首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lysin motif (LysM) domain is an ancient and ubiquitous protein module that binds peptidoglycan and structurally related molecules. A genomic survey in a large number of species spanning all kingdoms reveals that the combination of LysM and receptor kinase domains is present exclusively in plants. However, the particular biological functions and molecular evolution of this gene family remain largely unknown. We show that LysM domains in plant LysM proteins are highly diversified and that a minimum of six distinct types of LysM motifs exist in plant LysM kinase proteins and five additional types of LysM motifs exist in nonkinase plant LysM proteins. Further, motif similarities suggest that plant LysM motifs are ancient. Although phylogenetic signals are not sufficient to resolve the earliest relationships, plant LysM motifs may have arisen through common ancestry with LysM motifs in other kingdoms. Within plants, the gene family has evolved through local and segmental duplications. The family has undergone further duplication and diversification in legumes, where some LysM kinase genes function as receptors for bacterial nodulation factor. Two pairs of homeologous regions were identified in soybean (Glycine max) based on microsynteny and fluorescence in situ hybridization. Expression data show that most plant LysM kinase genes are expressed predominantly in the root and that orthologous LysM kinase genes share similar tissue expression patterns. We also examined synteny around plant LysM kinase genes to help reconstruct scenarios for the evolution of this important gene family.  相似文献   

2.
The lysin motif (LysM) was first identified by Garvey et al. in 1986 and, in subsequent studies, has been shown to bind noncovalently to peptidoglycan and chitin by interacting with N-acetylglucosamine moieties. The LysM sequence is present singly or repeatedly in a large number of proteins of prokaryotes and eukaryotes. Since the mid-1990s, domains containing one or more of these LysM sequences originating from different LysM-containing proteins have been examined for purely scientific reasons as well as for their possible use in various medical and industrial applications. These studies range from detecting localized binding of LysM-containing proteins onto bacteria to actual bacterial cell surface analysis. On a more applied level, the possibilities of employing the LysM domains for cell immobilization, for the display of peptides, proteins, or enzymes on (bacterial) surfaces as well as their utility in the development of novel vaccines have been scrutinized. To serve these purposes, the chimeric proteins containing one or more of the LysM sequences have been produced and isolated from various prokaryotic and eukaryotic expression hosts. This review gives a succinct overview of the characteristics of the LysM domain and of current developments in its application potential.  相似文献   

3.
The establishment of the symbiosis between legume plants and rhizobial bacteria depends on the production of rhizobial lipo-chitooligosaccharidic signals (the Nod factors) that are specifically recognized by roots of the host plant. In Medicago truncatula, specific recognition of Sinorhizobium meliloti and its Nod factors requires the NFP (Nod factor perception) gene, which encodes a putative serine/threonine receptor-like kinase (RLK). The extracellular region of this protein contains three tandem lysin motifs (LysMs), a short peptide domain that is implicated in peptidoglycan or chitin binding in various bacterial or eukaryotic proteins, respectively. We report here the homology modeling of the three LysM domains of M. truncatula NFP based on the structure of a LysM domain of the Escherichia coli membrane-bound lytic murein transglycosidase D (MltD). Expression of NFP in a homologous system (M. truncatula roots) revealed that the protein is highly N-glycosylated, probably with both high-mannose and complex glycans. Surface analysis and docking calculations performed on the models of the three domains were used to predict the most favored binding modes for chitooligosaccharides and Nod factors. A convergent model can be proposed where the sulfated, O-acetylated lipo-chitooligosaccharidic Nod factor of S. meliloti binds in similar orientation to the three LysM domains of M. truncatula NFP. N-glycosylation is not expected to interfere with Nod factor binding in this orientation.  相似文献   

