首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Factor VIIIa is a heterotrimer of the factor VIII heavy chain-derived A1 and A2 subunits plus the factor VIII light chain-derived A3-C1-C2 subunit. While the A1 and A3-C1-C2 subunits can be isolated as a stable dimer, the A2 subunit is weakly associated with the dimer. In the human protein, the association of A2 with dimer is reversible and governed by a pH-dependent dissociation constant. Using the specific activity of factor VIIIa as an indicator of trimer concentration, the Kd (pH 6.0) was determined to be 28 nM whereas at the more physiologic pH (pH 7.4) this value was approximately 260 nM. Results from pH shift experiments confirmed the reversible binding of A2 to dimer as did the capacity for high levels of exogenous A2 subunit to inhibit the spontaneous decay of factor VIIIa activity. A2 subunit associated with the A1 subunit in the A1/A3-C1-C2 dimer based upon the capacity for free A1 subunit to inhibit the reconstitution of factor VIIIa from A2 subunit and dimer. These results indicate that the primary mechanism for the spontaneous decay of human factor VIIIa is the reversible dissociation of A2 subunit from the A1 subunit of the A1/A3-C1-C2 dimer.  相似文献   

2.
Heterodimeric human factor VIII was proteolytically activated by catalytic levels of thrombin to yield the (labile) active cofactor factor VIIIa possessing an initial specific activity of approximately 80 units/microgram. Activation paralleled the generation of fragments A1 and A2 derived from the heavy chain and A3-C1-C2 derived from the light chain. Chromatography of factor VIIIa, on Mono-S buffered at pH 6.0 resulted in separation of the bulk of the A2 fragment from a fraction composed predominantly of A1/A3-C1-C2 dimer plus low levels of A2 fragment. Only the latter fraction contained clotting activity (approximately 20 units/microgram) which was stable and represented a less than 10% yield when compared with the peak activity of unfractionated factor VIIIa. Further depletion of A2 fragment from Mono-S-purified factor VIIIA, achieved using an immobilized monoclonal antibody to the A2 domain, yielded a relatively inactive A1/A3-C1-C2 dimer (less than 0.4 unit/microgram). Factor VIIIa (greater than 40 units/microgram) was reconstituted from the A1/A3-C1-C2 dimer plus the A2 fragment in a reaction that was Me(2+)-independent and inhibited by moderate ionic strength. Reassociation of A2 required the A1 subunit in that the A2 subunit associated weakly if at all to A3-C1-C2 in the absence of A1. These results indicated that human factor VIIIa is a trimer represented by the subunits A1/A2/A3-C1-C2 and that the A2 subunit is required for expression of factor VIIIa activity.  相似文献   

3.
Factor VIIIa can be reconstituted from A2 subunit and A1/A3-C1-C2 dimer in a reaction that is facilitated by slightly acidic pH. We recently demonstrated that a truncated A1 (A1(37-336)) possessed markedly reduced affinity for A2 compared with intact A1, but retained 30% of native factor VIIIa activity in the presence of A3-C1-C2. We now identify A1-interactive regions for A2 using A1 fragments derived from a limited tryptic digest. Unfractionated trypsin-cleaved A1 inhibited reconstituted factor VIIIa activity. Two fragments, designated A1(37-121) and A1(221-336), markedly inhibited factor VIIIa reconstitution with either native A1 (K(i)=340 and 194 nM, respectively) or with A1(37-336) (K(i)=69 and 116 nM, respectively) at pH 6.0. A third fragment designated A1(122-206) did not possess inhibitory activity. At pH 7.2, the A1(221-336) partially inhibited reconstitution, whereas the A1(37-121) possessed little if any inhibitory activity. Both fragments inhibited factor VIIIa reconstitution as judged by fluorescence energy transfer using acrylodan-labeled A2 and fluorescein-labeled A1 forms at pH 6.0. Furthermore, covalent cross-linking between A2 and A1(37-121) but not A1(221-336) was observed following reaction with a zero-length cross-linker. These findings demonstrate the presence of an extended, pH-dependent A2-interactive surface within regions 37-121 and 221-336 of A1. This interactive surface appears conformationally labile in the truncated A1 as judged by its apparent stabilization following association with A3-C1-C2.  相似文献   

