首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of eugenol (1-2000 microM) on rat isolated ileum were studied. Eugenol relaxed the basal tonus (IC50 83 microM) and the ileum precontracted with 60 mM KCl (IC50 162 microM), an action unaltered by 0.5 microM tetrodotoxin, 0.2 mM N(G)-nitro-L-arginine methyl ester, 0.5 mM hexamethonium, and 1 microM indomethacin. Eugenol did not alter the resting transmembrane potential (Em) of the longitudinal muscle layer under normal conditions (5.0 mM K+) or in depolarised tissues. Eugenol reversibly inhibited contractions induced by submaximal concentrations of acetylcholine (ACh) and K+ (40 mM) with IC50 values of approximately 228 and 237 microM, respectively. Eugenol blocked the component of ACh-induced contraction obtained in Ca(2+)-free solution (0.2 mM EGTA) or in the presence of nifedipine (1 microM). Our results suggest that eugenol induces relaxation of rat ileum by a direct action on smooth muscle via a mechanism largely independent of alterations of Em and extracellular Ca2+ influx.  相似文献   

2.
High-affinity binding sites for mono[125I]iodoapamin were detected in membranes (Kd = 59 pM, Bmax = 24 fmol/mg protein) and cultured cells (Kd = 69 pM, Bmax = 2.8 fmol/mg protein) from rat heart and in membranes from guinea-pig ileum (Kd = 67 pM, Bmax 42 fmol/mg protein) and liver (Kd = 15 pM, Bmax = 43 fmol/mg protein). Binding was stimulated by K+ ions (K0.5 = 0.3-0.5 mM). Covalent labeling with arylazide [125I]iodoapamin derivatives showed that smooth muscle, liver and heart binding molecules are associated with a 85-87-kDa polypeptide. A second strongly labeled 57-kDa component was identified in liver membranes only.  相似文献   

3.
Purified adrenomedullary plasma membranes contain two high-affinity binding sites for 125I-omega-conotoxin, with KD values of 7.4 and 364 pM and Bmax values of 237 and 1,222 fmol/mg of protein, respectively. Dissociation kinetics showed a biphasic component and a high stability of the toxin-receptor complex, with a t1/2 of 81.6 h for the slow dissociation component. Unlabeled omega-conotoxin inhibited the binding of the radioiodinated toxin, adjusting to a two-site model with Ki1 of 6.8 and Ki2 of 653 pM. Specific binding was not affected by Ca2+ channel blockers or activators, cholinoceptor antagonists, adrenoceptor blockers, Na+ channel activators, dopaminoceptor blockers, or Na+/H+ antiport blockers, but divalent cations (Ca2+, Sr2+, and Ba2+) inhibited the toxin binding in a concentration-dependent manner. The binding of the dihydropyridine [3H]nitrendipine defined a single specific binding site with a KD of 490 pM and a Bmax of 129 fmol/mg of protein. At 0.25 microM, omega-conotoxin was not able to block depolarization-evoked Ca2+ uptake into cultured bovine adrenal chromaffin cells depolarized with 59 mM K+ for 30 s, whereas under the same conditions, 1 microM nitrendipine inhibited uptake by approximately 60%. When cells were hyperpolarized with 1.2 mM K+ for 5 min and then Ca2+ uptake was subsequently measured during additions of 59 mM K+. Omega-conotoxin partially inhibited Ca2+ uptake in a concentration-dependent manner. These results suggest that two different types of Ca2+ channels might be present in chromaffin cells. However, the molecular identity of omega-conotoxin binding sites remains to be determined.  相似文献   

