首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Heat shock resulted in rapid accumulation of large amounts of trehalose in Saccharomyces cerevisiae. In cultures growing exponentially on glucose, the trehalose content of the cells increased from 0.01 to 1 g/g of protein within 1 h after the incubation temperature was shifted from 27 to 40 degrees C. When the temperature was readjusted to 27 degrees C, the accumulated trehalose was rapidly degraded. In parallel, the activity of the trehalose-phosphate synthase, the key enzyme of trehalose biosynthesis, increased about sixfold during the heat shock and declined to the normal level after readjustment of the temperature. Surprisingly, the activity of neutral trehalase, the key enzyme of trehalose degradation, also increased about threefold during the heat shock and remained almost constant during recovery of the cells at 27 degrees C. In pulse-labeling experiments with [14C]glucose, trehalose was found to be turned over rapidly in heat-shocked cells, indicating that both anabolic and catabolic enzymes of trehalose metabolism were active in vivo. Possible functions of the heat-induced accumulation of trehalose and its rapid turnover in an apparently futile cycle during heat shock are discussed.  相似文献   

2.
When rat pancreatic islets were incubated in the presence of unlabelled D-glucose (16.7 mM) and 3HOH, the production of 3H-labelled material susceptible to be phosphorylated by yeast hexokinase and then detritiated by yeast phosphoglucoisomerase did not exceed 2.66 +/- 0.21 pmol/islet per 180 min, i.e. about 1% of the rate of exogenous D-[5-3H]glucose utilization. Such a material accounted for 43 +/- 4% of the total radioactivity, associated with tritiated hexose(s). It is proposed, therefore, that the futile cycling of D-glucose in the reactions catalyzed in the islet cells by the hexokinase isoenzymes and glucose-6-phosphatase represents a negligible fraction of the total rate of D-glucose phosphorylation.  相似文献   

3.
In Saccharomyces, the addition of glucose to cells grown in media lacking sugars causes irreversible inactivation of fructose bisphosphatase. One function of this process might be to prevent a futile cycle of formation and hydrolysis of fructose 1,6-bisphosphate. We tested such cycling by assessing the labeling of the 1-position of glucose in polysaccharides from [6-14C]glucose (J.P. Chambost and D. G. Fraenkel, J. Biol. Chem. 225:2867-2869, 1980) by using mutants impaired in glucose growth and known not to inactivate the phosphatase normally (i.e., the fdp mutant of Saccharomyces carlsbergensis [van de Poll et al., J. Bacteriol. 117:965-970, 1974] and the similar cif mutant of Saccharomyces cerevisiae [Navon et al., Biochemistry 18:4487-4499, 1979] ), as well as in the wild-type strain tested in the 1-h period before inactivation is complete. There was marginal, if any, cycling in any situation, and we conclude that the phosphatase activity is controlled by means other than inactivation or that the extent of cycling is too low to be significant, or both. For the fdp mutant data are also presented on growth, rate of glucose metabolism, metabolite accumulations, enzyme levels, and glucose transport, but the primary lesion is unknown.  相似文献   

4.
5.
The use of 6-labeled glucose to assess futile cycling in Escherichia coli   总被引:6,自引:0,他引:6  
To assess the "futile cycle" fructose-6-P leads to fructose-1,6-P2 leads to fructose-6-P in Escherichia coli we have grown the cells on [6-14C]glucose and determined label in the 1-position of glucose obtained from glycogen. In a variety of strains, including a wild type and a mutant without fructose diphosphatase, 1-position labeling was negligible. But there was little label in the 1-position of fructose-1,6-P2 either, which shows that hexose diphosphate and triose-P are not in equilibrium in this organism. Therefore, the lack of 1-position labeling in glycogen does not necessarily indicate lack of futile cycling. One strain, however, a temperature-sensitive glyceraldehyde-3-P dehydrogenase mutant grown at permissive temperature, gave substantial labeling of the 1-position of fructose-1,6-P2. In this strain 1-position labeling in glycogen was low, indicating minimal futile cycling.  相似文献   