4.
Factor VIIIa, a cofactor for the protease factor IXa, is a trimer of A1, A2 and A3-C1-C2 subunits. In the absence of phospholipid (PL), the k(cat) for factor VIIIa-dependent, factor IXa-catalyzed conversion of factor X was markedly less than that observed in the presence of PL (approx. 150 min(-1)) and decreased as the ionic strength of the reaction increased. At low salt concentration, the k(cat) (5.5 min(-1)) was approx. 8-fold greater than observed at near physiologic ionic strength (0.7 min(-1)). However, this level of salt showed minimal effects on the intermolecular affinities of factor VIIIa (or isolated A2 subunit) for factor IXa or on the K(m) for factor X. Alternatively, the association of A2 subunit with A1 subunit was sensitive to increases in salt and paralleled the reduction in k(cat) observed with factor VIIIa. This instability was not observed in PL-containing reactions. Fluorescence energy transfer between acrylodan-A2 and fluorescein-A1/A3-C1-C2 dimer showed a requirement for both PL and factor IXa for maximal association of A2 with dimer. These results indicate that in the presence of factor IXa, the salt-dependent dissociation of factor VIIIa subunits is significantly enhanced in the absence of PL, promoting a reduced k(cat) for the cofactor-dependent generation of factor Xa.  相似文献   

5.
Factor VIIIa consists of three subunits designated A1, A2, and A3-C1-C2. The isolated A2 subunit possesses limited cofactor activity in stimulating factor IXa-catalyzed activation of factor X. This activity is markedly enhanced by the A1 subunit (inter-subunit K(d) = 1.8 microm). The C-terminal region of A1 subunit (residues 337-372) is thought to represent an A2-interactive site. This region appears critical to factor VIIIa, because proteolysis at Arg(336) by activated protein C or factor IXa is inactivating. A truncated A1 (A1(336)) showed similar affinity for A2 subunit (K(d) = 0.9 microm) and stimulated its cofactor activity to approximately 50% that observed for native A1. However, A1(336) was unable to reconstitute factor VIIIa activity in the presence of A2 and A3-C1-C2 subunits. Fluorescence anisotropy of fluorescein (Fl)-FFR-factor IXa was differentially altered by factor VIIIa trimers containing either A1 or A1(336). Fluorescence energy transfer demonstrated that, although Fl-A1(336)/A3-C1-C2 bound acrylodan-A2 with similar affinity as the native dimer, an increased inter-fluorophore separation was observed. These results indicate that the C-terminal region of A1 appears necessary to properly orient A2 subunit relative to factor IXa in the cofactor rather than directly stimulate A2 and elucidate the mechanism for cofactor inactivation following cleavage at this site.  相似文献   

6.
Factor VIIIa, the protein cofactor for factor IXa, is comprised of A1, A2, and A3-C1-C2 subunits. Recently, we showed that isolated A2 subunit enhanced the kcat for factor IXa-catalyzed activation of factor X by approximately 100-fold ( approximately 1 min-1), whereas isolated A1 or A3-C1-C2 subunits showed no effect on this rate (Fay, P. J., and Koshibu, K. J. (1998) J. Biol. Chem. 273, 19049-19054). However, A1 subunit increased the A2-dependent stimulation by approximately 10-fold. The Km for factor X in the presence of A2 subunit was unaffected by A1 subunit, whereas the kcat observed in the presence of saturating A1 and A2 subunits ( approximately 15 min-1) represented 5-10% of the value observed for native factor VIIIa (approximately 200 min-1). An anti-A1 subunit antibody that blocks the association of A2 eliminated the A1-dependent contribution to factor IXa activity. Inclusion of both A1 and A2 subunits resulted in greater increases in the fluorescence anisotropy of fluorescein-Phe-Phe-Arg factor IXa than that observed for A2 subunit alone and approached values obtained with factor VIIIa. These results indicate that A1 subunit alters the A2 subunit-dependent modulation of the active site of factor IXa to synergistically increase cofactor activity, yielding an overall increase in kcat of over 1000-fold compared with factor IXa alone.  相似文献   

