首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calpactins are a family of related Ca++-regulated cytoskeletal proteins. To analyze the expression and cytoskeletal association of calpactins we raised monoclonal antibodies with specificity for the heavy or light chains of calpactin I or to calpactin II. Comparison of the tissue distribution of calpactin I heavy and light chains by Western blots revealed that these subunits are coordinately expressed. Both soluble and cytoskeletal forms of the heavy chain of calpactin I were detected in human fibroblasts whereas only a soluble pool of calpactin II was found. These two forms of the calpactin I heavy chain differed both in their state of association with the light chain and in their rate of turnover. Both the soluble pool of the calpactin I heavy chain and calpactin II turned over three to four times faster than the cytoskeletal pool of heavy and light chains. Immunofluorescence microscopy revealed that the calpactin I light chain was present exclusively in the cytoskeleton whereas the calpactin I heavy chain distribution was more diffuse. No difference in the amount of light chain or the cytoskeletal attachment of phosphorylated calpactin I heavy chain was found in Rous sarcoma virus-transformed chick embryo fibroblasts compared with their normal counterpart. The antibody to the light chain of calpactin I was microinjected into cultured fibroblasts and kidney epithelial cells. In many cases antibody clustering was observed with the concomitant aggregation of the associated calpactin I heavy chain. The distribution of fodrin and calpactin II in injected cells remained unchanged. These results are consistent with the existence of two functionally distinct pools of calpactin I which differ in their association with the cytoskeleton.  相似文献   

2.
Calpactins I and II are proteins that bind Ca2+, phospholipids, actin and spectrin; they are also major substrates of oncogene and growth-factor-receptor tyrosine kinases. Since calpactins have been proposed to provide a link between membrane lipids and the cytoskeleton, we examined in detail the interactions between purified calpactin I and phospholipid liposomes. We focused on the Ca2+-dependence, the effects of phosphorylation of calpactin I by p60v-src (the protein kinase coded for by the Rous-sarcoma-virus oncogene), and the effects of the binding of calpactin I light chain to calpactin I heavy chain. Binding of the light chain to the heavy chain increased the affinity of calpactin I for phosphatidylserine (PS) liposomes. The opposite effect was observed for phosphorylation by p60v-src; phosphorylation decreased the affinity of calpactin I for PS liposomes. These two opposite effects appeared to be independent, since phosphorylation did not prevent light-chain binding to the heavy chain. Calpactin I was found, by the use of three different techniques, to bind to phospholipid liposomes at less than 10(-8) M free Ca2+. This result is in contrast with those of previous studies, which indicated that greater than 10(-6) M free Ca2+ was required. Our findings suggest that calpactin I may be bound to phospholipids in vivo at Ca2+ concentrations of about 1.5 x 10(-7) M, typical of resting unstimulated cells, and that this interaction may be modulated by light-chain binding and phosphorylation by p60v-src.  相似文献   

3.
Calcium-binding (-dependent) proteins (CBPs) associated with the spreading of mammary epithelial cell cultures have been identified as various calelectrins and calpactins (p36). In immunoblot analysis, the CBPs of 30–36 kD and 68–70 KD variously react with different calelectrin and calpactin I monomer/p36 antisera. The same immunoreactive proteins were shown to be present in virgin mammary glands and collagen gel mouse mammary epithelial cell cultures. The mammary CBPs show extensive immunochemical relatedness; however, they fail to show cross-reaction with antiserum to calpactin II (lipocortin) antiserum. These immunoreactive CBPs comigrate in electrophoresis with 35S-methionine-labeled CBPs isolated from mammary epithelial cell cultures. Unlike calmodulin, the mammary CBPs that correspond to calelectrins and calpactin I monomer/p36 are not stable to thermal denaturation. The mammary CBPs bind to epithelial cell membranes in a Ca2+-dependent manner and are differentially released from ruptured cells, compared with calmodulin, suggesting subcellular localization. Phenothiazineagarose and phenylagarose are equivalent in their ability to bind the mammary CBPs. Thus, mammary gland CBPs of 30–36 kD and 68–70 kD have been shown to be related or equivalent to the calelectrins and to calpactin I monomer/p36. Since these proteins are known to bind Ca2+, we conclude that the mammary gland CBPs are also Ca2+-binding proteins. The mammary gland CBPs are immunologically related and probably represent members of a larger family of related proteins.  相似文献   