4.
Yu Q  Ji R  Gao X  Fu J  Guo W  Song X  Zhao X  Burnstock G  Shi X  He C  Xiang Z 《Cell and tissue research》2011,344(2):227-237
Single- and double-immunostaining techniques were used systematically to study the distribution pattern and neurochemical density of oxytocin-immunoreactive (-ir) neurons in the digestive tract of the guinea pig. Oxytocin immunoreactivity was distributed widely in the guinea pig gastrointestinal tract; 3%, 13%, 17%, 15%, and 10% of ganglion neurons were immunoreactive for oxytocin in the myenteric plexuses of the gastric corpus, jejunum, ileum, proximal colon, and distal colon, respectively, and 36%, 40%, 52%, and 56% of ganglion neurons were immunoreactive for oxytocin in the submucosal plexuses of the jejunum, ileum, proximal colon, and distal colon, respectively. In the myenteric plexus, oxytocin was expressed exclusively in the intrinsic enteric afferent neurons, as identified by calbindin 28 K. In the submucosal plexuses, oxytocin was expressed in non-cholinergic secretomotor neurons, as identified by vasoactive intestinal polypeptide. Oxytocin-ir nerve fibers in the inner circular muscle layer possibly arose from the myenteric oxytocin-ir neurons, and oxytocin-ir nerve fibers in the mucosa possibly arose from both the myenteric and submucosal oxytocin-ir neurons. Thus, oxytocin in the digestive tract might be involved in gastrointestinal tract motility mainly via the regulation of the inner circular muscle and the balance of the absorption and secretion of water and electrolytes.  相似文献   

5.
In rodents, the intestinal tract progressively acquires a functional regionalization during postnatal development. Using lactase-phlorizin hydrolase as a marker, we have analyzed in a xenograft model the ontogenic potencies of fetal rat intestinal segments taken prior to endoderm cytodifferentiation. Segments from the presumptive proximal jejunum and distal ileum grafted in nude mice developed correct spatial and temporal patterns of lactase protein and mRNA expression, which reproduced the normal pre- and post-weaning conditions. Segments from the fetal colon showed a faint lactase immunostaining 8-10 d after transplantation in chick embryos but not in mice; it is consistent with the transient expression of this enzyme in the colon of rat neonates. Heterotopic cross-associations comprising endoderm and mesenchyme from the presumptive proximal jejunum and distal ileum developed as xenografts in nude mice, and they exhibited lactase mRNA and protein expression patterns that were typical of the origin of the endodermal moiety. Endoderm from the distal ileum also expressed a normal lactase pattern when it was associated to fetal skin fibroblasts, while the fibroblasts differentiated into muscle layers containing alpha-smooth- muscle actin. Noteworthy, associations comprising colon endoderm and small intestinal mesenchyme showed a typical small intestinal morphology and expressed the digestive enzyme sucrase-isomaltase normally absent in the colon. However, in heterologous associations comprising lung or stomach endoderm and small intestinal mesenchyme, the epithelial compartment expressed markers in accordance to their tissue of origin but neither intestinal lactase nor sucrase-isomaltase. A thick intestinal muscle coat in which cells expressed alpha-smooth- muscle actin surrounded the grafts. The results demonstrate that: (a) the temporal and positional information needed for intestinal ontogeny up to the post-weaning stage results from an intrinsic program that is fixed in mammalian fetuses prior to endoderm cytodifferentiation; (b) this temporal and positional information is primarily carried by the endodermal moiety which is also able to change the fate of heterologous mesodermal cells to form intestinal mesenchyme; and (c) the small intestinal mesenchyme in turn may deliver instructive information as shown in association with colonic endoderm; yet this effect is not obvious with nonintestinal endoderms.  相似文献   