7.
Factor VIIIa consists of subunits designated A1, A2, and A3-C1-C2. The limited cofactor activity observed with the isolated A2 subunit is markedly enhanced by the A1 subunit. A truncated A1 (A1(336)) was previously shown to possess similar affinity for A2 and retain approximately 60% of its A2 stimulatory activity. We now identify a second site in A1 at Lys(36) that is cleaved by factor Xa. A1 truncated at both cleavage sites (A1(37-336)) showed little if any affinity for A2 (K(d)>2 microm), whereas factor VIIIa reconstituted with A2 plus A1(37-336)/A3-C1-C2 dimer demonstrated significant cofactor activity ( approximately 30% that of factor VIIIa reconstituted with native A1) in a factor Xa generation assay. These affinity values were consistent with values obtained by fluorescence energy transfer using acrylodan-labeled A2 and fluorescein-labeled A1. In contrast, factor VIIIa reconstituted with A1(37-336) showed little activity in a one-stage clotting assay. This resulted in part from a 5-fold increase in K(m) for factor X when A1 was cleaved at Arg(336). These findings suggest that both A1 termini are necessary for functional interaction of A1 with A2. Furthermore, the C terminus of A1 contributes to the K(m) for factor X binding to factor Xase, and this parameter is critical for activity assessed in plasma-based assays.  相似文献   

8.
Factor VIIIa is a trimer of the A1, A2, and A3-C1-C2 subunits. Regions in the A2 subunit that interact with the A1/A3-C1-C2 dimer were localized using synthetic peptides derived from A2 sequences showing high probability of being surface exposed. Peptides were restricted to residues 373-562 of A2 based on the earlier observation that this region of A2 reacts with A1 using a zero length cross-linker. Peptides were assessed for their capacity to inhibit the reconstitution of factor VIIIa from the isolated A1/A3-C1-C2 dimer and A2 subunit. Reconstitution was monitored using both regeneration of factor VIIIa activity and fluorescence quenching of an acrylodan-labeled A2 (Ac-A2) by fluorescein-labeled A1/A3-C1-C2. The activity assay identified four peptides as inhibitors, residues 373-395 (IC(50) = 65 micrometer), 418-428 (IC(50) = 25 micrometer), 482-493 (IC(50) = 325 micrometer), and 518-533 (IC(50) = 585 micrometer). The 373-395 and 518-533 peptides eliminated the fluorescence quenching of Ac-A2, whereas the 418-428 peptide reduced but did not eliminate Ac-A2 quenching. Peptide 482-493 had no effect on the fluorescence quenching of Ac-A2 suggesting that the peptide did not directly affect reassociation of the factor VIIIa subunits. These results identify three regions in the A2 subunit (373-395, 418-428, and 518-533) that interact with the A1/A3-C1-C2 dimer. Furthermore, comparison of results obtained using the two assays distinguish inhibition of the intersubunit interactions from intermolecular interactions.  相似文献   

9.
Jenkins PV  Dill JL  Zhou Q  Fay PJ 《Biochemistry》2004,43(17):5094-5101
Contributions of factor (F) VIIIa subunits to cofactor association with FIXa were evaluated. Steady-state fluorescence resonance energy transfer using an acrylodan-labeled A3-C1-C2 subunit and fluorescein-Phe-Phe-Arg-FIXa yielded K(d) values of 52 +/- 10 and 197 +/- 55 nM in the presence and absence of phospholipid vesicles, respectively. A3-C1-C2 was an effective competitor of FVIIIa binding to FIXa as judged by inhibition of FXa generation performed in the absence of vesicles (K(i) approximately 1.6K(d) for FVIIIa-FIXa). However, the capacity for A3-C1-C2 to inhibit FVIIIa-dependent FXa generation in the presence of phospholipid was poor with a K(i) values (approximately 400 nM) that were approximately 100-fold greater than the K(d) for FVIIIa-FIXa interaction (4.2 +/- 0.6 nM). These results indicated that a significant component of the interprotein affinity is contributed by FVIIIa subunits other than A3-C1-C2 in the membrane-dependent complex. The isolated A2 subunit of FVIIIa interacts weakly with FIXa, and recent modeling studies have implicated a number of residues that potentially contact the FIXa protease domain (Bajaj et al. (2001) J. Biol. Chem. 276, 16302-16309). Site-directed mutagenesis of candidate residues in the A2 domain was performed, and recombinant proteins were stably expressed and purified. Functional affinity determinations demonstrated that one mutant, FVIII/Asp712Ala exhibited an 8-fold increased K(d) (35 +/- 1.5 nM) relative to wild-type suggesting a contribution by this residue of approximately 10% of the FVIIIa-FIXa binding energy. Thus both A2 and A3-C1-C2 subunits contribute to the affinity of FVIIIa for FIXa in the membrane-dependent FXase.  相似文献   

