首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding mode of azide to the ferric form of Aplysia limacina myoglobin has been studied by X-ray crystallography. The three-dimensional structure of the complex has been refined at 1.9 A resolution to a crystallographic R-factor of 13.9%, including 126 ordered solvent molecules. Azide binds to the heme iron, at the sixth co-ordination position, and is oriented towards the outer part of the distal site crevice. This orientation is stabilized by an ionic interaction with the side-chain of Arg66 (E10) which, from an outer orientation in the 'aquo-met' ligand-free myoglobin, folds back towards the distal site in the presence of the anionic ligand. In the absence of a hydrogen bond donor residue at the distal E7 position in Aplysia limacina myoglobin, a different polar residue, Arg66 at the E10 topological position, has been selected by molecular evolution in order to grant ligand stabilization.  相似文献   

2.
The x-ray crystal structure of the fluoride derivative of ferric sperm whale (Physeter catodon) myoglobin (Mb) has been determined at 2.5 A resolution (R = 0.187) by difference Fourier techniques. The fluoride anion, sitting in the central part of the heme distal site and coordinated to the heme iron, is hydrogen bonded to the distal His(64)E7 NE2 atom and to the W195 solvent water molecule. This water molecule also significantly interacts with the same HisE7 residue, which stabilizes the coordinated fluoride ion. Moreover, fluoride and formate binding to ferric Aplysia limacina Mb, sperm whale (Physeter catodon) Mb, horse (Caballus caballus) Mb, loggerhead sea turtle (Caretta caretta) Mb, and human hemoglobin has been investigated by 1H-NMR relaxometry. A strong solvent proton relaxation enhancement is observed for the fluoride derivatives of hemoproteins containing HisE7. Conversely, only a small outer-sphere contribution to the solvent relaxation rate has been observed for all of the formate derivatives considered and for the A. limacina Mb:fluoride derivative, where HisE7 is replaced by Val.  相似文献   

3.
The reaction of cyanide metmyoglobin with dithionite conforms to a two-step sequential mechanism with formation of an unstable intermediate, identified as cyanide bound ferrous myoglobin. This reaction was investigated by stopped-flow time resolved spectroscopy using different myoglobins, i.e. those from horse heart, Aplysia limacina buccal muscle, and three recombinant derivatives of sperm whale skeletal muscle myoglobin (Mb) (the wild type and two mutants). The myoglobins from horse and sperm whale (wild type) have in the distal position (E7) a histidyl residue, which is missing in A. limacina Mb as well as the two sperm whale mutants (E7 His----Gly and E7 His----Val). All these proteins in the reduced form display an extremely low affinity for cyanide at pH less than 10. The differences in spectroscopy and kinetics of the ferrous cyanide complex of these myoglobins indicate a role of the distal pocket on the properties of the complex. The two mutants of sperm whale Mb are characterized by a rate constant for the decay of the unstable intermediate much faster than that of the wild type, at all pH values explored. Therefore, we envisage a specific role of the distal His (E7) in controlling the rate of cyanide dissociation and also find that this effect depends on the protonation of a single ionizable group, with pK = 7.2, attributed to the E7 imidazole ring. The results on A. limacina Mb, which displays the slowest rate of cyanide dissociation, suggests that a considerable stabilizing effect can be exerted by Arg E10 which, according to Bolognesi et al. (Bolognesi, M., Coda, A., Frigerio, F., Gatti, C., Ascenzi, P., and Brunori, M. (1990) J. Mol. Biol. 213, 621-625), interacts inside the pocket with fluoride bound to the ferric heme iron. A mechanism of control for the rate of dissociation of cyanide from ferrous myoglobin, involving protonation of the bound anion, is discussed.  相似文献   

4.
Aplysia limacina myoglobin lacks the distal histidine (His (E7)) and displays a ligand stabilization mechanism based on Arg(E10). The double mutant Val(E7)His-Arg(E10)Thr has been prepared to engineer the role of His(E7), typical of mammalian myoglobins, in a different globin framework. The 2.0 A crystal structure of Val(E7)His-Arg(E10)Thr met-Mb mutant reveals that the His(E7) side chain points out of the distal pocket, providing an explanation for the observed failure to stabilize the Fe(II) bound oxygen in the ferrous myoglobin. Moreover, spectroscopic analysis together with kinetic data on azide binding to met-myoglobin are reported and discussed in terms of the presence of a water molecule at coordination distance from the heme iron.  相似文献   