6.
The physiological role of monocarboxylate transport in brownadipose tissue mitochondria has been reevaluated. We studied pyruvate,-ketoisovalerate, -ketoisocaproate, and phenylpyruvate uniportvia the uncoupling protein (UCP1) as a GDP-sensitive swelling inK+ salts induced by valinomycin orby monensin and carbonylcyanide-p-(trifluoromethoxy)phenylhydrazone in Na+ salts. We have demonstratedthat this uniport is inhibited by fatty acids. GDP inhibition inK+ salts was not abolished by anuncoupler, indicating a negligible monocarboxylic acid penetration viathe lipid bilayer. In contrast, the electroneutral pyruvate uptake(swelling in ammonium pyruvate or potassium pyruvate induced by changein pH) mediated by the pyruvate carrier was inhibited by its specificinhibitor -cyano-4-hydroxycinnamate but not by fatty acids.Moreover, -cyano-4-hydroxycinnamate enhanced the energization ofbrown adipose tissue mitochondria, which was monitored fluorometricallyby 2-(4-dimethylaminostyryl)-1-methylpyridinium iodide and safranin O. Consequently, we suggest that UCP1 might participate in futile cyclingof unipolar ketocarboxylates under certain physiological conditionswhile expelling these anions from the matrix. The cycle is completed ontheir return via the pyruvate carrier in anH+ symport mode.

  相似文献   

7.
8.
Using the short-lived radiotracer 42K+, we present a comprehensive subcellular flux analysis of low-affinity K+ transport in plants. We overturn the paradigm of cytosolic K+ pool-size homeostasis and demonstrate that low-affinity K+ transport is characterized by futile cycling of K+ at the plasma membrane. Using two methods of compartmental analysis in intact seedlings of barley (Hordeum vulgare L. cv Klondike), we present data for steady-state unidirectional influx, efflux, net flux, cytosolic pool size, and exchange kinetics, and show that, with increasing external [K+] ([K+]ext), both influx and efflux increase dramatically, and that the ratio of efflux to influx exceeds 70% at [K+]ext > or = 20 mm. Increasing [K+]ext, furthermore, leads to a shortening of the half-time for cytosolic K+ exchange, to values 2 to 3 times lower than are characteristic of high-affinity transport. Cytosolic K+ concentrations are shown to vary between 40 and 200 mm, depending on [K+]ext, on nitrogen treatment (NO3- or NH4+), and on the dominant mode of transport (high- or low-affinity transport), illustrating the dynamic nature of the cytosolic K+ pool, rather than its homeostatic maintenance. Based on measurements of trans-plasma membrane electrical potential, estimates of cytosolic K+ pool size, and the magnitude of unidirectional K+ fluxes, we describe efflux as the most energetically demanding of the cellular K+ fluxes that constitute low-affinity transport.  相似文献   

9.
10.
Y Tadano  K Yamada 《Histochemistry》1979,60(2):125-133
In the intercellular matrix of the granulosa layer of the mouse ovarian follicles, ultrastructural features of acidic complex carbohydrates have been studied by means of dialyzed iron (DI) staining in combination with procedures of digestion with Streptomyces and testicular hyaluronidases. In the intercellular matrix, DI reactive structures containing acidic complex carbohydrates consist of layers of a variable thickness coating the plasma membrane of the granulosa cells and reticular elements distributed in the spaces between the cells. The latter exists in two appearances; one is clumped masses of irregular shapes and different sizes, whereas the other being filamentous figures radiating from the masses. The effects of digestion with Streptomyces and testicular hyaluronidases upon the DI staining of the tissues indicate that the DI reactive structures in the intercellular matrix contain at least three types of acidic complex carbohydrates; hyaluronic acid, isomeric chondroitin sulfates and other acidic glycosaminoglycans. The histophysiological activities played by these particular complex carbohydrates have been briefly discussed.  相似文献   

11.
Arabidopsis expressing the castor bean (Ricinus communis) oleate 12-hydroxylase or the Crepis palaestina linoleate 12-epoxygenase in developing seeds typically accumulate low levels of ricinoleic acid and vernolic acid, respectively. We have examined the presence of a futile cycle of fatty acid degradation in developing seeds using the synthesis of polyhydroxyalkanoate (PHA) from the intermediates of the peroxisomal beta-oxidation cycle. Both the quantity and monomer composition of the PHA synthesized in transgenic plants expressing the 12-epoxygenase and 12-hydroxylase in developing seeds revealed the presence of a futile cycle of degradation of the corresponding unusual fatty acids, indicating a limitation in their stable integration into lipids. The expression profile of nearly 200 genes involved in fatty acid biosynthesis and degradation has been analyzed through microarray. No significant changes in gene expression have been detected as a consequence of the activity of the 12-epoxygenase or the 12-hydroxylase in developing siliques. Similar results have also been obtained for transgenic plants expressing the Cuphea lanceolata caproyl-acyl carrier protein thioesterase and accumulating high amounts of caproic acid. Only in developing siliques of the tag1 mutant, deficient in the accumulation of triacylglycerols and shown to have a substantial futile cycling of fatty acids toward beta-oxidation, have some changes in gene expression been detected, notably the induction of the isocitrate lyase gene. These results indicate that analysis of peroxisomal PHA is a better indicator of the flux of fatty acid through beta-oxidation than the expression profile of genes involved in lipid metabolism.  相似文献   