10.
Factor VIIIa is comprised of A1, A2, and A3C1C2 subunits. Several lines of evidence have identified the A2 558-loop as interacting with factor IXa. The contributions of individual residues within this region to inter-protein affinity and cofactor activity were assessed following alanine scanning mutagenesis of residues 555–571 that border or are contained within the loop. Variants were expressed as isolated A2 domains in Sf9 cells using a baculovirus construct and purified to >90%. Two reconstitution assays were employed to determine affinity and activity parameters. The first assay reconstituted factor Xase using varying concentrations of A2 mutant and fixed levels of A1/A3C1C2 dimer purified from wild type (WT), baby hamster kidney cell-expressed factor VIII, factor IXa, and phospholipid vesicles to determine the inter-molecular Kd for A2. The second assay determined the Kd for A2 in factor VIIIa by reconstituting various A2 and fixed levels of A1/A3C1C2. Parameter values were determined by factor Xa generation assays. WT A2 expressed in insect cells yielded similar Kd and kcat values following reconstitution as WT A2 purified from baby hamster kidney cell-expressed factor VIII. All A2 variants exhibited modest if any increases in Kd values for factor VIIIa assembly. However, variants S558A, V559A, D560A, G563A, and I566A showed >9-fold increases in Kd for factor Xase assembly, implicating these residues in stabilizing A2 association with factor IXa. Furthermore, variants Y555A, V559A, D560A, G563A, I566A, and D569A showed >80% reduction in kcat for factor Xa generation. These results identify residues in the 558-loop critical to interaction with factor IXa in Xase.  相似文献   

11.
During blood coagulation factor IXa binds to factor VIIIa on phospholipid membranes to form an enzymatic complex, the tenase complex. To test whether there is a protein-protein contact site between the gamma-carboxyglutamic acid (Gla) domain of factor IXa and factor VIIIa, we demonstrated that an antibody to the Gla domain of factor IXa inhibited factor VIIIa-dependent factor IXa activity, suggesting an interaction of the factor IXa Gla domain with factor VIIIa. To study this interaction, we synthesized three analogs of the factor IXa Gla domain (FIX1-47) with Phe-9, Phe-25, or Val-46 replaced, respectively, with benzoylphenylalanine (BPA), a photoactivatable cross-linking reagent. These factor IX Gla domain analogs maintain native tertiary structure, as demonstrated by calcium-induced fluorescence quenching and phospholipid binding studies. In the absence of phospholipid membranes, FIX1-47 was able to inhibit factor IXa activity. This inhibition is dependent on the presence of factor VIIIa, suggesting a contact site between the factor IXa Gla domain and factor VIIIa. To demonstrate a direct interaction we did cross-linking experiments with FIX1-479BPA, FIX1-4725BPA, and FIX1-4746BPA. Covalent cross-linking to factor VIIIa was observed primarily with FIX1-4725BPA and to a much lesser degree with FIX1-4746BPA. Immunoprecipitation experiments with an antibody to the C2 domain of factor VIIIa indicate that the factor IX Gla domain cross-links to the A3-C1-C2 domain of factor VIIIa. These results suggest that the factor IXa Gla domain contacts factor VIIIa in the tenase complex through a contact site that includes phenylalanine 25 and perhaps valine 46.  相似文献   

12.
Factor VIIIa, a heterotrimer of the A1, A2, and A3-C1-C2 subunits, increases the catalytic efficiency for factor IXa-catalyzed activation of factor X. A significant fraction of naturally occurring, anti-factor VIII inhibitor antibodies reacts with the A2 domain. Utilizing the capacity for isolated A2 subunit to stimulate factor IXa activity, we show that a panel of these inhibitors block this activity. Inhibition of activity parallels the antibody potency as measured in the Bethesda assay. These antibodies also block the A2-dependent increases in fluorescence anisotropy of fluorescein-Phe-Phe-Arg factor IXa. Similar to the IgG fractions, a peptide representing the sequence of the inhibitor epitope (A2 residues 484-509) blocked the A2-dependent stimulation of factor IXa. These results indicate that antibodies possessing this specificity directly inhibit the interaction of A2 subunit with factor IXa, thus abrogating the contribution of this subunit to cofactor activity. Furthermore, these results also suggest that factor VIII residues 484-509 contribute to a factor IXa-interactive site.  相似文献   