5.
Aplysia limacina myoglobin. Crystallographic analysis at 1.6 A resolution   总被引:4,自引:0,他引:4  
The crystal structure of the ferric form of myoglobin from the mollusc Aplysia limacina has been refined at 1.6 A resolution, by restrained crystallographic refinement methods. The crystallographic R-factor is 0.19. The tertiary structure of the molecule conforms to the common globin fold, consisting of eight alpha-helices. The N-terminal helix A and helix G deviate significantly from linearity. The distal residue is recognized as Val63 (E7), which, however, does not contact the heme directly. Moreover the sixth (distal) co-ordination position of heme iron is not occupied by a water molecule at neutrality, i.e. below the acid-alkaline transition point of A. limacina myoglobin. The heme group sits in its crevice in the conventional orientation and no signs of heme isomerism are evident. The iron atom is 0.26 A out of the porphyrin plane, with a mean Fe-N (porphyrin) distance of 2.01 A. The co-ordination bond to the proximal histidine has a length of 2.05 A, and forms an angle of 4 degrees with the heme normal. A plane containing the imidazole ring of the proximal His intersects the heme at an angle of 29 degrees with the (porphyrin) 4N-2N direction. Inspection of the structure of pH 9.0 indicates that a hydroxyl ion is bound to the Fe sixth co-ordination position.  相似文献   

6.
The sea hare Aplysia limacina possesses a myoglobin in which a distal H-bond is provided by Arg E10 rather than the common His E7. Solution (1)H NMR studies of the cyanomet complexes of true wild-type (WT), recombinant wild-type (rWT), and the V(E7)H/R(E10)T and V(E7)H mutants of Aplysia Mb designed to mimic the mammalian Mb heme pocket reveal that the distal His in the mutants is rotated out of the heme pocket and is unable to provide a stabilizing H-bond to bound ligand and that WT and rWT differ both in the thermodynamics of heme orientational disorder and in heme contact shift pattern. The mean of the four heme methyl shifts is shown to serve as a sensitive indicator of variations in distal H-bonding among a set of mutant cyanomet globins. The heme pocket perturbations in rWT relative to WT were traced to the absence of the N-terminal acetyl group in rWT that participates in an H-bond to the EF corner in WT. Analysis of dipolar contacts between heme and axial His and between heme and the protein matrix reveal a small approximately 2 degrees rotation of the axial His in rWT relative to true WT and a approximately 3 degrees rotation of the heme in the double mutant relative to rWT Mb. It is demonstrated that both the direction and magnitude of the rotation of the axial His relative to the heme can be determined from the change in the pattern of the contact-dominated heme methyl shift and from the dipolar-dominated heme meso-H shift. However, only NOE data can determine whether it is the His or heme that actually rotates in the protein matrix.  相似文献   

7.
In heme peroxidases, a distal His residue plays an essential role in the initial two electron oxidation of resting state enzyme to compound I by hydrogen peroxide. A distal Arg residue assists in this process. The contributions of the charge, H-bonding capacity, size, and mobility of this Arg residue to Coprinus cinereus peroxidase (CIP) reactivity and stability have been examined by substituting Arg51 with Gln (retains H-bond donor at N epsilon position), Asn (small size, H-bond donor and acceptor), Leu (similar to Asn, but hydrophobic), and Lys (charge and H-bond donor, but at N zeta position). UV-visible spectroscopy was used to monitor pH-linked heme changes, compound I formation and reduction, fluoride binding, and thermostability. (1)H NMR spectroscopy enabled heme pocket differences in both resting and cyanide-ligated states of the enzymes to be evaluated and compared with wild-type CIP. We found that the H-bonding capacity of distal Arg is key to fast compound I formation and ligand binding to heme, whereas charge is important for lowering the pK(a) of distal His and for the binding and stabilisation of anionic ligands at heme iron. The properties of the distal Arg residue in CIP, cytochrome c peroxidase (CCP) and horseradish peroxidase (HRP) differ significantly in their pH induced transitions and dynamics.  相似文献   

