首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We investigated the prevalence, distribution, and structure of espP in Shiga toxin-producing Escherichia coli (STEC) and assessed the secretion and proteolytic activity of the encoded autotransporter protein EspP (extracellular serine protease, plasmid encoded). espP was identified in 56 of 107 different STEC serotypes. Sequencing of a 3,747-bp region of the 3,900-bp espP gene distinguished four alleles (espPα, espPβ, espPγ, and espPδ), with 99.9%, 99.2%, 95.3%, and 95.1% homology, respectively, to espP of E. coli O157:H7 strain EDL933. The espPβ, espPγ, and espPδ genes contained unique insertions and/or clustered point mutations that enabled allele-specific PCRs; these demonstrated the presence of espPα, espPβ, espPγ, and espPδ in STEC isolates belonging to 17, 16, 15, and 8 serotypes, respectively. Among four subtypes of EspP encoded by these alleles, EspPα (produced by enterohemorrhagic E. coli [EHEC] O157:H7 and the major non-O157 EHEC serotypes) and EspPγ cleaved pepsin A, human coagulation factor V, and an oligopeptide alanine-alanine-proline-leucine-para-nitroaniline, whereas EspPβ and EspPδ either were not secreted or were proteolytically inactive. The lack of proteolysis correlated with point mutations near the active serine protease site. We conclude that espP is widely distributed among STEC strains and displays genetic heterogeneity, which can be used for subtyping and which affects EspP activity. The presence of proteolytically active EspP in EHEC serogroups O157, O26, O111, and O145, which are bona fide human pathogens, suggests that EspP might play a role as an EHEC virulence factor.  相似文献   

2.
In this study, we identified and characterized a novel secreted protein, the extracellular serine protease EspP, which is encoded by the large plasmid of enterohaemorrhagic Escherichia coli (EHEC) O157:H7. The corresponding espP gene consists of a 3900 bp open reading frame that is able to encode a 1300-amino-acid protein. EspP is synthesized as a large precursor which is then processed at the N- and C-termini during secretion. It can be grouped into the autotransporter protein family. The deduced amino acid sequence of EspP showed homology to several secreted or surface-exposed proteins of pathogenic bacteria, in particular EspC of enteropathogenic E. coli and IgA1 proteases from Neisseria spp . and Haemophilus influenzae . Hybridization experiments and immunoblot analysis of clinical EHEC isolates showed that EspP is widespread among EHEC of the serogroup O157 and that it also exists in serogroup O26. A specific immune response against EspP was detected in sera from patients suffering from EHEC infections. Functional analysis showed that EspP is a protease capable of cleaving pepsin A and human coagulation factor V. Degradation of factor V could contribute to the mucosal haemorrhage observed in patients with haemorrhagic colitis.  相似文献   

3.
Shiga toxin-producing Escherichia coli (STEC) strains belonging to serogroup O145 are important emerging food-borne pathogens responsible for sporadic cases and outbreaks of hemorrhagic colitis and hemolytic uremic syndrome. A large plasmid carried by STEC O145:NM strain 83-75 and named pO145-NM was sequenced, and the genes were annotated. pO145-NM is 90,103bp in size and carries 89 open reading frames. Four genes/regions in pO145-NM encode for STEC virulence factors, including toxB (protein involved in adherence), espP (a serine protease), katP (catalase peroxidase), and the hly (hemolysin) gene cluster. These genes have also been identified in large virulence plasmids found in other STEC serogroups, including O26, O157, O111, and O103. pO145-NM carries the espPα subtype that is associated with STEC strains that cause more severe disease. Phylogenetic analyses of HlyB, EspP, and ToxB in various STEC strains showed a high degree of similarity of these proteins in E. coli serotypes O145:NM, O26:H11/H-, O111:NM/H-, and O157:H7 potentially placing these STEC into a related group.  相似文献   