13.
Human and porcine factor VIII (fVIII) are activated by thrombin to form a heterotrimer composed of subunits designated A1 and A2 derived from the fVIII heavy chain (HC) and a subunit designated A3-C1-C2 derived from the fVIII light chain (LC). Human and porcine fVIII were activated at the same rate to the same peak levels but dissociation of the A2 subunit and concomitant loss of fVIIIa activity at pH 7.4 and 22 degrees C was 3-fold faster with human fVIIIa compared to porcine fVIIIa (0.35 min-1 versus 0.12 min-1, respectively). To determine structural requirements for the increased activity of porcine fVIII, plasma-derived hybrid human/porcine fVIII molecules were isolated. Porcine HC/human LC (pHC/hLC) fVIII had 44-fold higher coagulant activity than reconstituted human fVIII (hHC/hLC), 40-fold higher activity than hHC/pLC, and slightly (1.4-fold) higher activity than reconstituted porcine fVIII (pHC/pLC). Additionally, human and porcine A2 subunits and inactive A1/A3-C1-C2 human and porcine dimers were isolated and reconstitution experiments were done. Addition of the porcine A2 subunit to the human A1/A3-C1-C2 dimer produced coagulant activity similar to that found with porcine fVIIIa and superior to human fVIIIa. These results suggest that human fVIII has weaker coagulant activity than porcine fVIII due to faster dissociation of the A2 subunit and that the A2 subunit itself is responsible for the difference.  相似文献   

14.
Human factor VIII and factor VIIIa were proteolytically inactivated by activated protein C. Cleavages occurred within the heavy chain (contiguous A1-A2-B domains) of factor VIII and in the heavy chain-derived A1 and A2 subunits of factor VIIIa, whereas no proteolysis was observed in the light chain or light chain-derived A3-C1-C2 subunit. Reactivity to an anti-A2 domain monoclonal antibody and NH2-terminal sequence analysis of three terminal digest fragments from factor VIII allowed ordering of fragments and identification of cleavage sites. Fragment A1 was derived from the NH2 terminus and resulted from cleavage at Arg336-Met337. The A2 domain was bisected following cleavage at Arg562-Gly563 and yielded fragments designated A2N and A2C. A third cleavage site is proposed at the A2-B junction (Arg740-Ser741) since fragment A2C was of equivalent size when derived either from factor VIII or factor VIIIa. The site at Arg562 was preferentially cleaved first in factor VIII(alpha) compared with the site at Arg336, and it was this initial cleavage that most closely correlated with the loss of cofactor activity. Factor VIIIa was inactivated 5-fold faster than factor VIII, possibly as a result of increased protease utilization of the site at Arg562 when the A2 subunit is not contiguous with the A1 domain. When initial cleavage occurred at Arg336, it appeared to preclude subsequent cleavage at Arg562, possibly by promoting dissociation of the A2 domain (subunit) from the A1/light chain dimer. This conclusion was supported by the failure of protease treated A1/A3-C1-C2 dimer to bind A2 subunit and gel filtration analysis that showed dissociation of the A2 domain-derived fragments, A2N and A2C, from the A1 fragment/light chain dimer. These results suggest a mechanism for activated protein C-catalyzed inactivation of factor VIII(alpha) involving both covalent alteration and fragment dissociation.  相似文献   