6.
Rat intestinal UDPgalactose: N-acetylglucosaminyl(beta 1----4)galactosyltransferase activity was studied as to its intestinal and villus-to-crypt distribution, and then purified and characterized. Rapid UDPgalactose hydrolysis was noted in the duodenum and jejunum; little to no breakdown was detected in the distal ileum, cecum and proximal colon. Product analysis suggested that UDPgalactose hydrolysis was due to nucleotide-sugar pyrophosphatase and galactose-1-phosphate phosphatase activities; ileum appeared to have little of the first activity and none of the latter. An aboral gradient of galactosyltransferase activity was noted, activity being 3-4-fold higher in the ileum, cecum and proximal colon. Total homogenate exogenous acceptor galactosyltransferase activities showed no villus-crypt differences but activity measured with intact isolated cells demonstrated higher activity with crypt cells; this was particularly evident in the ileum. Galactosyltransferase activity was purified from ileal-colonic mucosa. An over 4000-fold purification with 75 percent yield was achieved. Only one band of approx. 70-75 kDa was noted on sodium dodecyl sulfate polyacrylamide electrophoresis. As with other eukaryotic galactosyltransferase activities, there was an absolute requirement for Mn2+; the concentration required for half maximal activity was only 2.5 microM and higher concentrations did not inhibit. The Km for UDPgalactose was 30 microM.  相似文献   

7.
We have previously shown that the proximal sequences of the human aldolase A fast-muscle-specific promoter (pM) are sufficient to target the expression of a linked CAT reporter gene to all fast, glycolytic trunk and limb muscles of transgenic mice (pM310CAT lines) in a manner mimicking the activity of the endogenous mouse promoter. When a NF1-binding site (motif M2) in this proximal regulatory region is mutated, the activity of the corresponding mM2 transgene is strongly affected but only in a some fast muscles. Here we show that the mutation of the M2 motif has only mild effects on pM activity in axial and proximal limb, while it drastically reduces this activity in both fore and hind limb distal muscles. At the cellular level, we show that both the pM310CAT and mM2 transgenes are highly expressed in fast glycolytic 2B fibers. However, by contrast to the pM310CAT transgene, whose expression is mainly restricted to fast glycolytic 2B fibers, the mM2 transgene is also active in a high proportion of 2X fibers. This result suggests that the M2 sequence could play a role in restricting the expression of pM to the 2B fibers. The variable expression of the mM2 transgene along the limb axis already exists at post-natal day 10 and seems to result from a change in the proportion of expressing fast fibers per muscle. Altogether, these results suggest that, although considered as phenotypically similar, different populations of fast glycolytic fibers exist, in which the requirement of the NF1 activity for pM expression varies according to the proximal versus distal position of the muscle along the limb axis.  相似文献   

8.
1. Formation of inositol phosphates (InsPs) was measured in cross-chopped slices or dispersed cells, isolated by collagenase treatment, of guinea-pig ileum longitudinal smooth muscle pre-labelled with [3H]inositol. 2. Elevation of the extracellular K+ concentration by equimolar replacement of Na+ induced accumulation of InsPs in the dispersed cells and in the tissue slices. These effects were blocked by neither tetrodotoxin (1 microM) nor atropine (10 microM), and were approximately additive with carbachol-induced accumulation. 3. In the tissue slices, the response to K+ was partially inhibited by nifedipine (10 microM) and by CdCl2 (0.3 mM), but the carbachol-induced response was not altered. 4. Accumulation of InsPs induced by KCl-excess solution (high-K+ solution without Na+ replacement) was suppressed strongly by nifedipine and completely by CdCl2. The response to KCl excess was approx. 40% of that to high K+ with Na+ replacement. 5. Low-NaCl solution (replacement of NaCl with equimolar sucrose) also produced InsPs, and this was not blocked by either nifedipine (10 microM) or CdCl2 (0.3 mM). 6. The formation of InsPs by a maximally effective concentration of carbachol (1 mM) in the presence of KCl excess or low NaCl was greater than the additive effect of the two stimuli on their own. Enhancement of the carbachol-induced response by KCl excess disappeared in the presence of CdCl2 (0.3 mM). 7. These data suggest that formation of InsPs induced by high-K+ solution with equimolar replacement of Na+ consists of two components, i.e. high-K+-induced inositol-phospholipid hydrolysis by Ca2+ entry through voltage-sensitive channels, and low-Na+-induced formation of InsPs, insensitive to Ca2+ antagonists, but that both of them do not contribute significantly to the activation of phospholipase C by muscarinic stimuli.  相似文献   