4.
Calcimedin is a group of proteins which has a binding ability to several hydrophobic matrices or cellular membrane fractions in the presence of Ca2+. Although the molecular properties were partially clarified, the physiological functions of calcimedins have not been clearly defined. In this study, we describe the isolation and characterization of 32-kDa calcimedin from chicken gizzard. Both structural and functional studies establish that 32-kDa calcimedin is a member of the calpactin/lipocortin family. The 32-kDa calcimedin displays phospholipase A2 inhibitory activity, Ca2(+)-dependent F-actin binding activity, and phospholipid binding activity similar to those of calpactins/lipocortins. Antiendonexin II antibody recognized 32-kDa calcimedin. However, antibodies against calpactin I (lipocortin II), calpactin II (lipocortin I), 35-kDa calcimedin, and 67-kDa calcimedin did not cross-react with 32-kDa calcimedin. One-dimensional peptide maps of the 32-kDa calcimedin and the 35-kDa calcimedin are different, confirming that they are distinct proteins. By comparing the sequence of 32-kDa calcimedin with the predicted sequence of endonexin II, we concluded that the primary structure of the 32-kDa protein is highly conserved. In particular, the sequences AMKGMGTDDEXEIXL, GMGTDEEEIL, VLTEILASR, and ILTSR conform to the endonexin consensus sequence, which is characteristic of the calpactin/lipocortin family.  相似文献   

5.
The major PRL-inducible gene product from pigeon cropsac was cloned from lambda gt11 and sequenced by chain termination. The sequence of pGcp35 includes an open reading frame which yields a polypeptide which highly similar to mammalian calpactin II (lipocortin I). Like the other calpactins, the deduced protein (cp35) consists of a 4-fold repeating structure which has a conserved core characteristic of a large group of calcium-dependent membrane-binding proteins. PRL-stimulated cropsac expresses a calcium-dependent membrane-binding protein which is the proper size for endogenous cp35. Detailed comparison of the sequences of cp35 and human calpactin II shows that the only substantial sequence dissimilarity is a domain encoding amino acids between residues 20 and 40 which includes a tyrosine phosphorylation site in the human molecule, along with other residues of possible physiological significance. These results raise the possibility that calpactins are regulated by PRL in other tissues; and, that the sequences of the avian form and the mammalian form may have selectively diverged to yield different regulatory mechanisms.  相似文献   

6.
Calpactin-like proteins in human spermatozoa   总被引:3,自引:0,他引:3  
Polyclonal antibodies directed against human calpactin I (p36) and calpactin II (p35) have been employed to investigate the distribution of calpactin-like proteins in human spermatozoa. Calpactins are a family of Ca2+-regulated cytoskeletal proteins that are major substrates of oncogene and growth factor receptor protein tyrosine kinases. The existence of a Triton-soluble 37-kDa protein antigenically related to calpactin II from somatic cells was revealed by Western blot analysis of human sperm extracts. The 37-kDa protein was not released from spermatozoa after experimental induction of the acrosome reaction by A23187 and Ca2+. Treatment of sperm homogenates with an EGTA-containing buffer partially solubilized the 37-kDa protein from the corpuscolate matter. Indirect immunofluorescence microscopy showed that anticalpactin II binds specifically to the sperm tail and to a band-like structure encircling the sperm head at the equatorial segment. In contrast, antibodies to calpactin I were found to bind to the tail midpiece, but failed to bind to Western blots of sperm proteins. This is the first immunological and biochemical report on the presence of calpactin proteins in a germ cell, the human spermatozoon.  相似文献   