8.
A combined one-dimensional nuclear Overhauser effect, paramagnetic-induced relaxation and two-dimensional sequence-specific 1H n.m.r. assignment of the spectrum of portions of the distal pocket of Aplysia cyano metMyoglobin (metMbCN) has been carried out in order to establish the presence and identity of distal residues in the heme pocket. In the absence of the usual distal E7 His in Aplysia Mb (E7 Val), the sequence-specific assignment of the E7 and E10 residues, together with their hyperfine shift patterns, relaxivities and dipolar connectivities to each other and the remainder of the E helix, reveal that the E10 Arg is turned into the pocket and hydrogen bonds to the bound cyanide group. We have previously found a similar rearrangement of the E10 Arg in Aplysia fluoro metMyoglobin, and the stabilizing effect of this residue was proposed to be responsible for the slow rate of cyanide dissociation from rapidly reduced ferrous Aplysia myoglobin. Based on the similar distal E7 His hydrogen-bonding interaction to the bound ligand in the crystal of sperm whale MbO2 and in solution of its cyano met complex, we propose that the E10 Arg similarly hydrogen bonds to the bound O2 in Aplysia MbO2 and accounts for its strong ligand binding and slow dissociation rate.  相似文献   

9.
Association and dissociation rate constants were measured for O2, CO, and alkyl isocyanide binding to a set of genetically engineered sperm whale myoglobins with site-specific mutations at residue 64 (the E7 helical position). Native His was replaced by Gly, Val, Leu, Met, Phe, Gln, Arg, and Asp using the synthetic gene and expression system developed by Springer and Sligar (Springer, B. A., and Sligar, S. G. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 8961-8965). The His64----Gly substitution produced a sterically unhindered myoglobin that exhibited ligand binding parameters similar to those of chelated protoheme suspended in soap micelles. The order of the association rate constants for isocyanide binding to the mutant myoglobins was Gly64 (approximately 10(7) M-1 s-1) much greater than Val64 approximately Leu64 (approximately 10(6) M-1 s-1) greater than Met64 greater than Phe64 approximately His64 approximately Gln64 (10(5)-10(3) M-1 s-1) and indicates that the barrier to isocyanide entry into the distal pocket is primarily steric in nature. The bimolecular rates of methyl, ethyl, n-propyl, and n-butyl isocyanide binding to the His64----Arg and His64----Asp mutants were abnormally high (1-5 x 10(6) M-1 s-1), suggesting that Arg64 and Asp64 adopt conformations with the charged side chains pointing out toward the solvent creating a less hindered pathway for ligand binding. In contrast to the isocyanide data, the association rate constants for O2 and CO binding exhibited little dependence on the size of the E7 side chain. The values for all the mutants except His64----Gln approached or were larger than those for chelated model heme (i.e. approximately 1 x 10(8) M-1 s-1 for O2 and approximately 1 x 10(7) M-1 s-1 for CO), whereas the corresponding rate parameters for myoglobin containing either Gln64 or His64 were 5- to 10-fold smaller. This result suggests that a major kinetic barrier for O2 and CO binding to native myoglobin may involve disruption of polar interactions between His64 and water molecules found in the distal pocket of deoxymyoglobin. Finally, the rate and equilibrium parameters for O2 and CO binding to the His64----Gln, His64----Val, and His64----Leu mutants were compared to those reported previously for Asian elephant myoglobin (Gln-E7), Aplysia limacina myoglobin (Val-E7), and monomeric Hb II from Glycera dibranchiata (Leu-E7).  相似文献   

10.
The effect of pH on the enthalpy changes for binding of azide and fluoride to ferric myoglobin from Aplysia limacina, which lacks the distal histidine, has been investigated. Over the whole pH range explored (3.8 to 9.5), -delta H degrees values for the formation of the hemoprotein-ligand complexes are: (1) much greater than the variations in -delta G degrees; (2) always negative; and (3) show a dependence upon pH characterized by a maximum for azide and a minimum for fluoride binding, centered at pH 4.55 (identical to pHch). This value agrees well with that expected from the linear correlation between pHch and the simple function "Lys+Arg-Glu-Asp-2" proposed by Beetlestone and others. Data reported here greatly extend the pH range for which the linear correlation between the net charge of the macromolecule and pHch has been found to hold, and indicate unequivocally that the pH dependence of -delta H degree for the binding of anionic ligands does not uniquely require the presence of the histidyl residue at the distal position.  相似文献   