4.
LysM, a widely distributed protein motif for binding to (peptido)glycans   总被引:4,自引:0,他引:4  
Bacteria retain certain proteins at their cell envelopes by attaching them in a non-covalent manner to peptidoglycan, using specific protein domains, such as the prominent LysM (Lysin Motif) domain. More than 4000 (Pfam PF01476) proteins of both prokaryotes and eukaryotes have been found to contain one or more Lysin Motifs. Notably, this collection contains not only truly secreted proteins, but also (outer-)membrane proteins, lipoproteins or proteins bound to the cell wall in a (non-)covalent manner. The motif typically ranges in length from 44 to 65 amino acid residues and binds to various types of peptidoglycan and chitin, most likely recognizing the N-acetylglucosamine moiety. Most bacterial LysM-containing proteins are peptidoglycan hydrolases with various cleavage specificities. Binding of certain LysM proteins to cells of Gram-positive bacteria has been shown to occur at specific sites, as binding elsewhere is hindered by the presence of other cell wall components such as lipoteichoic acids. Interestingly, LysM domains of certain plant kinases enable the plant to recognize its symbiotic bacteria or sense and induce resistance against fungi. This interaction is triggered by chitin-like compounds that are secreted by the symbiotic bacteria or released from fungi, demonstrating an important sensing function of LysMs.  相似文献   

5.
Cells of eukaryotic or prokaryotic origin express proteins with LysM domains that associate with the cell wall envelope of bacteria. The molecular properties that enable LysM domains to interact with microbial cell walls are not yet established. Staphylococcus aureus, a spherical microbe, secretes two murein hydrolases with LysM domains, Sle1 and LytN. We show here that the LysM domains of Sle1 and LytN direct murein hydrolases to the staphylococcal envelope in the vicinity of the cross-wall, the mid-cell compartment for peptidoglycan synthesis. LysM domains associate with the repeating disaccharide β-N-acetylmuramic acid, (1→4)-β-N-acetylglucosamine of staphylococcal peptidoglycan. Modification of N-acetylmuramic acid with wall teichoic acid, a ribitol-phosphate polymer tethered to murein linkage units, prevents the LysM domain from binding to peptidoglycan. The localization of LytN and Sle1 to the cross-wall is abolished in staphylococcal tagO mutants, which are defective for wall teichoic acid synthesis. We propose a model whereby the LysM domain ensures septal localization of LytN and Sle1 followed by processive cleavage of peptidoglycan, thereby exposing new LysM binding sites in the cross-wall and separating bacterial cells.  相似文献   

6.
A variety of bacterial pathogenicity determinants, including the type VI secretion system and the virulence cassettes from Photorhabdus and Serratia, share an evolutionary origin with contractile-tailed myophages. The well-characterized Escherichia coli phage P2 provides an excellent system for studies related to these systems, as its protein composition appears to represent the “minimal” myophage tail. In this study, we used nuclear magnetic resonance (NMR) spectroscopy to determine the solution structure of gpX, a 68-residue tail baseplate protein. Although the sequence and structure of gpX are similar to those of LysM domains, which are a large family associated with peptidoglycan binding, we did not detect a peptidoglycan-binding activity for gpX. However, bioinformatic analysis revealed that half of all myophages, including all that possess phage T4-like baseplates, encode a tail protein with a LysM-like domain, emphasizing a widespread role for this domain in baseplate function. While phage P2 gpX comprises only a single LysM domain, many myophages display LysM domain fusions with other tail proteins, such as the DNA circulation protein found in Mu-like phages and gp53 of T4-like phages. Electron microscopy of P2 phage particles with an incorporated gpX-maltose binding protein fusion revealed that gpX is located at the top of the baseplate, near the junction of the baseplate and tail tube. gpW, the orthologue of phage T4 gp25, was also found to localize to this region. A general colocalization of LysM-like domains and gpW homologues in diverse phages is supported by our bioinformatic analysis.  相似文献   

7.
The rice blast fungus Magnaporthe oryzae's genome encodes a hypothetical protein (MGG_03307) containing a type III CVNH lectin, in which a LysM domain is inserted between individual repeats of a single CVNH domain. At present, no structural or ligand binding data are available for any type III CVNH and functional studies in natural source organisms are scarce. Here, we report NMR solution structure and functional data on MGG_03307. The structure of the CVNH/LysM module revealed that intact and functionally competent CVNH and LysM domains are present. Using NMR titrations, carbohydrate specificities for both domains were determined, and it was found that each domain behaves as an isolated unit without any interdomain communication. Furthermore, live-cell imaging revealed a predominant localization of MGG_03307 within the appressorium, the specialized fungal cell for gaining entry into rice tissue. Our results suggest that MGG_03307 plays a role in the early stages of plant infection.  相似文献   