7.
Primer recognition proteins (PRP) stimulate the activity of DNA polymerase alpha on DNA substrates with long single-stranded template containing few primers. Purified PRP from HeLa cells and human placenta are composed of two subunits of 36,000 (PRP 1) and 41,000 (PRP 2) daltons. By amino acid sequence homology, we have identified PRP 2 as the glycolytic enzyme 3-phosphoglycerate kinase. Here we present data that establishes PRP 1 to be the protein-tyrosine kinase substrate, calpactin I heavy chain. Amino acid sequence analysis of six tryptic peptides of PRP 1 followed by homology search in a protein sequence data base revealed 100% identity of all six peptides with the deduced amino acid sequence of human calpactin I heavy chain. The activities of PRP and calpactin I coelute on gel filtration columns, and a high correlation of PRP and calpactin I activities was seen at different stages of purification. A rabbit polyclonal anti-chicken calpactin I antibody was shown to cross-react with PRP 1 polypeptide at various stages of PRP purification, and the homogeneous preparation of PRP exhibits 3-phosphoglycerate kinase (PRP 2) and calpactin I (PRP 1) activities. PRP activity is neutralized by a mouse monoclonal anti-calpactin II antibody although having no effect on the polymerase alpha activity itself. Calpactin II has a 50% amino acid sequence homology with calpactin I. However, PRP 1 is not calpactin II as shown by lack of cross-reaction to a monoclonal anti-calpactin II antibody on Western blots. Calpactin I and 3-phosphoglycerate kinase, purified independently, cannot be efficiently reconstituted into the PRP complex, indicating that their association in the PRP complex involves specific protein-protein interactions that remain to be elucidated. The biochemical and immunological data presented here revealing the identity of PRP 1 as calpactin I provide evidence for one physiological role of calpactin I in the cell.  相似文献   

8.
EDTA-extractable protein (EEP) is a mixture of major lens membrane proteins with molecular masses ranging from 32 kDa to 40 kDa. These bind to the lens membrane in a Ca2(+)-dependent manner. In the present study we have identified and purified two distinct 32 kDa components of EEP (designated as EEP 32-1 and EEP 32-2) from bovine lens that inhibit phospholipase A2 activity. Both EEP 32-1 and EEP 32-2 bind to phospholipid-containing liposomes and actin filaments in a Ca2(+)-dependent fashion. Immunochemical studies and two-dimensional electrophoreses demonstrate that the two proteins are distinct from one another. Both EEP 32-1 and EEP 32-2 are clearly different from calpactin (lipocortin) or its proteolytic fragments because they did not react with anti-[human placenta calpactin (lipocortin)] antibody. Our results also indicate that EEP 32-1 is very similar to endonexin I and that EEP 32-2 corresponds to endonexin II.  相似文献   

9.
EDTA-extractable protein (EEP) is known to be a major lens membrane protein with a molecular mass in the range 32 kDa to 38 kDa, and is also known to bind to the lens membrane and phospholipid-containing liposomes in a calcium-dependent manner. Recent results (Russell, P., Zelenka, P., Martensen, J., and Reid, T.W. (1977) Curr. Eye Res. 6, 533-538) on antibody cross-reactivity have demonstrated that a 34-35 kDa component of EEP is identical to calpactin I (lipocortin II). In this study, we have identified and purified three distinct 34 kDa components of EEP (designated as EEP-34A1, EEP-34A2 and EEP-34B) from bovine lens that inhibit phospholipase A2 activity. These proteins bind to phospholipid-containing liposome and F-actin in a calcium-dependent fashion. Two-dimensional electrophoresis demonstrates that the three proteins were distinct from one another. However, immunochemical studies and one-dimensional peptide mapping indicate that EEP-34A1 and EEP-34B are very similar. Our results also indicate that EEP-34A1 is very similar to calpactin II and that EEP-34A2 corresponds to calpactin I. The bovine lens 34-35 kDa component of EEP is a mixture of proteins rather than a single protein.  相似文献   

