首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dunson DB  Tindall KR 《Genetics》2000,156(3):1411-1418
Studies that examine both the frequency of gene mutation and the pattern or spectrum of mutational changes can be used to identify chemical mutagens and to explore the molecular mechanisms of mutagenesis. In this article, we propose a Bayesian hierarchical modeling approach for the analysis of mutational spectra. We assume that the total number of independent mutations and the numbers of mutations falling into different response categories, defined by location within a gene and/or type of alteration, follow binomial and multinomial sampling distributions, respectively. We use prior distributions to summarize past information about the overall mutation frequency and the probabilities corresponding to the different mutational categories. These priors can be chosen on the basis of data from previous studies using an approach that accounts for heterogeneity among studies. Inferences about the overall mutation frequency, the proportions of mutations in each response category, and the category-specific mutation frequencies can be based on posterior distributions, which incorporate past and current data on the mutant frequency and on DNA sequence alterations. Methods are described for comparing groups and for assessing dose-related trends. We illustrate our approach using data from the literature.  相似文献   

2.
MOTIVATION: The study and comparison of mutational spectra is an important problem in molecular biology, because these spectra often reveal important features of the action of various mutagens and the functioning of repair/replication enzymes. As is known, mutability varies significantly along nucleotide sequences: mutations often concentrate at certain positions in a sequence, otherwise termed 'hotspots'. RESULTS: Herein, we propose a regression analysis method based on the use of regression trees in order to analyse the influence of nucleotide context on the occurrence of such hotspots. The REGRT program developed has been tested on simulated and real mutational spectra. For the G:C-->T:A mutational spectra induced by Sn1 alkylating agents (nine spectra), the prediction accuracy was 0. 99. AVAILABILITY: The REGRT program is available upon request from V.Berikov.  相似文献   

3.
4.
Folic acid deficiency acts synergistically with alkylating agents to increase DNA strand breaks and mutant frequency at the hprt locus in Chinese hamster ovary (CHO) cells. To elucidate the mechanism of this synergy, molecular analyses of hprt mutants were performed. Recently, our laboratory showed that folate deficiency increased the percentage of clones with intragenic deletions after exposure to ethyl methanesulfonate (EMS) but not N-nitroso-N-ethylurea (ENU) compared to clones recovered from folate replete medium. This report describes molecular analyses of the 37 hprt mutant clones obtained that did not contain deletions. Folate deficient cells treated with EMS had a high frequency of G>A transitions at non-CpG sites on the non-transcribed strand, particularly when these bases were flanked on both sides by G:C base pairs. Thirty-three percent of these mutations were in the run of six G's in exon 3. EMS-treated folate replete cells had a slightly (but not significantly) lower percentage of G>A transitions, and the same sequence specificity. Treatment of folate deficient CHO cells with ENU resulted in predominantly T>A transversions and C>T transitions relative to the non-transcribed strand. These findings suggest a model to explain the synergy between folate deficiency and alkylating agents: (1) folate deficiency causes extensive uracil incorporation into DNA; (2) greatly increased utilization of base excision repair to remove uracil and to correct alkylator damage leads to error-prone DNA repair. In the case of EMS, this results in more intragenic deletions and G:C to A:T mutations due to impaired ligation of single-strand breaks generated during base excision repair and a decreased capacity to remove O6-ethylguanine. In the case of ENU additional T>A transversions and C>T transitions are seen, perhaps due to mis-pairing of O2-ethylpyrimidines. Correction of folate deficiency may reduce the frequency of these types of genetic damage during alkylator therapy.  相似文献   

5.
6.
7.
8.
9.
10.
11.
By means of mark scale estimation method, discriminant and factor analyses, changes in integral indices on the state of mast cells in the rat mesentery have been investigated in dynamics of medullary, intestinal and cerebral forms of an acute radiation sickness. The integral indices are calculated basing on the morphometric parameters of the cells, that are obtained after the histological preparations are treated in a special automatic system for analysing images. At the medullary form of the acute radiation sickness, the greatest structural rearrangements of the mast cells take place during the first hours after the radiation, as well as during the climax of the disease, at the intestinal form, the analogous changes are revealed 1-3 days after the effect, and at the cerebral form--3 h after the radiation. The integral indices, calculated by means of the three methods, are well correlated with each other.  相似文献   

12.
13.
Alkylating agents are the most widely used anticancer drugs whose main target is the DNA, although how exactly the DNA lesions cause cell death is still not clear. The emergence of resistance to this class of drugs as well as to other antitumor agents is one of the major causes of failure of cancer treatment. This paper reviews some of the best characterized mechanisms of resistance to alkylating agents. Pre- and post-target mechanisms are recognized, the former able to limit the formation of lethal DNA adducts, and the latter enabling the cell to repair or tolerate the damage. The role in the pre-target mechanisms of reduced drug accumulation and the increased detoxification or activation systems (such as DT-diaphorase, metallothionein, GST/GSH system, etc...) are discussed. In the post-target mechanisms the different DNA repair pathways, tolerance to alkylation damage and the ‘downstream’ effects (cell cycle arrest and/or apoptosis) are examined. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
15.
Contrary to expectation, l-cysteine did not protect Escherichia coli from the lethal action of two monofunctional alkylating agents (nitrosomethylurethane and methylmethane sulfonate). The antibacterial action of these compounds was actually greatly enhanced by l-cysteine. This synergistic effect was also exhibited, to some extent, by d-cysteine but not by homocysteine, S-methylcysteine, or serine. The synergistic action between methylating agents and l-cysteine was not due to the formation of S-methylcysteine. l-Cysteine had no effect on the bacteriostatic action of ethylmethane sulfonate.  相似文献   

16.
17.
18.
A new type of Escherichia coli mutant which shows increased sensitivity to methyl methane sulfonate but not to UV light or to gamma rays was isolated after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. The mutant is unable to reactivate phage lambdavir or double-stranded phiX174 DNA (replicative form) that had been treated with methyl methane sulfonate. The mutant is sensitive to other alkylating agents, such as ethyl methane sulfonate, mitomycin C, and N-methyl-N'-nitro-N-nitrosoguanidine, as well. It grows normally and exhibits almost normal recombination proficiency. The mutant possesses normal levels of DNA polymerase I, exonuclease I, exonuclease V, endonuclease specific for methyl methane sulfonate-treated DNA, and 3-methyladenine-DNA glycosidase activities. The genetic locus responsible has been named alk and is located near his on the chromosome.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号