation of identified residues by centrosome-associated kinases. For a subset of phosphoproteins, we identified previously unknown centrosome and/or spindle localization via expression of tagged fusion proteins in Drosophila SL2 cells. Among those was otefin (Ote), an NE protein that we found to localize to centrosomes. Furthermore, we provide evidence that it is phosphorylated in vitro at threonine 63 (T63) through Aurora-A kinase. We propose that phosphorylation of this site plays a dual role in controlling mitotic exit when phosphorylated while dephosphorylation promotes G(2)/M transition in Drosophila SL2 cells.  相似文献   

18.
Once during each cell cycle, mitotic spindle poles arise by separation of newly duplicated centrosomes. We report here the involvement of phosphorylation of the centrosomal protein centrin in this process. We show that centrin is phosphorylated at serine residue 170 during the G(2)/M phase of the cell cycle. Indirect immunofluorescence staining of HeLa cells using a phosphocentrin-specific antibody reveals intense labeling of mitotic spindle poles during prophase and metaphase of the cell division cycle, with diminished staining of anaphase and no staining of telophase and interphase centrosomes. Cultured cells undergo a dramatic increase in centrin phosphorylation following the experimental elevation of PKA activity, suggesting that this kinase can phosphorylate centrin in vivo. Surprisingly, elevated PKA activity also resulted intense phosphocentrin antibody labeling of interphase centrosomes and in the concurrent movement of individual centrioles apart from one another. Taken together, these results suggest that centrin phosphorylation signals the separation of centrosomes at prophase and implicates centrin phosphorylation in centriole separation that normally precedes centrosome duplication.  相似文献   

19.
Kinesin-14 motor proteins play a variety of roles during metaphase and anaphase. However, it is not known whether members of this family of motors also participate in the dramatic changes in mitotic spindle organization during the transition from telophase to cytokinesis. We have identified the minus-end-directed motor, KIFC3, as an important contributor to central bridge morphology at this stage. KIFC3’s unique motor-dependent localization at the central bridge allows it to congress microtubules, promoting efficient progress through cytokinesis. Conversely, when KIFC3 function is perturbed, abscission is delayed, and the central bridge is both widened and extended. Examination of KIFC3 on growing microtubules in interphase indicates that it caps microtubules released from the centrosome, both in the region of the centrosome and in the cell periphery. In line with other kinesin-14 family members, KIFC3 may guide free microtubules to their destination at the bridge and/or may slide and crosslink central bridge microtubules in order to stage the cells for abscission.  相似文献   

20.
Centrosome duplication and separation are of central importance for cell division. Here we provide a detailed account of this dynamic process in Dictyostelium. Centrosome behavior was monitored in living cells using a γ-tubulin–green fluorescent protein construct and correlated with morphological changes at the ultrastructural level. All aspects of the duplication and separation process of this centrosome are unusual when compared with, e.g., vertebrate cells. In interphase the Dictyostelium centrosome is a box-shaped structure comprised of three major layers, surrounded by an amorphous corona from which microtubules emerge. Structural duplication takes place during prophase, as opposed to G1/S in vertebrate cells. The three layers of the box-shaped core structure increase in size. The surrounding corona is lost, an event accompanied by a decrease in signal intensity of γ-tubulin–green fluorescent protein at the centrosome and the breakdown of the interphase microtubule system. At the prophase/prometaphase transition the separation into two mitotic centrosomes takes place via an intriguing lengthwise splitting process where the two outer layers of the prophase centrosome peel away from each other and become the mitotic centrosomes. Spindle microtubules are now nucleated from surfaces that previously were buried inside the interphase centrosome. Finally, at the end of telophase, the mitotic centrosomes fold in such a way that the microtubule-nucleating surface remains on the outside of the organelle. Thus in each cell cycle the centrosome undergoes an apparent inside-out/outside-in reversal of its layered structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号