8.
A gene product of ORF24' was identified on the genome of corynephage BFK20 as a putative phage endolysin. The protein of endolysin BFK20 (gp24') has a modular structure consisting of an N-terminal amidase_2 domain (gp24CD) and a C-terminal cell wall binding domain (gp24BD). The C-terminal domain is unrelated to any of the known cell wall binding domains of phage endolysins. The whole endolysin gene and the sequences of its N-terminal and C-terminal domains were cloned; proteins were expressed in Escherichia coli and purified to homogeneity. The lytic activities of endolysin and its catalytic domain were demonstrated on corynebacteria and bacillus substrates. The binding activity of cell wall binding domain alone and in fusion with green fluorescent protein (gp24BD-GFP) were shown by specific binding assays to the cell surface of BFK20 host Brevibacterium flavum CCM 251 as well as those of other corynebacteria.  相似文献   

9.
The LysM domain is a highly conserved carbohydrate-binding module that recognizes polysaccharides containing N-acetylglucosamine residues. LysM domains are found in a wide variety of extracellular proteins and receptors from viruses, bacteria, fungi, plants and animals. LysM proteins are also present in many species of mammalian fungal pathogens, although a limited number of studies have focused on the expression and determination of their putative roles in the infection process. This review summarizes the current knowledge and recent studies on LysM proteins in the main morphological groups of fungal pathogens that cause infections in humans and other mammals. Recent advances towards understanding the biological functions of LysM proteins in infections of mammalian hosts and their use as potential targets in antifungal strategies are also discussed.  相似文献   

10.
Structural basis for ubiquitin recognition by SH3 domains   总被引:1,自引:0,他引:1  
The SH3 domain is a protein-protein interaction module commonly found in intracellular signaling and adaptor proteins. The SH3 domains of multiple endocytic proteins have been recently implicated in binding ubiquitin, which serves as a signal for diverse cellular processes including gene regulation, endosomal sorting, and protein destruction. Here we describe the solution NMR structure of ubiquitin in complex with an SH3 domain belonging to the yeast endocytic protein Sla1. The ubiquitin binding surface of the Sla1 SH3 domain overlaps substantially with the canonical binding surface for proline-rich ligands. Like many other ubiquitin-binding motifs, the SH3 domain engages the Ile44 hydrophobic patch of ubiquitin. A phenylalanine residue located at the heart of the ubiquitin-binding surface of the SH3 domain serves as a key specificity determinant. The structure of the SH3-ubiquitin complex explains how a subset of SH3 domains has acquired this non-traditional function.  相似文献   

11.
Intimins are members of a family of bacterial adhesins from pathogenic Escherichia coli which specifically interact with diverse eukaryotic cell surface receptors. The EaeA intimin from enterohemorrhagic E. coli O157:H7 contains an N-terminal transporter domain, which resides in the bacterial outer membrane and promotes the translocation of four C-terminally attached passenger domains across the bacterial cell envelope. We investigated whether truncated EaeA intimin lacking two carboxy-terminal domains could be used as a translocator for heterologous passenger proteins. We found that a variant of the trypsin inhibitor Ecballium elaterium trypsin inhibitor II (EETI-II), interleukin 4, and the Bence-Jones protein REI(v) were displayed on the surface of E. coli K-12 via fusion to truncated intimin. Fusion protein net accumulation in the outer membrane could be regulated over a broad range by varying the cellular amount of suppressor tRNA that is necessary for translational readthrough at an amber codon residing within the truncated eaeA gene. Intimin-mediated adhesion of the bacterial cells to eukaryotic target cells could be mimicked by surface display of a short fibrinogen receptor binding peptide containing an arginine-glycine-aspartic acid sequence motif, which promoted binding of E. coli K-12 to human platelets. Cells displaying a particular epitope sequence fused to truncated intimin could be enriched 200,000-fold by immunofluorescence staining and fluorescence-activated cell sorting in three sorting rounds. These results demonstrate that truncated intimin can be used as an anchor protein that mediates the translocation of various passenger proteins through the cytoplasmic and outer membranes of E. coli and their exposure on the cell surface. Intimin display may prove a useful tool for future protein translocation studies with interesting biological and biotechnological ramifications.  相似文献   