9.
NPPB (5-nitro-2-(3-phenylpropylamino)benzoic acid) has been reported to block Cl- channels in isolated rabbit nephrons with high potency (IC50 = 80 nM). The effects of this compound on Cl(-)-mediated transport processes in intestinal tissues have been studied using agonist-stimulated short-circuit current (T84) in Ussing chamber experiments and 36Cl- fluxes in monolayers of a colonic cell line (T84). NPPB inhibited PGE1-stimulated Isc in rabbit distal colon and ileum at concentrations in the range 20 to 100 microM. However, NPPB at the same concentrations also inhibited glucose-stimulated Isc in rabbit ileum, suggesting that its effects were not restricted to those on Cl- transport. Consistent with this, exposure of rabbit distal colon to 100 microM NPPB was found to reduce endogenous ATP levels by 69%, implying that, at these concentrations, NPPB could impair active transport processes by an effect on cellular energy metabolism. Clear evidence for a direct effect of NPPB on epithelial chloride channels was found in studies on Cl- fluxes in T84 cell monolayers. NPPB inhibited VIP-stimulated Cl- uptake into T84 cells with an IC50 of 414 microM. NPPB (1 mM) also inhibited Cl- efflux from pre-loaded cells confirming its effect as a weak Cl- channel blocker in this system.  相似文献   

10.
11.
R E Rawson  G E Duke  D R Brown 《Peptides》1990,11(4):641-645
Mammalian neurotensin, originally isolated from bovine hypothalamus, differs from avian neurotensin (aNT) by 6 amino acid residues. Bovine neurotensin has been shown to affect motility of chicken crop and rectum and secretion of chicken ileum, but there have been no studies of the effects of aNT on avian intestinal function. This study was designed to characterize the effects of aNT on the motility of the chicken lower gut. Strain gauge transducers were used in vivo to measure contractions of chicken distal ileum, cecum, and distal colon in response to 30-min infusions of aNT at rates of 15, 30, 60 or 600 pmol.kg-1.min-1. In vitro experiments were conducted using segments of distal ileum, cecum or distal colon, stripped of mucosa, cut in either the longitudinal or circular plane, and suspended isometrically in isolated organ tissue baths at a resting tension of 1 g. Avian neurotensin, substance P (SP), or carbamylcholine (CCH) were administered to the bath and the tension generated by each tissue was recorded via a force transducer. A relaxation of chicken ileum was observed in response to aNT infusion in vivo. Except for stimulation of excretation, colon and cecum were not affected by aNT infusion. Both aNT and SP stimulated motility of chicken ileum and cecum in vitro. SP had no consistent effect on colon and aNT only increased contractile force of colon circular muscle. It was concluded that both aNT and SP may have a role in the regulation of lower gut motility in avian species.  相似文献   