15.
The physiologic activator of factor X consists of a complex of factor IXa, factor VIIIa, Ca(2+) and a suitable phospholipid surface. In one study, helix 330 (162 in chymotrypsin) of the protease domain of factor IXa was implicated in binding to factor VIIIa. In another study, residues 558-565 of the A2 subunit of factor VIIIa were implicated in binding to factor IXa. We now provide data, which indicate that the helix 330 of factor IXa interacts with the 558-565 region of the A2 subunit. Thus, the ability of the isolated A2 subunit was severely impaired in potentiating factor X activation by IXa(R333Q) and by a helix replacement mutant (IXa(helixVII) in which helix 330-338 is replaced by that of factor VII) but it was normal for an epidermal growth factor 1 replacement mutant (IXa(PCEGF1) in which epidermal growth factor 1 domain is replaced by that of protein C). Further, affinity of each 5-dimethylaminonaphthalene-1-sulfonyl (dansyl)-Glu-Gly-Arg-IXa (dEGR-IXa) with the A2 subunit was determined from its ability to inhibit wild-type IXa in the tenase assay and from the changes in dansyl fluorescence emission signal upon its binding to the A2 subunit. Apparent K(d(A2)) values are: dEGR-IXa(WT) or dEGR-IXa(PCEGF1) approximately 100 nm, dEGR-IXa(R333Q) approximately 1.8 micrometer, and dEGR-IXa(helixVII) >10 micrometer. In additional experiments, we measured the affinities of these factor IXa molecules for a peptide comprising residues 558-565 of the A2 subunit. Apparent K(d(peptide)) values are: dEGR-IXa(WT) or dEGR-IXa(PCEGF1) approximately 4 micrometer, and dEGR-IXa(R333Q) approximately 62 micrometer. Thus as compared with the wild-type or PCEGF1 mutant, the affinity of the R333Q mutant for the A2 subunit or the A2 558-565 peptide is similarly reduced. These data support a conclusion that the helix 330 of factor IXa interacts with the A2 558-565 sequence. This information was used to model the interface between the IXa protease domain and the A2 subunit, which is also provided herein.  相似文献   

16.
Activation of factor VIII by factor Xa is followed by proteolytic inactivation resulting from cleavage within the A1 subunit (residues 1-372) of factor VIIIa. Factor Xa attacks two sites in A1, Arg(336), which precedes the highly acidic C-terminal region, and a recently identified site at Lys(36). By using isolated A1 subunit as substrate for proteolysis, production of the terminal fragment, A1(37-336), was shown to proceed via two pathways identified by the intermediates A1(1-336) and A1(37-372) and generated by initial cleavage at Arg(336) and Lys(36), respectively. Appearance of the terminal product by the former pathway was 7-8-fold slower than the product obtained by the latter pathway. The isolated A1 subunit was cleaved slowly, independent of the presence of phospholipid. The A1/A3-C1-C2 dimer demonstrated an approximately 3-fold increased cleavage rate constant, and inclusion of phospholipid further enhanced this value by approximately 2-fold. Although association of A1 or A1(37-372) with A3-C1-C2 enhanced the rate of cleavage at Arg(336), inclusion of A3-C1-C2 did not affect the cleavage at Lys(36) in A1(1-336). A synthetic peptide 337-372 blocked the cleavage at Lys(36) (IC(50) = 230 microm) while showing little if any effect on cleavage at Arg(336). Proteolysis at Lys(36), and to a lesser extent Arg(336), was inhibited in a dose-dependent manner by heparin. These results suggest that inactivating cleavages catalyzed by factor Xa at Lys(36) and Arg(336) are regulated in part by the A3-C1-C2 subunit. Furthermore, cleavage at Lys(36) appears to be selectively modulated by the C-terminal acidic region of A1, a region that may interact with factor Xa via its heparin-binding exosite.  相似文献   

17.
Previous studies revealed that cleavage at Arg-318-Ser-319 in the protease domain autolysis loop of factor IXa results in its diminished binding to factor VIIIa. Now, we have investigated the importance of adjacent surface-exposed helix 330-338 (162-170 in chymotrypsin numbering) of IXa in its interaction with VIIIa. IXWT, eight point mutants mostly based on hemophilia B patients, and a replacement mutant (IXhelixVII in which helix 330-338 is replaced by that of factor VII) were expressed, purified, and characterized. Each mutant was activated normally by VIIa-tissue factor-Ca2+ or XIa-Ca2+. However, in both the presence and absence of phospholipid, interaction of each activated mutant with VIIIa was impaired. The role of IXa EGF1 domain in binding to VIIIa was also examined. Two mutants (IXQ50P and IXPCEGF1, in which EGF1 domain is replaced by that of protein C) were used. Strikingly, interactions of the activated EGF1 mutants with VIIIa were impaired only in the presence of phospholipid. We conclude that helix 330 in IXa provides a critical binding site for VIIIa and that the EGF1 domain in this context primarily serves to correctly position the protease domain above the phospholipid surface for optimal interaction with VIIIa.  相似文献   

