共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
A P Mitchell 《Microbiological reviews》1994,58(1):56-70
10.
11.
12.
本文根据GenBank 中巨大芽孢杆菌(Bacillus megaterium)的PGA基因序列设计了上下游引物,通过PCR扩增出巨大芽孢杆菌1.1741中的PGA基因。将该基因连接到T7lac启动子控制下的表达载体pYES2(amp+,ura+)上,构建了重组质粒pYES2-PGA。用LiAc/SSDNA/PEG方法将其转化进酿酒酵母(Saccharomyces cerevisiae)H158中表达,在不需要苯乙酸诱导的重组菌株发酵液中检测到了青霉素酰化酶活性,最高酶活达到0.75 U/ml。将该PGA基因测序结果与GenBank中巨大芽孢杆菌L04471.1、U07682.1和Z37542三株的PGA基因序列比对,表现出很高的同源性,分别达到97.1%、99.8% 和99.8%。 相似文献
13.
14.
Analysis of mutations affecting Ty-mediated gene expression in Saccharomyces cerevisiae 总被引:21,自引:0,他引:21
Summary Yeast translocatable, Ty, elements can cause constitutive synthesis of the glucose-repressible alcohol dehydrogenase (ADHII) when inserted upstream from the 5 end of the structural gene, ADR2. These insertion mutations, ADR3
c, are unstable and give rise to secondary ADHII– mutations. The majority of such mutants, adr3, can be attributed to excision of the insertion sequence, leaving behind a single copy of the -sequence which occurs as a direct repeat at the ends of the Ty elements. A few adr3 mutants appear to be generated by DNA-rearrangements in the vicinity of the Ty insertion. The occurrence of recessive mutants, tye, which are unlinked to ADR2 indicates that the constitutive expression of ADR2 caused by the Ty insertions requires the function of trans-acting genes. These results support the idea that regulation of Ty-linked ADR2 is actively mediated by the insertion sequence and is probably not due to a mere disruption of the wild-type controlling site. 相似文献
15.
16.
17.
Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae 总被引:12,自引:0,他引:12
DNA microarrays were used to investigate the expression profile of yeast genes in response to ethanol. Up to 3.1% of the genes encoded in the yeast genome were up-regulated by at least a factor of three after 30 min ethanol stress (7% v/v). Concomitantly, 3.2% of the genes were down-regulated by a factor of three. Of the genes up-regulated in response to ethanol 49.4% belong to the environmental stress response and 14.2% belong to the stress gene family. Our data show that in addition to the previously identified ethanol-induced genes, a very large number of genes involved in ionic homeostasis, heat protection, trehalose synthesis and antioxidant defence also respond to ethanol stress. It appears that a large number of the up-regulated genes are involved in energy metabolism. Thus, 'management' of the energy pool (especially ATP) seems to constitute an ethanol stress response and to involve different mechanisms. 相似文献
18.
19.