10.
Microvilli isolated from the MAT-C1 ascites subline of the 13762 rat mammary adenocarcinoma contain a major calcium-sensitive microfilament-binding protein, AMV-p35 (ascites microvillar p35). Association of AMV-p35 with microfilament cores during Triton X-100 extraction of the microvilli is half-maximal at 0.1-0.2 mM calcium. The protein, which comprises 6% of the total microvillar protein, can be isolated from microfilament cores prepared in the presence of calcium by extraction with EGTA and purification by ion-exchange chromatography. Alternatively, the protein can be isolated from Triton extracts of microvilli prepared in the absence of calcium by precipitation with calcium, solubilization of the precipitate with EGTA, and chromatography on an ion-exchange column. AMV-p35 binds to phosphatidylserine liposomes and F-actin with half-maximal calcium concentrations of about 10 microM and 0.2 mM, respectively. Treatment of AMV-p35 with chymotrypsin yields a 33,000-dalton fragment, behavior similar to the tyrosine kinase substrates calpactins I and II and lipocortins I and II. Immunoblot analyses using antibodies directed against calpactin I, lipocortin I, and lipocortin II showed strong reactivity of AMV-p35 with anti-calpactin I and anti-lipocortin II, but little reactivity toward anti-lipocortin I. The close relationship between AMV-p35 and calpactin I was verified by amino acid sequence analyses of peptides isolated from cyanogen bromide digests of AMV-p35. By gel filtration and velocity sedimentation analyses purified AMV-p35 is a 35,000-dalton monomer. Moreover, AMV-p35 extracted directly from microvilli in Triton/EGTA also behaves as a 35,000-dalton menomer. These findings indicate that AMV-p35 is closely related to the pp60src kinase substrate calpactin I (p36). However, AMV-p35 occurs in the microvilli as a monomer rather than as the heterotetrameric calpactin found in several other cell types.  相似文献   

11.
Three forms of calpactin, the 36,000 Mr Ca++-binding cytoskeletal protein, were isolated in large amounts from bovine lung and human placenta using cycles of calcium-dependent precipitation followed by solubilization with EGTA-containing buffers. Calpactin-I as a tetramer of heavy (36 kD) and light (11 kD) chains was the predominant form of calpactin isolated, however milligram amounts of the calpactin-I heavy chain monomer and calpactin-II, a related but distinct molecule, were also isolated by this method. Calpactin-II was characterized in some detail and found to bind two Ca++ ions with Kd's of 10 microM in the presence of phosphatidylserine. Both calpactin-I and -II were found to aggregate liposomes at micromolar Ca++ concentrations, suggesting that at least two phospholipid-binding sites are present on these molecules. Both calpactin monomers bind to and bundle actin filament at high (1 mM) but not low (less than 1 microM) Ca++ concentrations. Amino-terminal sequence analysis of a lower molecular mass variant of calpactin-II revealed that this protein was the previously identified human "lipocortin" molecule. Antibodies were elicited to calpactin-I and -II and the cell and subcellular distribution of each was compared. Calpactin-II was only present at high levels in tissues (lung, placenta) which contained high levels of calpactin-I. Other tissues (intestine) contained high calpactin-I and undetectable levels of calpactin-II. Double-label immunofluorescence microscopy on human fibroblasts revealed that, like calpactin-I, calpactin-II is present in a submembraneous reticular network, although the distribution of the two calpactins is not identical.  相似文献   