12.
R D Rothstein  A Ouyang 《Life sciences》1989,45(16):1475-1482
Neurotensin, a neuropeptide identified in the distal small intestine, plays an unclear role in ileocecal sphincter regional function. The purpose of this study was to determine the effect and mechanism of action of neurotensin on the feline ileocecal sphincter (ICS), proximal colon, and distal ileum. Intraluminal pressures were recorded at these sites in anesthetized cats after superior mesenteric artery injection of neurotensin. Dose dependent tonic and phasic contractions were seen at all sites. Peak pressure responses were seen at the maximal dose used and were greater for the ICS than the distal ileum and the proximal colon. The threshold dose for peak pressures for neurotensin was 0.05 microgram/kg for all sites with the maximal peak pressures occurring at the maximal dose used (100 micrograms/kg). The motility index (MI [number of contractions x mean amplitude of contractions]) was determined for three minutes before and after neurotensin injection. The change in the motility index after neurotensin increased at doses above 0.05 micrograms/kg for the ileum and the ICS and 0.25 microgram/kg for the colon. Maximal responses for the motility index were seen at 1 microgram/kg for the distal ileum, and 10 micrograms/kg for the ICS and the proximal colon, with the greatest response seen at the ICS. Neurotensin-induced ICS relaxation was seen at 1 microgram/kg (50 +/- 10%, p less than 0.01) in 33% of cats. The contractile responses of the distal ileum and the proximal colon were not inhibited by naloxone, trimethaphan, tetrodotoxin, or atropine. The ICS contractile response was decreased by tetrodotoxin by 53%, p less than 0.05. The alpha 2 antagonist, yohimbine reduced the neurotensin induced ICS contraction from 31.6 +/- 3.4 to 21.9 +/- 3.3 mm Hg, p less than 0.05. Prazosin had no effect on neurotensin-induced contractions. In the presence of cimetidine and diphenhydramine, trimethaphan did not affect the neurotensin-induced contractile response at all three sites. However, neurotensin inhibited contractions induced by trimethaphan alone at all three sites. Conclusions: 1. Neurotensin causes a dose-dependent contractile response at the distal ileum, ICS, and proximal colon. 2. Neurotensin has an inhibitory effect at all three sites. 3. The contractile response at the distal ileum and the proximal colon is mediated via smooth muscle receptors. 4. The contractile response of neurotensin at the ICS is mediated partly via alpha 2 receptors and partly via smooth muscle receptors.  相似文献   

13.
The preparation and purification of an active monoiodo derivative of apamin is described. Radiolabeled monoiodoapamin (2000 Ci/mmol) binds specifically to rat brain synaptosomes at 0 degrees C and pH 7.5 with a second order rate constant of association (ka = 2.6 x 10(7) M-1 s-1) and a first order rate constant of dissociation (kd = 3.8 x 10(-4) s-1). The maximal binding capacity is 12.5 fmol/mg of protein and the dissociation constant is 15-25 pM for the monoiodo derivative and 10 pM for the native toxin. The apamin receptor is destroyed by proteases suggesting that it is of a proteic nature. Neurotensin and its COOH-terminal partial sequences are the only molecules unrelated to apamin that are able to displace monoiodoapamin from its receptor at low concentrations. Half-displacement occurs at 170 nM neurotensin. This property is due to the presence in the COOH-terminal sequence of neurotensin of two contiguous arginine residues, a structure analogous to that of the apamin active site. The binding of monoiodoapamin to its receptor is sensitive to cations. Increasing K+ or Rb+ concentrations from 10 microM to 5 mM selectively enhances the binding by a factor of 1.8. Increasing the concentration of any cation from 1 to 100 mM completely inhibits iodoapamin binding. Both effects are due to a cation-induced modulation of the affinity of monoidoapamin for its receptor without any change of the maximal toxin binding capacity of synaptosomes. Guanidinium and molecules containing a guanidinium group are better inhibitors of iodoapamin binding than other inorganic cations or positively charged organic molecules.  相似文献   

14.
Although aquaporins (AQPs) play important roles in transcellular water movement, their precise quantification and localization remains controversial. We investigated expression levels and localizations of AQP3 and AQP8 and their possible functions in the rat digestive system using real-time polymerase chain reactions, western blot analysis and immunohistochemistry. We investigated the expression levels and localizations of AQP3 and AQP8 in esophagus, forestomach, glandular stomach, duodenum, jejunum, ileum, proximal and distal colon, and liver. AQP3 was expressed in the basolateral membranes of stratified epithelia (esophagus and forestomach) and simple columnar epithelia (glandular stomach, ileum, and proximal and distal colon). Expression was particularly abundant in the esophagus, and proximal and distal colon. AQP8 was found in the subapical compartment of columnar epithelial cells of the jejunum, ileum, proximal colon and liver; the most intense staining occurred in the jejunum. Our results suggest that AQP3 and AQP8 play significant roles in intestinal function and/or fluid homeostasis and may be an important subject for future investigation of disorders that involve disruption of intestinal fluid homeostasis, such as inflammatory bowel disease and irritable bowel syndrome.  相似文献   