12.
Viruses play an important role in the ecology and biogeochemistry of marine ecosystems. Beyond mortality and gene transfer, viruses can reprogram microbial metabolism during infection by expressing auxiliary metabolic genes (AMGs) involved in photosynthesis, central carbon metabolism, and nutrient cycling. While previous studies have focused on AMG diversity in the sunlit and dark ocean, less is known about the role of viruses in shaping metabolic networks along redox gradients associated with marine oxygen minimum zones (OMZs). Here, we analyzed relatively quantitative viral metagenomic datasets that profiled the oxygen gradient across Eastern Tropical South Pacific (ETSP) OMZ waters, assessing whether OMZ viruses might impact nitrogen (N) cycling via AMGs. Identified viral genomes encoded six N-cycle AMGs associated with denitrification, nitrification, assimilatory nitrate reduction, and nitrite transport. The majority of these AMGs (80%) were identified in T4-like Myoviridae phages, predicted to infect Cyanobacteria and Proteobacteria, or in unclassified archaeal viruses predicted to infect Thaumarchaeota. Four AMGs were exclusive to anoxic waters and had distributions that paralleled homologous microbial genes. Together, these findings suggest viruses modulate N-cycling processes within the ETSP OMZ and may contribute to nitrogen loss throughout the global oceans thus providing a baseline for their inclusion in the ecosystem and geochemical models.Subject terms: Virus-host interactions, Biogeochemistry, Microbial biooceanography, Microbial ecology  相似文献   

13.
We investigated the carbon metabolism of three strains of Fibrobacter succinogenes and one strain of Fibrobacter intestinalis. The four strains produced the same amounts of the metabolites succinate, acetate, and formate in approximately the same ratio (3.7/1/0.3). The four strains similarly stored glycogen during all growth phases, and the glycogen-to-protein ratio was close to 0.6 during the exponential growth phase. 13C nuclear magnetic resonance (NMR) analysis of [1-13C]glucose utilization by resting cells of the four strains revealed a reversal of glycolysis at the triose phosphate level and the same metabolic pathways. Glycogen futile cycling was demonstrated by 13C NMR by following the simultaneous metabolism of labeled [13C]glycogen and exogenous unlabeled glucose. The isotopic dilutions of the CH2 of succinate and the CH3 of acetate when the resting cells were metabolizing [1-13C]glucose and unlabeled glycogen were precisely quantified by using 13C-filtered spin-echo difference 1H NMR spectroscopy. The measured isotopic dilutions were not the same for succinate and acetate; in the case of succinate, the dilutions reflected only the contribution of glycogen futile cycling, while in the case of acetate, another mechanism was also involved. Results obtained in complementary experiments are consistent with reversal of the succinate synthesis pathway. Our results indicated that for all of the strains, from 12 to 16% of the glucose entering the metabolic pathway originated from prestored glycogen. Although genetically diverse, the four Fibrobacter strains studied had very similar carbon metabolism characteristics.  相似文献   

14.
In addition to glutathione (GSH) conjugating activity, glutathione S-transferases (GSTs) catalyze "reverse" reactions, such as the hydrolysis of GSH thiol esters. Reverse reactions are of interest as potential tumor-directed pro-drug activation strategies and as mechanisms for tissue redistribution of carboxylate-containing drugs. However, the mechanism and specificity of GST-mediated GSH thiol ester hydrolysis are uncharacterized. Here, the GSH thiol esters of ethacrynic acid (E-SG) and several nonsteroidal antiinflammatory agents have been tested as substrates with human GSTs. The catalytic hydrolysis of these thiol esters appears to be a general property of GSTs. The hydrolysis of the thiol ester of E-SG was studied further with GSTA1-1 and GSTP1-1, as a model pro-drug with several possible fates for the hydrolysis products: competitive inhibition, covalent enzyme adduction, and sequential metabolism. In contrast to hydrolysis rates, significant isoform-dependent differences in the subsequent fate of the products ethacrynic acid and GSH were observed. At low [E-SG], only the GSTP1-1 efficiently catalyzed sequential metabolism, via a dissociative mechanism.  相似文献   