12.
Lymphocyte membrane proteins are important in the transduction of signals across the plasma membrane. Visual and biophysical studies have shown that after ligand binding, membrane proteins may become immobile in the plane of the membrane and may cap. In intact cells, binding of cross-linking ligands to surface immunoglobulin converts it to a detergent-insoluble state (77% insoluble). This conversion is positively correlated with the transmission of a mitogenic signal. Class II histocompatibility proteins (Ia) and thy-1 remain predominantly detergent soluble (60 to 97% soluble). Insolubilized membrane proteins may be solubilized by incubating the detergent insoluble cytoskeletons with 0.34 M sucrose, 0.5 mM ATP, 0.5 mM dithiothreitol, 1 mM EDTA, or 3 X 10(-5) M DNAase I, 1 mM EDTA. To determine if the membrane-associated cytoskeleton contains the sufficient components for ligand-induced receptor insolubilization, experiments were done with a crude plasma membrane fraction. The results with whole cells or crude plasma membranes were comparable. These studies support the view that ligand-induced insolubilization of membrane proteins is due to their interaction with cytoskeletal structures.  相似文献   

13.
Five proteins having molecular masses of 90, 67, 37, 36, and 32 kDa (p90, p67, p37, p36, and p32, respectively) were identified in the particulate fractions of pig brain cortex and pig spinal cord prepared in the presence of 0.2 mM Ca2+ and further purified using a protocol previously described for the purification of calpactins. Proteins p90, p37, and p36 are related to annexins I and II. Annexin II, represented by p90, is found as an heterotetramer, composed of two heavy chains of 36 kDa and two light chains of 11 kDa, and as a monomer of 36 kDa. Protein p37, which differs immunologically from p36, is a monomer and could be related to annexin I. All three proteins are Ca(2+)-dependent phospholipid- and F-actin-binding proteins; they are phosphorylated on a serine and on a tyrosine residue by protein kinases associated with synaptic plasma membranes. Purified p36 monomer and p36 heterotetramer proteins bind to actin at millimolar Ca2+ concentrations. The stoichiometry of p36 binding to F-actin at saturation is 1:2, corresponding to one tetramer or monomer of calpactin for two actin monomers (KD, 3 x 10(-6) M). Synaptic plasma membranes supplemented with the monomeric or tetrameric forms of p36 phosphorylate the proteins on a serine residue. The monomer is phosphorylated on a serine residue by a Ca(2+)-independent protein kinase, whereas the heterotetramer is phosphorylated on a serine residue and a tyrosine residue by Ca(2+)-dependent protein kinases. Antibodies to brain p37 and p36 together with antibodies to lymphocytes lipocortins 1 and 2 were used to follow the distribution of these proteins in nervous tissues. Polypeptides of 37, 34, and 36 kDa cross-react with these antibodies. Anti-p37 and antilipocortin 1 cross-react on the same 37- and 34-kDa polypeptides; anti-p36 and antilipocortin 2 cross-react only on the 36-kDa polypeptides.  相似文献   

14.
J Glenney  L Zokas 《Biochemistry》1988,27(6):2069-2076
Calpactins I and II are related 39-kilodalton (kDa) proteins that interact with phospholipids and actin in a calcium-dependent manner and are substrates of tyrosine protein kinases. They contain a short amino-terminal tail attached to a 36-kDa core domain. Monoclonal antibodies (Mabs) were raised to bovine calpactin II and used as site-specific probes of its structure and function. All of the antibodies reacted with native calpactin II and gave rise to a single band of 39 kDa among total cell protein displayed on Western blots. Most of the antibodies (9/14) reacted with determinants on the tail as shown by Western blots and competition with a synthetic tail peptide. Four antibodies reacted with determinants on the core and a 10-kDa tryptic fragment. Antibody-calpactin II complexes were tested for their ability to interact with lipid, actin, and Ca2+ and to serve as substrates of the epidermal growth factor (EGF) receptor tyrosine protein kinase. Whereas none of the antibodies had a detectable effect on actin binding, two anticore antibodies reduced calpactin's affinity for phospholipid. Ca2+-binding sites are known to reside within the core region, yet most antitail antibodies markedly increased the affinity of calpactin II for Ca2+, with four Ca2+-binding sites observed. Antitail antibodies either (i) abolished or (ii) greatly stimulated (10-fold) the phosphorylation of calpactin II by the EGF receptor. These results suggest that the interactions between calpactin II and Ca2+, phospholipid, or the EGF receptor are more complex than previously thought and can be modulated by interactions occurring in the tail.  相似文献   