15.
Apamin, a specific blocker of one class of Ca(2+)-activated K+ channes, was used to detect the apamin receptors associated with K+ channels in the mucosa of the rat jejunum and colon. Two receptor sites for 125I-apamin have been identified. These sites differed in their affinity for apamin (jejunum: KD1 = 1.1 nM and KD2 = 170 nM; colon: KD1 = 0.5 nM and KD2 = 1.1 nM and KD2 = 140 nM) and the maximum number of sites (jejunum: B(max1) = 111 and B(max2) = 4030; colon: B(max1) = 187 and B(max2) = 7550 fmol/mg of protein). 125I-apamin binding was stimulated by K+ ions with K0.5 = 1.0 mM and inhibited by the neuromuscular blocker tubocurarine (KI = 50 microM). We interpret these data to demonstrate that the high-affinity, low-capacity binding sites reflect the existence of apamin-sensitive K+ channels in the intestinal mucosa.  相似文献   

16.
We developed an in vitro organ bath method to measure permeability and contractility simultaneously in murine intestinal segments. To investigate whether permeability and contractility are correlated and influenced by mucosal damage owing to inflammation, BALB/c mice were exposed to a 10% dextran sulphate sodium (DSS) solution for 8 days to induce colitis. The effect of pharmacologically induced smooth muscle relaxation and contraction on permeability was tested in vitro. Regional permeability differences were observed in both control and 10% DSS-treated mice. Distal colon segments were less permeable to 3H-mannitol and 14C-PEG 400 molecules compared with proximal colon and ileum. Intestinal permeability in control vs. 10% DSS mice was not altered, although histologic inflammation score and IFN-gamma pro-inflammatory cytokine levels were significantly increased in proximal and distal colon. IL-1beta levels were enhanced in these proximal and distal segments, but not significantly different from controls. Any effect of pharmacologically induced contractility on intestinal permeability could not be observed. In conclusion, intestinal permeability and contractility are not correlated in this model of experimentally induced colitis in mice. Although simultaneous measurement in a physiological set-up is possible, this method has to be further validated.  相似文献   

17.
Short chain fatty acids (SCFA) prevent and reverse cyclic 3',5'-adenosine monophosphate (cAMP) but not Ca(2+)-mediated Cl- secretion. Mucosal [HCO3-]i has an opposite effect on these secretagogues. We examined whether SCFA and [HCO3-]i affect cyclic 3',5'-guanosine monophosphate (cGMP)-induced secretion. Stripped segments of male Sprague-Dawley rat (Rattus norvegicus) proximal and distal colon, and cultured T84 cells were studied in Using chambers, and pHi and [HCO3-]i were determined. Mucosal [cGMP] was measured in proximal colon. In T84 cells, the increase in Cl- secretion (measured as Isc) induced by mucosal 0.25 microM Escherichia coli heat-stable enterotoxin (STa) was prevented/reversed by bilateral 50 mM Na+ butyrate (71%/73%), acetate (58%/76%), propionate (68%/73%) and (poorly metabolized) isobutyrate (80%/79%). In proximal colon in HCO3- Ringer, basal Cl- secretion was not affected by [HCO3-]i or 25 mM butyrate. Mucosal 0.25 microM STa decreased net Na+ and Cl- absorption. Bilateral but not mucosal 25 mM SCFA reversed STa-induced effects on Na+ absorption and Cl- secretion. Bilateral and mucosal 25 mM SCFA but not [HCO3-]i prevented STa-induced Cl- secretion and increases in mucosal [cGMP]. STa did not produce Cl- secretion in distal colon. It was concluded that SCFA but not [HCO3-]i can prevent and reverse cGMP-induced colonic Cl- secretion.  相似文献   