4.
Enterohaemorrhagic Escherichia coli (EHEC) comprise a group of zoonotic diarrhoeal pathogens of worldwide importance. Cattle are a key reservoir; however the molecular mechanisms that promote persistent colonization of the bovine intestines by EHEC are ill-defined. The large plasmid of EHEC O157:H7 encodes several putative virulence factors. Here, it is reported that the pO157-encoded Type V-secreted serine protease EspP influences the intestinal colonization of calves. To dissect the basis of attenuation, a bovine primary rectal epithelial cell line was developed. Adherence of E. coli O157:H7 to such cells was significantly impaired by espP mutation but restored upon addition of highly purified exogenous EspP. Data of this study add to the growing body of evidence that cytotoxins facilitate intestinal colonization by EHEC.  相似文献   

5.
Shiga toxin (Stx)-producing Escherichia coli (STEC) strains are a diverse group of food-borne pathogens with various levels of virulence for humans. In this study, we describe the use of a combination of multiple real-time PCR assays for the screening of 400 raw-milk cheeses for the five main pathogenic STEC serotypes (O26:H11, O103:H2, O111:H8, O145:H28, and O157:H7). The prevalences of samples positive for stx, intimin-encoding gene (eae), and at least one of the five O group genetic markers were 29.8%, 37.3%, and 55.3%, respectively. The H2, H7, H8, H11, and H28 fliC alleles were highly prevalent and could not be used as reliable targets for screening. Combinations of stx, eae variants, and O genetic markers, which are typical of the five targeted STEC serotypes, were detected by real-time PCR in 6.5% of the cheeses (26 samples) and included stx-wzx(O26)-eae-β1 (4.8%; 19 samples), stx-wzx(O103)-eae-ε (1.3%; five samples), stx-ihp1(O145)-eae-γ1 (0.8%; three samples), and stx-rfbE(O157)-eae-γ1 (0.3%; one sample). Twenty-eight immunomagnetic separation (IMS) assays performed on samples positive for these combinations allowed the recovery of seven eaeβ1-positive STEC O26:H11 isolates, whereas no STEC O103:H2, O145:H28, or O157:H7 strains could be isolated. Three stx-negative and eaeβ1-positive E. coli O26:[H11] strains were also isolated from cheeses by IMS. Colony hybridization allowed us to recover STEC from stx-positive samples for 15 out of 45 assays performed, highlighting the difficulties encountered in STEC isolation from dairy products. The STEC O26:H11 isolates shared the same virulence genetic profile as enterohemorrhagic E. coli (EHEC) O26:H11, i.e., they carried the virulence-associated genes EHEC-hlyA, katP, and espP, as well as genomic O islands 71 and 122. Except for one strain, they all contained the stx1 variant only, which was reported to be less frequently associated with human cases than stx2. Pulsed-field gel electrophoresis (PFGE) analysis showed that they displayed high genetic diversity; none of them had patterns identical to those of human O26:H11 strains investigated here.  相似文献   

6.
Shiga toxin-producing Escherichia coli (STEC) has been associated with food-borne diseases ranging from uncomplicated diarrhea to hemolytic-uremic syndrome (HUS). While most outbreaks are associated with E. coli O157:H7, about half of the sporadic cases may be due to non-O157:H7 serotypes. To assess the pathogenicity of STEC isolated from dairy foods in France, 40 strains isolated from 1,130 raw-milk and cheese samples were compared with 15 STEC strains isolated from patients suffering from severe disease. The presence of genes encoding Shiga toxins (stx(1), stx(2), and variants), intimin (eae and variants), adhesins (bfp, efa1), enterohemolysin (ehxA), serine protease (espP), and catalase-peroxidase (katP) was determined by PCR and/or hybridization. Plasmid profiling, ribotyping, and pulsed-field gel electrophoresis (PFGE) were used to further compare the strains at the molecular level. A new stx(2) variant, stx(2-CH013), associated with an O91:H10 clinical isolate was identified. The presence of the stx(2), eae, and katP genes, together with a combination of several stx(2) variants, was clearly associated with human-pathogenic strains. In contrast, dairy food STEC strains were characterized by a predominance of stx(1), with a minority of isolates harboring eae, espP, and/or katP. These associations may help to differentiate less virulent STEC strains from those more likely to cause disease in humans. Only one dairy O5 isolate had a virulence gene panel identical to that of an HUS-associated strain. However, the ribotype and PFGE profiles were not identical. In conclusion, most STEC strains isolated from dairy products in France showed characteristics different from those of strains isolated from patients.  相似文献   