11.
The time course of ligand recombination to the myoglobin from Aplysia limacina, which has Val(E7), was measured following photolysis by flashes of 35 ps to 300 ns with a time resolution of 10 ps or 1 ns. CO shows only biomolecular recombination. O2 has a small geminate reaction with a half-time of tens of picoseconds, but no nanosecond geminate reaction. NO has two picosecond relaxations with half-times of 70 ps (15%) and 1 ns (80%) and one nanosecond relaxation with a half-time of 4.6 ns. The biomolecular rates for O2 and NO are the same: 2 x 10(7) M-1 s-1. Methyl and ethyl isonitriles have a geminate reaction with a half-time of 35 ps. Ethyl isonitrile has, in addition, a nanosecond relaxation (25%) with a half-time of 100 ns. t-Butyl isonitrile has four geminate relaxations (10 ps, 35 ps, 1 ns, and 1 microseconds). Analysis of the results suggests much easier movement of ligand between the heme pocket and the exterior than in sperm whale myoglobin (His(E7]. The reactivity of the heme is little different, placing the effect of the differences from sperm whale myoglobin on the distal side of the heme.  相似文献   

12.
Asn and Gln with an amide group at gamma- and delta-positions, respectively, were substituted for distal His-E7 of bovine myoglobin to establish a system where hydrogen bonding interaction between the distal residue and bound-ligand can be altered by changing donor-acceptor distance. Two mutant myoglobins showed nearly identical (1)H-NMR spectral pattern for resolved heme peripheral side-chain and amino acid proton signals and similar two-dimensional NMR connectivities irrespective of cyanide-bound and -unbound states, indicating that the heme electronic structure and the molecular structure of the active site are not affected by a difference in one methylene group at the E7 position. Chemical exchange rate of Asn-E7 N(delta)H proton in met-cyano myoglobin is larger than that of Gln-E7 N(epsilon)H proton by at least two orders of magnitude, suggesting a considerable difference in the strength of hydrogen bond between the E7 side-chain and bound-ligand, due to the differential donor-acceptor distance between the two mutants. Thus a comparative study between the two proteins provides an ideal system to delineate a relationship between the stabilization of bound-ligand by the hydrogen bond and myoglobin's ligand affinity. The Asn-mutant showed a faster dissociation of cyano ion from met-myoglobin than the Gln-mutant by over 30-fold. Similarly, oxygen dissociation is faster in the Asn-mutant than in the Gln-mutant by approximately 100-fold. Association of cyanide anion to the mutant met-myoglobin was accelerated by changing Gln to Asn by a 4-fold. Likewise, oxygen binding was accelerated by approximately 2-fold by the above substitution. The present findings confirm that hydrogen bonding with the distal residue is a dominant factor for determining the ligand dissociation rate, whereas steric hindrance exerted by the distal residue is a primary determinant for the ligand association.  相似文献   

13.
Fluoride complexes of heme proteins are characterized by unique spectroscopic properties, that provide a simple and direct means to monitor the interactions of the distal heme pocket environment with the iron-bound ligand. In particular, a strong correlation has been demonstrated between the wavelength of the iron-porphyrin charge transfer band at 600-620 nm (CT1) and the strength of H-bonding donation from the distal amino acid side chains to the fluoride ion. In parallel, resonance Raman spectra with excitation within either the CT1 band or the charge transfer band at 450-460 nm (CT2) have revealed that the iron-fluoride stretching frequency is directly affected by H-bonding to the fluoride ion. On this basis, globins and peroxidases display distinct spectroscopic features, which are strongly dependent on the capability of their distal residues (i.e. histidine, arginine and tryptophan) to be involved in H-bonding with the ligand. In particular, in peroxidases strong H-bonding corresponds to a low iron-fluoride stretching frequency and to a red-shifted CT1 band. The reverse is observed in myoglobin. Interestingly, a truncated hemoglobin of microbial origin (Thermobifida fusca) investigated in the present work, displays the specific spectroscopic signature of a peroxidase, in agreement with the presence of strong H-bonding residues, i.e., tyrosine and tryptophan, within the distal pocket.  相似文献   