12.
The major murein and pseudomurein cell wall-binding domains, i.e., the Lysin Motif (LysM) (Pfam PF01476) and pseudomurein cell wall-binding (PMB) (Pfam PF09373) motif, respectively, were genetically fused. The fusion protein is capable of binding to both murein- and pseudomurein-containing cell walls. In addition, it also binds to chitin, the major polymer of fungal cell walls. Binding is influenced by pH and occurs at a pH close to the pI of the binding protein. Functional studies on truncated versions of the fusion protein revealed that murein and chitin binding is provided by the LysM domain, while binding to pseudomurein is achieved through the PMB domain.  相似文献   

13.
The cell wall, a major barrier protecting cells from their environment, is an essential compartment of both bacteria and archaea. It protects the organism from internal turgor pressure and gives a defined shape to the cell. The cell wall serves also as an anchoring surface for various proteins and acts as an adhesion platform for bacteriophages. The walls of bacteria and archaea are mostly composed of murein and pseudomurein, respectively. Cell wall binding domains play a crucial role in the non-covalent attachment of proteins to cell walls. Here, we give an overview of the similarities and differences in the biochemical and functional properties of the two major murein and pseudomurein cell wall binding domains, i.e., the Lysin Motif (LysM) domain (Pfam PF01476) and the pseudomurein binding (PMB) domain (Pfam PF09373) of bacteria and archaea, respectively.  相似文献   

14.
The four mammalian SPRY (a sequence repeat in dual-specificity kinase splA and ryanodine receptors) domain-containing suppressor of cytokine signalling (SOCS) box proteins (SSB-1 to -4) are characterised by a C-terminal SOCS box and a central SPRY domain. The latter is a protein interaction module found in over 1600 proteins, with more than 70 encoded in the human genome. Here we report the crystal structure of the SPRY domain of murine SSB-2 and compare it with the SSB-2 solution structure and crystal structures of other B30.2/SPRY domain-containing family proteins. The structure is a bent β-sandwich, consisting of two seven-stranded β-sheets wrapped around a long loop that extends from the centre strands of the inner or concave β-sheet; it closely matches those of GUSTAVUS and SSB-4. The structure is also similar to those of two recently determined Neuralized homology repeat (NHR) domains (also known as NEUZ domains), with detailed comparisons, suggesting that the NEUZ/NHR domains form a subclass of SPRY domains. The binding site on SSB-2 for the prostate apoptosis response-4 (Par-4) protein has been mapped in finer detail using mutational analyses. Moreover, SSB-1 was shown to have a Par-4 binding surface similar to that identified for SSB-2. Structural perturbations of SSB-2 induced by mutations affecting its interaction with Par-4 and/or c-Met have been characterised by NMR. These comparisons, in conjunction with previously published dynamics data from NMR relaxation studies and coarse-grained dynamics simulation using normal mode analysis, further refine our understanding of the structural basis for protein recognition of SPRY domain-containing proteins.  相似文献   

15.
The LysM domain probably binds peptidoglycans, but how it does so has yet to be described. For this report, we measured the thermal stabilities of recombinant LysM domains derived from Pteris ryukyuensis chitinase-A (PrChi-A) and monitored their binding to N-acetylglucosamine oligomers ((GlcNAc)n) using differential scanning calorimetry, isothermal titration calorimetry, and NMR spectroscopy. We thereby characterized certain of the domains' functional and structural features. We observed that the domains are very resistant to thermal denaturation and that this resistance depends on the presence of disulfide bonds. We also show that the stoichiometry of (GlcNAc)n/LysM domain binding is 1:1. (GlcNAc)5 titration experiments, monitored by NMR spectroscopy, allowed us to identify the domain residues that are critical for (GlcNAc)5 binding. The binding site is a shallow groove formed by the N-terminal part of helix 1, the loop between strand 1 and helix 1, the C-terminal part of helix 2, and the loop between helix 2 and strand 2. Furthermore, mutagenesis experiments reiterate the critical involvement of Tyr72 in (GlcNAc)n/LysM domain binding. Ours is the first report describing the physical structure of a LysM oligosaccharide-binding site based on experimental data.  相似文献   

16.
CHD7 is a member of the chromodomain helicase DNA binding domain (CHD) family of ATP-dependent chromatin remodelling enzymes. It is mutated in CHARGE syndrome, a multiple congenital anomaly condition. CHD7 is one of a subset of CHD proteins, unique to metazoans that contain the BRK domain, a protein module also found in the Brahma/BRG1 family of helicases. We describe here the NMR solution structure of the two BRK domains of CHD7. Each domain has a compact betabetaalphabeta fold. The second domain has a C-terminal extension consisting of two additional helices. The structure differs from those of other domains present in chromatin-associated proteins.  相似文献   