7.
Escherichia coli O157:H7 causes diarrhoea, haemorrhagic colitis, and the haemolytic uraemic syndrome. We have identified a protein of previously unknown function encoded on the pO157 virulence plasmid of E. coli O157:H7, which is the first described protease that specifically cleaves C1 esterase inhibitor (C1-INH), a member of the serine protease inhibitor family. The protein, named StcE for secreted protease of C1 esterase inhibitor from EHEC (formerly Tagn), cleaves C1-INH to produce (unique) approximately 60-65 kDa fragments. StcE does not digest other serine protease inhibitors, extracellular matrix proteins or universal protease targets. We also observed that StcE causes the aggregation of cultured human T cells but not macrophage-like cells or B cells. Substitution of aspartic acid for glutamic acid at StcE position 435 within the consensus metalloprotease active site ablates its abilities to digest C1-INH and to aggregate T cells. StcE is secreted by the etp type II secretion pathway encoded on pO157, and extracellular StcE levels are positively regulated by the LEE-encoded regulator, Ler. StcE antigen and activity were detected in the faeces of a child with an E. coli O157:H7 infection, demonstrating the expression of StcE during human disease. Cleavage of C1-INH by StcE could plausibly cause localized pro-inflammatory and coagulation responses resulting in tissue damage, intestinal oedema and thrombotic abnormalities.  相似文献   

8.
Environmental samples were taken from ground, cattle water troughs, and feeders from a dairy farm with different STEC prevalence between animal categories (weaning calves, rearing calves, and dairy cows). Overall, 23 % of samples were positive for stx genes, stx(2) being the most prevalent type. Isolates were analyzed by PCR monoplex to confirm generic E. coli and by two multiplex PCR to investigate the presence of stx(1), stx(2), eae, saa, ehxA, and other putative virulence genes encoded in STEC plasmids: katP, espP, subA, and stcE. The toxin genes were subtyped and the strains were serotyped. The ground and the environment of the rearing calves were the sites with the highest number of STEC-positive samples; however, cattle water troughs and the environment of cows were the places with the greater chance of finding stx(2EDL933) which is a subtype associated with serious disease in humans. Several non-O157 STEC serotypes were detected. The serotypes O8:H19; O26:H11; O26:H-; O118:H2; O141:H-; and O145:H- have been asociated with human illness. Furthermore, the emergent pathogen STEC O157:H- (stx(1)-ehxA-eae) was detected in the environment of the weaning calves. These results emphasize the risk that represents the environment as source of STEC, a potential pathogen for human and suggest the importance of developing control methods designed to prevent contaminations of food products and transmission from animal to person.  相似文献   

9.
We report the frequency of the different diarrheagenic Escherichia coli (DEC) categories isolated from children with acute endemic diarrhea in Salvador, Bahia. The E. coli isolates were investigated by colony blot hybridization with the following genes probes: eae, EAF, bfpA, Stx1, Stx2, ST-Ih, ST-Ip, LT-I, LT-II, INV, and EAEC, as virulence markers to distinguish typical and atypical EPEC, EHEC/STEC, ETEC, EIEC, and EAEC. Seven of the eight categories of DEC were detected. The most frequently isolated was atypical EPEC (10.1%) followed by ETEC (7.5%), and EAEC (4.2%). EHEC, STEC, EIEC, and typical EPEC were each detected once. The strains of ETEC, EAEC, and atypical EPEC belonged to a wide variety of serotypes. The serotypes of the others categories were O26:H11 (EHEC), O21:H21 (STEC), O142:H34 (typical EPEC), and O:H55 (EIEC). We also present the clinical manifestations and other pathogenic species observed in children with DEC. This is the first report of EHEC and STEC in Salvador, and one of the first in Brazil.  相似文献   