15.
16.
The effect of thyroid status on glucose recycling was measured in intact rats by comparing the fates of differently labeled [3H]- and [14C]glucose. Glucose recycling at the level of three-carbon compounds (i.e., Cori and glucose-alanine cycles) was measured by comparing the rates of turnover of [6-3H]- and [6-14C]glucose in the same animal. The rate of recycling increased (33–110%) in hyperthyroid rats and decreased (22–30%) in hypothyroid (thyroidectomized) rats. The relative importance of the Cori and glucose-alanine cycles was measured by analyzing the labeled glycolytic intermediates after the injection of labeled glucose; and by measuring the rate of glucose production from the infused labeled lactate and alanine. The results showed that the rate of the Cori cycle is much greater than the glucose-alanine cycle in rats. Substrate cycling at the level of glucokinase-glucose-6-phosphatase was measured by comparing the rates of turnover of [2-3H]- and [6-3H]glucose; and phosphofructokinase-fructose bisphosphatase was measured by comparing the rates of turnover of [3-3H]- and [6-3H]glucose. These cycles were also affected by thyroid states of the animals. The rate of the phosphofructokinase-fructose bisphosphatase cycle increased threefold in hyperthyroid rats and decreased by about half in hypothyroid rats. The glucokinase-glucose-6-phosphatase substrate cycle occurred at the rate of nearly 2 μmol/min/100 g body wt in the hyperthyroid, fasted rats; it was not detectable in hypo- or euthyroid rats. The contribution of the energy released by these cycles to thyroid thermogenesis was discussed. Effects of thyroid states on glucose metabolism in perfused muscles were also studied. There is an apparent shift in the source of energy for oxidation in the hyperthyroid rat. The ratio of lactate production to glucose uptake was significantly elevated in the hyperthyroid rats. This change predisposes for increased glucose recycling in hyperthyroid rats to avoid lactate accumulation and acidosis.  相似文献   

17.
18.
19.
Summary In the intercellular matrix of the granulosa layer of the mouse ovarian follicles, ultrastructural features of acidic complex carbohydrates have been studied by means of dialyzed iron (DI) staining in combination with procedures of digestion with Streptomyces and testicular hyaluronidases. In the intercellular matrix, DI reactive structures containing acidic complex carbohydrates consist of layers of a variable thickness coating the plasma membrane of the granulosa cells and reticular elements distributed in the spaces between the cells. The latter exists in two appearances; one is clumped masses of irregular shapes and different sizes, whereas the other being filamentous figures radiating from the masses. The effects of digestion with Streptomyces and testicular hyaluronidases upon the DI staining of the tissues indicate that the DI reactive structures in the intercellular matrix contain at least three types of acidic complex carbohydrates; hyaluronic acid, isomeric chondroitin sulfates and other acidic glycosaminoglycans. The histophysiological activities played by these particular complex carbohydrates have been briefly discussed.  相似文献   

20.

Aims

Rice is known as an ammonium (NH4 +)-tolerant species. Nevertheless, rice can suffer NH4 + toxicity, and excessive use of nitrogen (N) fertilizer has raised NH4 + in many paddy soils to levels that reduce vegetative biomass and yield. Examining whether thresholds of NH4 + toxicity in rice are related to nitrogen-use efficiency (NUE) is the aim of this study.

Methods

A high-NUE (Wuyunjing 23, W23) and a low-NUE (Guidan 4, GD) rice cultivar were cultivated hydroponically, and growth, root morphology, total N and NH4 + concentration, root oxygen consumption, and transmembrane NH4 + fluxes in the root meristem and elongation zones were determined.

Results

We show that W23 possesses greater capacity to resist NH4 + toxicity, while GD is more susceptible. We furthermore show that tissue NH4 + accumulation and futile NH4 + cycling across the root-cell plasma membrane, previously linked to inhibited plant development under elevated NH4 +, are more pronounced in GD. NH4 + efflux in the root elongation zone, measured by SIET, was nearly sevenfold greater in GD than in W23, and this was coupled to strongly stimulated root respiration. In both cultivars, root growth was affected more severely by high NH4 + than shoot growth. High NH4 + mainly inhibited the development of total root length and root area, while the formation of lateral roots was unaffected.

Conclusions

It is concluded that the larger degree of seedling growth inhibition in low- vs. high-NUE rice genotypes is associated with significantly enhanced NH4 + cycling and tissue accumulation in the elongation zone of the root.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号