18.
To further investigate the intracellular mechanisms involved in IL-8-induced human mixed peripheral blood lymphocyte (PBL) migration, the effects of pertussis toxin (PTX), cholera toxin (CTX), and protein kinase C (pkC) inhibitors were investigated. Potent inhibition of IL-8-induced PBL migration was observed following exposure of PBL to PTX and CTX (1 pM to 0.1 microM), 8-bromo cyclic adenosine monophosphate (cAMP; 1 nM to 1 microM), H7 (1 pM to 0.1 microM), sphingosine (0.1 microM to 100 microM) and the novel pkC inhibitors Ro 31-7549 and Ro 31-8220 (10 pM to 1 microM) for 10 min. Following incubation of the lymphocytes for 30 min in the presence of the direct activators of pkC, 1-oleoyl-2-acetyl-sn-glycerol (OAG) and 1,2-dioctanoyl-sn-glycerol (DOG; 10nM to 100 microM), there was a reversal of the effects of a suboptimal dose of the specific pkC inhibitors Ro 31-7549 and Ro 31-8220. These results suggest that intracellular signals transduced during IL-8-induced in vitro PBL migration may involve pertussis and cholera toxin-sensitive G protein subunits and activation of pkC, processes which are characteristically linked to receptor binding.  相似文献   

19.
Vitellogenic oocytes of Dysdercus intermedius (Heteroptera: Pyrrhocoridae) were treated with the proton ionophore monensin in order to load the ooplasm with protons along the electrochemical gradient. Additionally, changes in the ooplasmic pH (DeltapH(OOC)) were recorded during exposure the oocytes to potassium-free medium (K(+)(MED)=0mM; choline for K(+)) or sodium-free medium (Na(+)(MED)=0mM; 40mM of choline for 40mM of Na(+)). The following observations were made: 1) The average ooplasmic pH (pH(OOC)) recorded during immersion in physiological saline solution (PSS) was pH(OOC(PSS))=7.40. 2) K(+)(MED) had no effect on pH(OOC) (pH(OOC(K-FREE)) congruent with pH(OOC(PSS))). 3) In sodium-free medium the pH(OOC) decreased by H(+) influx in the magnitude of DeltapH(OOC(Na-FREE))=pH(OOC(Na-FREE))-pH(OOC(PSS))=-0.05 pH units. 4) The decreased pH(OOC) observed in sodium-free medium returned to initial values (7.40) by pumping out H(+) when 40mM of choline were replaced by 40mM of Na(+). 5) Addition of monensin (10&mgr;M; under the condition of Na(+)(MED)=0mM) reduced pH(OOC) in the magnitude of DeltapH(OOC(MON))=pH(OOC(MON))-pH(OOC(PSS))=-0.14. 6) Monensin induced ooplasmic proton loading was reversible when 40mM choline were replaced by 40mM Na(+).VITELLOGENESIS WAS DEMONSTRATED BY THE ACCUMULATION OF FLUORESCENCE LABELLED HEMOLYMPH PROTEINS IN YOLK SPHERES IN THE CORTEX OF THE OOCYTE: 1) Yolk formation continued in potassium-free medium. 2) The formation of yolk spheres came to a halt in sodium-free medium and, additionally, in the presence of monensin (10&mgr;M; Na(+)(MED)=0mM). 3) Breaks in yolk formation under the condition of Na(+)(MED)=0mM or during monensin treatment were stopped by replacing 40mM of choline with 40mM of Na(+). The results obtained using proton-specific microelectrodes and the in vitro assay to detect the formation of yolk spheres indicate that both the ooplasmic pH regulation and the acidification of vesicles during vitellogenesis are under control of a H(+)/Na(+) antiporter.  相似文献   

20.
An adaptation of the Sols and Ponz method for the study of glucose intestinal absorption was developed by considering the special conditions of our line research. The glucose absorption was studied in proximal jejunum, distal ileum and distal colon in Wistar rat. The main adaptations in the method for successive absorptions with intestinal perfusions in vivo were the length of the intestinal segment and the change of the pumping system. The results are very similar to those obtained with the original method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号