14.
Recombinant human myoglobin mutants with the distal histidine residue replaced by Leu, Val, or Gln residues have been prepared by site-directed mutagenesis and expression in Escherichia coli. The recombinant apomyoglobin proteins have been successfully reconstituted with cobaltous protoporphyrin IX to obtain cobalt myoglobin mutant proteins, and the role of the distal histidine residue on the interaction between the bound ligand and the myoglobin molecule has been studied by EPR spectroscopy. We found that the distal histidine residue is significant in the orientation of the bound oxygen molecule. Low temperature photolysis experiments on both oxy cobalt proteins and ferric nitric oxide complexes indicated that the nature of the photolyzed form depends on the steric crowding of the distal heme pocket. To our surprise, the distal Leu mutant has a less restricted, less sterically crowded distal heme pocket than that of the distal Val mutant myoglobin, despite the fact that Leu has a larger side chain volume than Val. Our results demonstrate that the distal heme pocket steric crowding is not necessarily related to the side chain volume of the E7 residue.  相似文献   

15.
The ferric high-spin form of the myoglobin from the shark Galeorhinus japonicus, which possesses a Gln residue at the distal site instead of the usual His residue, has been studied by 1H-NMR spectroscopy. Using the heme meso-proton (C5H, C10H, C15H and C20H) resonance shift as a diagnostic probe for identifying the coordination system of the iron center in ferric high-spin form of hemoprotein, it has been shown that G. japonicus metmyoglobin (metMb) possesses the pentacoordinated active site. The pH-dependence study of NMR spectra of G. japonicus metMb revealed the appearance of the hydroxyl form of metMb at high pH, indicating that the protein undergoes the transition between the acidic and alkaline forms. The pK value and the rate for this acid-alkaline transition in G. japonicus metMb were found to be approximately 10 and much less than 4 x 10(2) s-1, respectively. Since the pK value of the acid-alkaline transition for the pentacoordinated heme in Aplysia limacina metMb is 7.8 [Giacometti, G.M., Das Ros, A., Antonini, E. & Brunori, M. (1975) Biochemistry 14, 1584-1588] and that of the hexacoordinated heme in sperm whale metMb is 9.1 [Brunori, M., Antonini, E., Fasella, P., Wyman, J. & Rossi-Fanelli, A. (1968) J. Mol. Biol. 34, 497-504], the OH- affinity of the ferric heme iron does not appear to depend on its coordination system. The acid-alkaline transition rate in A. limacina metMb was reported to be much less than 1.5 x 10(2) s-1 [Pande, U., La Mar, G.N., Lecomte, J.T.J., Ascoli, F., Brunori, M., Smith, K.M., Pandey, R.K., Parish, D.W. & Thanabal, V. (1986) Biochemistry 25, 5638-5646] and therefore a slow transition rate may be unique to the pentacoordinated active site of Mb.  相似文献   

16.
L P Yu  G N La Mar  H Mizukami 《Biochemistry》1990,29(10):2578-2585
Two-dimensional 1H NMR methods have been used to assign side-chain resonances for the residues in the distal heme pocket of elephant carbonmonoxymyoglobin (MbCO) and oxymyoglobin (MbO2). It is shown that, while the other residues in the heme pocket are minimally perturbed, the Phe CD4 residue in elephant MbCO and MbO2 resonates considerably upfield compared to the corresponding residue in sperm whale MbCO. The new NOE connectivities to Val E11 and heme-induced ring current calculations indicate that Phe CD4 has been inserted into the distal heme pocket by reorienting the aromatic side chain and moving the CD corner closer to the heme. The C zeta H proton of the Phe CD4 was found to move toward the iron of the heme by approximately 4 A relative to the position of sperm whale MbCO, requiring minimally a 3-A movement of the CD helical backbone. The significantly altered distal conformation in elephant myoglobin, rather than the single distal E7 substitution, forms a plausible basis for its altered functional properties of lower autoxidation rate, higher redox potential, and increased affinity for CO ligand. These results demonstrate that one-to-one interpretation of amino acid residue substitution (E7 His----Gln) is oversimplified and that conformational changes of substituted proteins which are not readily predicted have to be considered for interpretation of their functional properties.  相似文献   