17.
The lysin motif (LysM) is a ubiquitous protein module that binds peptidoglycan and structurally related molecules. Here, we used single-molecule force spectroscopy (SMFS) to measure and localize individual LysM-peptidoglycan interactions on both model and cellular surfaces. LysM modules of the major autolysin AcmA of Lactococcus lactis were bound to gold-coated atomic force microscopy tips, while peptidoglycan was covalently attached onto model supports. Multiple force curves recorded between the LysM tips and peptidoglycan surfaces yielded a bimodal distribution of binding forces, presumably reflecting the occurrence of one and two LysM-peptidoglycan interactions, respectively. The specificity of the measured interaction was confirmed by performing blocking experiments with free peptidoglycan. Next, the LysM tips were used to map single LysM interactions on the surfaces of L. lactis cells. Strikingly, native cells showed very poor binding, suggesting that peptidoglycan was hindered by other cell wall constituents. Consistent with this notion, treatment of the cells with trichloroacetic acid, which removes peptidoglycan-associated polymers, resulted in substantial and homogeneous binding of the LysM tip. These results provide novel insight into the binding forces of bacterial LysMs and show that SMFS is a promising tool for studying the heterologous display of proteins or peptides on bacterial surfaces.  相似文献   

18.
The crystal structure of penicillin binding protein 4 (PBP4) from Escherichia coli, which has both DD-endopeptidase and DD-carboxypeptidase activity, is presented. PBP4 is one of 12 penicillin binding proteins in E. coli involved in the synthesis and maintenance of the cell wall. The model contains a penicillin binding domain similar to known structures, but includes a large insertion which folds into domains with unique folds. The structures of the protein covalently attached to five different antibiotics presented here show the active site residues are unmoved compared to the apoprotein, but nearby surface loops and helices are displaced in some cases. The altered geometry of conserved active site residues compared with those of other PBPs suggests a possible cause for the slow deacylation rate of PBP4.  相似文献   

19.
The crystal structure of the product of the Bacillus subtilis ykuD gene was solved by the multiwavelength anomalous dispersion (MAD) method and refined using data to 2.0 A resolution. The ykuD protein is a representative of a distinctly prokaryotic and ubiquitous family found among both pathogenic and nonpathogenic Gram-positive and Gram-negative bacteria. The deduced amino acid sequence reveals the presence of an N-terminal LysM domain, which occurs among enzymes involved in cell wall metabolism, and a novel, putative catalytic domain with a highly conserved His/Cys-containing motif of hitherto unknown structure. As the wild-type protein did not crystallize, a double mutant was designed (Lys117Ala/Gln118Ala) to reduce excess surface conformational entropy. As expected, the structure of the LysM domain is similar to the NMR structure reported for an analogous domain from Escherichia coli murein transglycosylase MltD. The molecular model also shows that the 112-residue-long C-terminal domain has a novel tertiary fold consisting of a beta-sandwich with two mixed sheets, one containing five strands and the other, six strands. The two beta-sheets form a cradle capped by an alpha-helix. This domain contains a putative catalytic site with a tetrad of invariant His123, Gly124, Cys139, and Arg141. The stereochemistry of this active site shows similarities to peptidotransferases and sortases, and suggests that the enzymes of the ykuD family may play an important role in cell wall biology.  相似文献   

20.
Procollagen C-proteinase enhancer (PCOLCE) proteins are extracellular matrix proteins that enhance the activities of procollagen C-proteinases by binding to the C-propeptide of procollagen I. PCOLCE proteins are built of three structural modules, consisting of two CUB domains followed by a C-terminal netrin-like (NTR) domain. While the enhancement of proteinase activity can be ascribed solely to the CUB domains, sequence homology of the NTR domain with tissue inhibitors of metalloproteinases suggest proteinase inhibitory activity for the NTR domain. Here we present the three-dimensional structure of the NTR domain of human PCOLCE1 as the first example of a structural domain with the canonical features of an NTR module. The structure rules out a binding mode to metalloproteinases similar to that of tissue inhibitors of metalloproteinases but suggests possible inhibitory function toward specific serine proteinases. Sequence conservation between 13 PCOLCE proteins from different organisms suggests a conserved binding surface for other protein partners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号