10.
AIMS: To quantify the slime polysaccharide, composed of colanic acid (CA), produced by enterohaemorrhagic and Shiga toxin-producing Escherichia coli (EHEC and STEC) and to determine the influence of culture conditions on CA production in E. coli O157:H7. METHODS AND RESULTS: The study examined the amounts of CA produced by EHEC and STEC, and evaluated the production of CA in E. coli O157:H7 as influenced by medium pH and incubation temperatures. The results indicated that the amounts of CA produced by EHEC and STEC vary to a great extent and CA production in E. coli O157:H7 is influenced by the tested culture conditions. CONCLUSIONS: The abilities of EHEC and STEC to produce CA differ. Medium pH and incubation temperature are among the important factors affecting CA production in E. coli O157:H7. SIGNIFICANCE AND IMPACT OF THE STUDY: Slime polysaccharide can affect the abilities of E. coli O157:H7 cells to combat environmental stress. This study contributes to a better understanding of the physiological factors influencing slime polysaccharide production in EHEC and STEC.  相似文献   

11.

Background

EspP (E. coli secreted serine protease, large plasmid encoded) is an extracellular serine protease produced by enterohemorrhagic E. coli (EHEC) O157:H7, a causative agent of diarrhea-associated Hemolytic Uremic Syndrome (D+HUS). The mechanism by which EHEC induces D+HUS has not been fully elucidated.

Objectives

We investigated the effects of EspP on clot formation and lysis in human blood.

Methods

Human whole blood and plasma were incubated with EspPWT at various concentrations and sampled at various time points. Thrombin time (TT), prothrombin time (PT), and activated partial thromboplastin time (aPTT), coagulation factor activities, and thrombelastgraphy (TEG) were measured.

Results and Conclusions

Human whole blood or plasma incubated with EspPWT was found to have prolonged PT, aPTT, and TT. Furthermore, human whole blood or plasma incubated with EspPWT had reduced activities of coagulation factors V, VII, VIII, and XII, as well as prothrombin. EspP did not alter the activities of coagulation factors IX, X, or XI. When analyzed by whole blood TEG, EspP decreased the maximum amplitude of the clot, and increased the clot lysis. Our results indicate that EspP alters hemostasis in vitro by decreasing the activities of coagulation factors V, VII, VIII, and XII, and of prothrombin, by reducing the clot strength and accelerating fibrinolysis, and provide further evidence of a functional role for this protease in the virulence of EHEC and the development of D+HUS.  相似文献   

12.
The main pathogenic enterohemorrhagic Escherichia coli (EHEC) strains are defined as Shiga toxin (Stx)-producing E. coli (STEC) belonging to one of the following serotypes: O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28. Each of these five serotypes is known to be associated with a specific subtype of the intimin-encoding gene (eae). The objective of this study was to evaluate the prevalence of bovine carriers of these “top five” STEC in the four adult cattle categories slaughtered in France. Fecal samples were collected from 1,318 cattle, including 291 young dairy bulls, 296 young beef bulls, 337 dairy cows, and 394 beef cows. A total of 96 E. coli isolates, including 33 top five STEC and 63 atypical enteropathogenic E. coli (aEPEC) isolates, with the same genetic characteristics as the top five STEC strains except that they lacked an stx gene, were recovered from these samples. O157:H7 was the most frequently isolated STEC serotype. The prevalence of top five STEC (all serotypes included) was 4.5% in young dairy bulls, 2.4% in young beef bulls, 1.8% in dairy cows, and 1.0% in beef cows. It was significantly higher in young dairy bulls (P < 0.05) than in the other 3 categories. The basis for these differences between categories remains to be elucidated. Moreover, simultaneous carriage of STEC O26:H11 and STEC O103:H2 was detected in one young dairy bull. Lastly, the prevalence of bovine carriers of the top five STEC, evaluated through a weighted arithmetic mean of the prevalence by categories, was estimated to 1.8% in slaughtered adult cattle in France.  相似文献   