15.
Uptake of mineral ions by isolated matrix vesicles (MV) incubated in synthetic cartilage lymph follows a consistent pattern. After an initial lag period, MV rapidly accumulate large amounts of Ca2+ and Pi before the appearance of crystalline mineral. The ability of MV to accumulate Ca2+ is readily destroyed by proteases, indicating that proteins are important in Ca2+ accumulation. Since MV contain significant amounts of phosphatidylserine (PS), an acidic phospholipid with affinity for Ca2+, it seemed probable that this lipid might also contribute to Ca2+ binding. The development of methods for reproducible isolation of pure active MV enabled us to search for factors responsible for the rapid accumulation of Ca2+. Reported here are studies which reveal that a set of intensely staining MV proteins, extractable with EGTA, selectively bind to Ca2+, but only in the presence of acidic phospholipids. These 30-36-kDa proteins form readily sedimentable insoluble ternary complexes of protein, Ca2+, and lipid in the presence of low levels of Ca2+. With liposomes composed of PS, alone or in combination with phosphatidylethanolamine, submicromolar levels of Ca2+ or certain other divalent cations, but not Mg2+, are sufficient to form the complexes. The physical and chemical properties of these MV proteins appear to be like those of the calpactin family of membrane-associated proteins. In fact, these MV proteins were found to cross-react with antibodies to calpactin II. Thus, calpactins appear to be important protein constituents of avian growth plate MV. This finding helps explain the enrichment in PS previously noted in MV and may also point to the mechanism by which MV rapidly accumulate Ca2+.  相似文献   

16.
Two monomeric 32-kDa proteins, termed 32K-I (pI 5.8) and 32K-II (pI 5.1), were isolated from human placenta, which was solubilized by a Ca2+-chelator. Only 32K-I was associated with PLA2-inhibitory activity. CNBr peptide mapping indicated that 32K-I was distinct from 32K-II and two 36-kDa proteins, called calpactin I and II or lipocortin II and I, which have been shown to possess PLA2-inhibitory activity. 32K-I bound to PS in a Ca2+-dependent manner. 32K-I was detected in many tissues except brain, cardiac and skeletal muscle.  相似文献   

17.
Aggregation of cells of the marine sponge Geodia cydonium is mediated by an aggregation factor (AF) particle of Mr 1.3 X 10(8). It is now reported that the AF particle is associated with calpactin, which was ascribed a role in the cell-adhesion process. In order to identify the sequence similarity to other members of the lipocortin family, the cDNA of sponge calpactin was cloned and found to display an 80% sequence similarity to vertebrate calpactin II but only a 47% similarity to calpactin I. The calpactin gene, which contains the consensus sequence coding for the amino acids G-T-D-E, was expressed in Escherichia coli and subsequently purified to a 37000-Mr polypeptide. Both the p32 and the p37 are provided with approximately two Ca2+ ions/molecule and the property to bind to phospholipids. The dissociation constant (calpactin-Ca2+) was in the absence of phospholipids in the range 500-700 microM-Ca2+ but in their presence about 20-30 microM-Ca2+. On the basis of (i) inhibition studies with antibodies to calelectrin and (ii) competition experiments with soluble phospholipids (both chemically defined as well as total homologous membrane lipids) we conclude that the AF-associated calpactin and plasma-membrane-bound phospholipid(s) are involved in cell-cell aggregation in sponges.  相似文献   