18.
Factor VIII circulates as a noncovalent heterodimer consisting of a heavy chain (HC, contiguous A1-A2-B domains) and light chain (LC). Cleavage of HC at the A1-A2 and A2-B junctions generates the A1 and A2 subunits of factor VIIIa. Although the isolated A2 subunit stimulates factor IXa-catalyzed generation of factor Xa by approximately 100-fold, the isolated HC, free from the LC, showed no effect in this assay. However, extended reaction of HC with factors IXa and X resulted in an increase in factor IXa activity because of conversion of the HC to A1 and A2 subunits by factor Xa. HC cleavage by thrombin or factor Xa yielded similar products, although factor Xa cleaved at a rate of approximately 1% observed for thrombin. HC showed little inhibition of the A2 subunit-dependent stimulation of factor IXa activity, suggesting that factor IXa-interactive sites are masked in the A2 domain of HC. Furthermore, HC showed no effect on the fluorescence anisotropy of fluorescein-Phe-Phe-Arg-factor IXa in the presence of factor X, whereas thrombin-cleaved HC yielded a marked increase in this parameter. These results indicate that HC cleavage by either thrombin or factor Xa is essential to expose the factor IXa-interactive site(s) in the A2 subunit required to modulate protease activity.  相似文献   

19.
Wakabayashi H  Su YC  Ahmad SS  Walsh PN  Fay PJ 《Biochemistry》2005,44(30):10298-10304
We recently identified an acidic-rich segment in the A1 domain of factor VIII (residues 110-126) that functions in the coordination of Ca(2+), an ion necessary for cofactor activity [Wakabayashi et al. (2004) J. Biol. Chem. 279, 12677-12684]. Mutagenesis studies showed that replacement of residue Glu113 with Ala (E113A) yielded a factor VIII point mutant possessing increased specific activity as determined by a one-stage clotting assay. Mutagenesis at this site suggested that substitution with relatively small, nonpolar residues was well tolerated, whereas replacement with a number of polar or charged residues appeared detrimental to activity. Ala substitution resulted in the greatest enhancement, yielding an approximately 2-fold increased specific activity. Time course experiments following reaction with thrombin revealed similar rates of activation and inactivation of E113A as observed for the wild type. Results from factor Xa generation assays showed minimal differences in kinetic parameters and factor IXa affinity for E113A and wild-type factor VIIIa when run in the presence of synthetic phospholipid vesicles, whereas factor VIIIa E113A displayed an approximately 4-fold greater affinity for factor IXa compared with factor VIIIa wild type in reactions run on the platelet membrane surface. This latter effect may be attributed, in part, to a 2-fold increased affinity of factor VIIIa E113A for the platelet membrane. Considering that low levels of factors VIIIa and IXa are generated during clotting in plasma, the increased cofactor specific activity observed for E113A factor VIII may result from its enhanced affinity for factor IXa on the physiological membrane.  相似文献   

20.
pH-dependent denaturation of thrombin-activated porcine factor VIII   总被引:6,自引:0,他引:6  
Thrombin-activated porcine factor VIII (fVIIIaIIa) is a stable, active, 160-kDa heterotrimer at concentrations exceeding 2 x 10(-7) M in 0.7 M NaCl, 0.01 M histidine Cl, 5 mM CaCl2, pH 6.0, at 4 degrees C or 20 degrees C. Two of the subunits, fVIIIA1 and fVIIIA2, are derived from the heavy chain of the plasma-derived, heterodimeric fVIII precursor. The third subunit, fVIIIA3-C1-C2, is derived from the fVIII light chain. We now find that fVIIIaIIa undergoes a sharp decline in coagulant activity between pH 7 and 8. At pH 7.5, the activity of fVIIIaIIa at 3 x 10(-7) M decays within a few hours to a stable level that is approximately 70% of the value at pH 6.0, whereas at pH 8.0, greater than 99% of the activity is lost. The activity cannot be restored by readjusting the pH to 6.0. The loss of activity at pH 8.0 coincides with dissociation of the fVIIIA2 subunit since an inactive fVIIIA1/A3-C1-C2 heterodimer can be isolated by Mono S high performance liquid chromatography. After prolonged incubation at pH 8.0, the fVIIIA1 subunit also dissociates. The free fVIIIA2 fragment appears to be poorly soluble which may explain the irreversible loss of activity. Analytical velocity sedimentation of the pH-inactivated fVIIIaIIa preparation also is consistent with dissociation and precipitation of the fVIIIA2 fragment. We propose that denaturation of fVIIIaIIa by pH-dependent subunit dissociation may provide a major mechanism of inactivation of fVIIIaIIa under physiologic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号