13.
Molecular beacons (MBs) are oligonucleotide probes that fluoresce upon hybridization. In this paper, we described the development of a real-time PCR assay to detect the presence of Escherichia coli O157:H7 using these fluorogenic reporter molecules. MBs were designed to recognize a 26-bp region of the rfbE gene, coding for an enzyme necessary for O-antigen biosynthesis. The specificity of the MB-based PCR assay was evaluated using various enterohemorrhagic (EHEC) and Shiga-like toxin-producing (STEC) E. coli strains as well as bacteria species that cross-react with the O157 antisera. All E. coli serotype O157 tested was positively identified while all other species, including the closely related O55 were not detected by the assay. Positive detection of E. coli O157:H7 was demonstrated when >10(2) CFU/ml was present in the samples. The capability of the assay to detect E. coli O157:H7 in raw milk and apple juice was demonstrated. As few as 1 CFU/ml was detected after 6 h of enrichment. These assays could be carried out entirely in sealed PCR tubes, enabling rapid and semiautomated detection of E. coli O157:H7 in food and environmental samples.  相似文献   

14.
The sequence of two enterohaemorrhagic Escherichia coli (EHEC) O157:H7 strains reveals the possession of at least 16 fimbrial gene clusters, many of the chaperone/usher class. The first part of this study examined the distribution of these clusters in a selection of EHEC/EPEC (enteropathogenic E. coli) serotypes to determine if any were likely to be unique to E. coli O157:H7. Six of the clusters, as determined by the presence of amplified main subunit or usher gene sequences, were detected only in the E. coli O157 and O145 serotypes tested. With the exception of one serotype O103 strain that contained an lpf2 cluster, lpf sequences were only detected in E. coli O157 of the serotypes tested. Expression from each cluster was measured by the construction of chromosomally integrated lacZ promoter fusions and plasmid-based eGFP fusions in E. coli O157:H7. This analysis demonstrated that the majority (11/15) of main fimbrial subunit genes were not expressed under the majority of conditions tested in vitro. One of the clusters showing promoter activity, loc8, has a temperature expression optimum indicating a possible role outside the host. From the presence of pseudogenes in three of the clusters, the lack of FimH-like minor adhesins in the clusters and their limited expression in vitro, it would appear that E. coli O157:H7 has a limited repertoire of expressed functional fimbriae. This restricted selection of fimbriae may be important in bringing about the tropism E. coli O157:H7 demonstrates for the terminal rectum of cattle.  相似文献   

15.
Enterohemorrhagic Escherichia coli (EHEC) O157:H7, derived froman outbreak in Sakai city, Japan in 1996, possesses two kindsof plasmids: a 93-kb plasmid termed pO157, found in clinicalEHEC isolates world-wide and a 3.3-kb plasmid termed pOSAK1,prevalent in EHEC strains isolated in Japan. Complete nucleotidesequences of both plasmids have been determined, and the putativefunctions of the encoded proteins and the cis-acting DNA sequenceshave been analyzed. pO157 shares strikingly similar genes andDNA sequences with F-factor and the transmissible drug-resistantplasmid R100 for DNA replication, copy number control, plasmidsegregation, conjugative functions and stable maintenance inthe host, although it is defective in DNA transfer by conjugationdue to the truncation and deletion of the required genes andDNA sequences. In addition, it encodes several proteins implicatedin EHEC pathogenicity such as an EHEC hemolysin (HlyA), a catalase-peroxidase(KatP), a serine protease (EspP) and type II secretion system.pOSAK1 possesses a ColE1-like replication system, and the DNAsequence is extremely similar to that of a drug-resistant plasmid,NTP16, derived from Salmonella typhimurium except that it lacksdrug resistance transposons.  相似文献   

16.
Twenty Escherichia coli strains producing well-characterised colicins were tested for their inhibitory activity against five Shiga toxin-producing E. coli (STEC) strains using different media under aerobic and anaerobic conditions. The five STEC strains used were of serotype O26, O111, O128, O145 and O157:H7 which are frequently isolated serotypes associated with disease in humans. The main route of infection for humans is through the eating of badly cooked or handled beef. The major reservoir for STEC strains in cattle is the rumen. To mimic the situation in the rumen of cattle, overlay assays were also performed under anaerobic conditions in the presence of 30% rumen fluid. Colicins E1, E4, E8-J, K and S4 are most active against STEC strains under anaerobic conditions in the absence or presence of rumen fluid. These colicins will be used in future experiments with the aim to eradicate the presence of STEC in cattle.  相似文献   