18.
The human papillomavirus type 16 (HPV-16) E5 oncoprotein is embedded in membranes of the endoplasmic reticulum and nuclear envelope with its C terminus exposed to the cytoplasm. Among other activities, E5 cooperates with the HPV E6 oncoprotein to induce koilocytosis in human cervical cells and keratinocytes in vitro. The effect of E5 on infected cells may rely on its interactions with various cellular proteins. In this study we identify calpactin I, a heterotetrameric, Ca(2+)- and phospholipid-binding protein complex that regulates membrane fusion, as a new cellular target for E5. Both the annexin A2 and p11 subunits of calpactin I coimmunoprecipitate with E5 in COS cells and in human epithelial cell lines, and an intact E5 C terminus is required for binding. Moreover, E5-expressing cells exhibit a perinuclear redistribution of annexin A2 and p11 and show increased fusion of perinuclear membrane vesicles. The C terminus of E5 is required for both the perinuclear redistribution of calpactin I and increased formation of perinuclear vacuoles. These results support the hypothesis that the E5-induced relocalization of calpactin I to the perinuclear region promotes perinuclear membrane fusion, which may underlie the development of koilocytotic vacuoles.  相似文献   

19.
Calpactin I, a calcium-binding protein associated with the membrane cytoskeleton, has been reported to bind to a calcium-dependent manner to fodrin, to certain phospholipids, and to F-actin. We have investigated the interaction between calpactin I and fodrin. Using a gel filtration assay, we observed one or more calpactin I molecules were bound calcium-dependently only at high concentrations of calpactin (greater than 1 microM), indicating that the interaction is of only moderate affinity. At higher concentrations of calpactin I, the calpactin coprecipitated with fodrin in a calcium-dependent manner. The molar ratio of calpactin to fodrin tetramer in the precipitate was greater than 25:1, indicating that the calpactin binds to a large number of sites. Moreover, the monomeric form of calpactin I (p36), which did not induce precipitation of fodrin, showed no evidence of saturation in its binding to fodrin even when more than 30 mol of p36 were bound per mole of fodrin tetramer. Several proteins other than fodrin, including clathrin, alpha-actinin, and neurofilament-H, also interacted calcium-dependently with calpactin I in the gel filtration assay. These results demonstrate that the interaction between calpactin and fodrin is not of high affinity, is not readily saturated, and is not specific for fodrin. Our results suggest that calpactin's interaction with fodrin is a particular example of a calcium-dependent, but promiscuous, binding of calpactin to proteins.  相似文献   

20.
Calcimedin is a group of proteins, originally isolated from chicken gizzard, which are able to bind to several hydrophobic matrices in the presence of Ca2+. Although the molecular properties have been partially discovered, the physiological functions of calcimedins have not yet been clearly defined. In this study, we describe the isolation and characterization of 67-kDa calcimedin and its 34-kDa fragment from chicken gizzard. Both structural and functional studies establish that 67-kDa calcimedin is a member of the calpactin/lipocortin family: it displays phospholipase A2 inhibitory activity, Ca2(+)-dependent F-actin binding and phospholipid binding activity similar to those of calpactins (lipocortins). By comparing the sequence of 67-kDa calcimedin with the predicted sequence of 67-kDa calelectrin, we concluded that the primary structure of these 67-kDa proteins is highly conserved. In particular, the sequences GLGTDEGAIIXVLTQR and EGAGTDESTLIEIMATR conform with the annexin consensus sequence which is characteristic of the calpactin/lipocortin family. A 34-kDa fragment of 67-kDa calcimedin was also purified and their relatedness has been confirmed by antibody cross-reactivity. The sequence data further support that the 34-kDa fragment is derived from the C-terminal portion of 67-kDa calcimedin by limited proteolysis. The 34-kDa fragment, which contains the annexin consensus sequence, preserves the phospholipase A2 inhibitory activity, and binds F-actin and phospholipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号