17.
Sequence-specific 2D methodology has been used to assign the 1H NMR signals for all active site residues in the paramagnetic cyano-met complexes of sperm whale synthetic double mutant His64[E7]-->Val/Thr67[E10]-->Arg (VR-met-MbCN) and triple mutant His64[E7]-->Val/Thr67[E10]-->Arg/Arg45[CD3]-->Asn (VRN-metMbCN). The resulting dipolar shifts for noncoordinated proximal side residues were used to quantitatively determine the orientation of the paramagnetic susceptibility tensor in the molecular framework for the two mutants, which were found indistinguishable but distinct from those of both wild-type and the His64[E7]-->Val single point mutant (V-metMbCN). The observed dipolar shifts for the E helix backbone protons and Phe43[CD1], together with steady-state nuclear Overhauser effect between the E helix and the heme, were analyzed to show that both the E helix and Phe43[CD1] move slightly closer to the iron to minimize the vacancy resulting from the His64[E7]-->Val substitution, as found in V-metMbCN (Rajarathnam, K., J. Qin, G.N. LaMar, M. L. Chiu, and S. G. Sligar. 1993. Biochemistry. 32:5670-5680). The dipolar shifts of the mutated Val64[E7] and Arg67[E10] allow the determination of their orientations relative to the heme, and the latter residue is shown to insert into the pocket and provide a hydrogen bond to the coordinated ligand, as found in the naturally occurring ValE7/ArgE10 genetic variant, Aplysia limacina Mb. The oxy-complex of both A. limacina Mb and VR-Mb, VRN-Mb have been proposed to be stabilized by this hydrogen bonding interaction (Travaglini Allocatelli, C. et al. 1993. Biochemistry. 32:6041-6049). The magnitude of the tilt of the major magnetic axes from the heme normal in VR-metMbCN and VRN-metMbCN, which is related to the tilt of the ligand, is the same as in wild-type or V-metMbCN, but the direction of tilt is altered from that in V-metMbCN. It is concluded that the change in the direction of the ligand tilt in both the double and triple mutants, as compared to WT metMbCN and V-metMbCN single mutant, is due to the attractive hydrogen-bonding between ArgE10 and the bound cyanide.  相似文献   

18.
We have used resonance Raman spectroscopy to study 11 distal pocket mutants and the "wild type" and native ferric sperm whale myoglobin. The characteristic Raman core-size markers v4, v3, v2, and v10 are utilized to assign the spin and coordination state of each sample. It is demonstrated that replacements of the distal and proximal histidines can discriminate against H2O as a sixth ligand and favor a pentacoordinate Fe3+ atom. Soret absorption band blueshifts are correlated with the pentacoordinate heme environment. One E7 replacement (Arg) leads to an iron spin state change and produces a low spin species. The Glu and Ala mutations at position E11 leave the protein's spin and coordination unaltered. A laser-induced photoreduction effect is observed in all pentacoordinate mutants and seems to be correlated with the loss of the heme-bound water molecule.  相似文献   

19.
The X-ray crystal structure of the ferric sperm whale (Physeter catodon) myoglobin:imidazole complex has been refined at 2.0 A resolution, to a final R-factor of 14.8%. The overall conformation of the protein is little affected by binding of the ligand. Imidazole is co-ordinated to the heme iron at the distal site, and forces distinguishable local changes in the surrounding protein residues. His64(E7) swings out of the distal pocket and becomes substantially exposed to the solvent: nevertheless, it stabilizes the exogenous ligand by hydrogen bonding. The side-chains of residues Arg45(CD3) and Asp60(E3) are also affected by imidazole association.  相似文献   

20.
The kinetics of methyl-, ethyl-, iso-propyl-, and ter-butyl-isocyanide binding to Aplysia limacina myoglobin (distal His----Lys) and the isolated beta chains from hemoglobin Zurich (distal His----Arg) have been investigated by flash photolysis at various temperatures above 0 degrees C. Sperm whale (Physter catodon) myoglobin and the isolated beta chains from normal adult hemoglobin have been used as references. In most reaction systems investigated the apparent extent of photolysis increases with temperature. For sperm whale myoglobin and the normal beta chains the increase is of the same magnitude and not correlated to the type of ligand used. On the contrary, for the two proteins lacking the distal histidine, the phenomenon is dependent on the size of the alkyl side chain of the ligand. The results, analyzed on the basis of the multibarrier model (Austin, R.H., K.W. Beeson, L. Eisenstein, H. Frauenfelder, and I.C. Gunsalus, 1975, Biochemistry, 16:5355-5373), suggest that the partition of the ligand molecules between the solvent and the heme pocket, occurring during the photolysis process, is primarily determined by interactions between the ligand and residues in the heme cavity rather than by diffusion through the protein matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号