17.
Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) cells were isolated from 191 fecal samples from cattle with gastrointestinal infections (diagnostic samples) collected in New South Wales, Australia. By using a multiplex PCR, E. coli cells possessing combinations of stx1, stx2, eae, and ehxA were detected by a combination of direct culture and enrichment in E. coli (EC) (modified) broth followed by plating on vancomycin-cefixime-cefsulodin blood (BVCC) agar for the presence of enterohemolytic colonies and on sorbitol MacConkey agar for the presence of non-sorbitol-fermenting colonies. The high prevalence of the intimin gene eae was a feature of the STEC (35 [29.2%] of 120 isolates) and contrasted with the low prevalence (9 [0.5%] of 1,692 fecal samples possessed STEC with eae) of this gene among STEC recovered during extensive sampling of feces from healthy slaughter-age cattle in Australia (M. Hornitzky, B. A. Vanselow, K. Walker, K. A. Bettelheim, B. Corney, P. Gill, G. Bailey, and S. P. Djordjevic, Appl. Environ. Microbiol. 68:6439-6445, 2002). Forty-seven STEC serotypes were identified, including O5:H-, O8:H19, O26:H-, O26:H11, O113:H21, O157:H7, O157:H- and Ont:H- which are known to cause severe disease in humans and 23 previously unreported STEC serotypes. Serotypes Ont:H- and O113:H21 represented the two most frequently isolated STEC isolates and were cultured from nine (4.7%) and seven (3.7%) animals, respectively. Fifteen eae-positive E. coli serotypes, considered to represent atypical EPEC, were identified, with O111:H- representing the most prevalent. Using both techniques, STEC cells were cultured from 69 (36.1%) samples and EPEC cells were cultured from 30 (15.7%) samples, including 9 (4.7%) samples which yielded both STEC and EPEC. Culture on BVCC agar following enrichment in EC (modified) broth was the most successful method for the isolation of STEC (24.1% of samples), and direct culture on BVCC agar was the most successful method for the isolation of EPEC (14.1% samples). These studies show that diarrheagenic calves and cattle represent important reservoirs of eae-positive E. coli.  相似文献   

18.
Enterohaemorrhagic Escherichia coli (EHEC) agar was evaluated for its ability to recover one isolate of each of three serotypes (O157:H7, O26 and O113:H21) of shiga toxin-producing E. coli (STEC) from raw mince, pasteurized milk and salami after enrichment. The method detected around one colony-forming unit (cfu) in 25 ml in milk, but was less sensitive with salami, requiring 10-1000 cfu 25 g-1 (depending on serotype) for detection. In raw minced beef any enterohaemolysin-producing colonies were outnumbered by other colonies and only one of 12 enrichments yielded the inoculum serotype. Additional tests were conducted on 15 retail meat products. One 25-g sample of each product was processed as purchased, while another was inoculated with 157-185 cfu of a cocktail of E. coli O157, O113 and O26 cultures. Recovery was easily achieved with cooked meat products and salami. Recovery from raw minced meat was again difficult, but sometimes possible. Testing more suspect colonies than were tested in this study would presumably increase the sensitivity of the method.  相似文献   

19.
20.
Two types of pathogenic Escherichia coli, enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC), cause diarrheal disease by disrupting the intestinal environment through the intimate attachment of the bacteria to the intestinal epithelium. This process is mediated by intimin, an outer membrane protein that is homologous to the invasins of pathogenic Yersinia. The intimin (eae) gene is part of a pathogenicity island, a 35-kb segment of DNA that has been acquired independently in different groups of pathogens. Nucleotide sequences of eae of three EPEC and four EHEC strains representing distinct clonal lineages revealed an exceptionally high level of divergence (15%) in the amino acid sequences of alpha, beta, and gamma intimin molecules, most of which is concentrated in the C-terminal region. The gamma intimin sequences from E. coli strains with serotypes O157:H7, O55:H7, and O157:H- are virtually identical, supporting the hypothesis that these bacteria belong to a single clonal lineage. Sequences of beta intimin of EPEC strains of serotypes O111:H2 and O128:H2 show substantial differences from alpha and gamma intimins, indicating that these strains have evolved independently. Strong nonrandom clustering of polymorphic sites indicates that the intimin genes are mosaics, suggesting that protein divergence has been accelerated by recombination and diversifying selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号