首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The yeast Saccharomyces cerevisiae possesses two genes that encode phosphatidylinositol (PtdIns) 4-kinases, STT4 and PIK1. Both gene products phosphorylate PtdIns at the D-4 position of the inositol ring to generate PtdIns(4)P, which plays an essential role in yeast viability because deletion of either STT4 or PIK1 is lethal. Furthermore, although both enzymes have the same biochemical activity, increased expression of either kinase cannot compensate for the loss of the other, suggesting that these kinases regulate distinct intracellular functions, each of which is required for yeast cell growth. By the construction of temperature-conditional single and double mutants, we have found that Stt4p activity is required for the maintenance of vacuole morphology, cell wall integrity, and actin cytoskeleton organization. In contrast, Pik1p is essential for normal secretion, Golgi and vacuole membrane dynamics, and endocytosis. Strikingly, pik1(ts) cells exhibit a rapid defect in secretion of Golgi-modified secretory pathway cargos, Hsp150p and invertase, whereas stt4(ts) cells exhibit no detectable secretory defects. Both single mutants reduce PtdIns(4)P by approximately 50%; however, stt4(ts)/pik1(ts) double mutant cells produce more than 10-fold less PtdIns(4)P as well as PtdIns(4,5)P(2). The aberrant Golgi morphology found in pik1(ts) mutants is strikingly similar to that found in cells lacking the function of Arf1p, a small GTPase that is known to regulate multiple membrane trafficking events throughout the cell. Consistent with this observation, arf1 mutants exhibit reduced PtdIns(4)P levels. In contrast, diminished levels of PtdIns(4)P observed in stt4(ts) cells at restrictive temperature result in a dramatic change in vacuole size compared with pik1(ts) cells and persistent actin delocalization. Based on these results, we propose that Stt4p and Pik1p act as the major, if not the only, PtdIns 4-kinases in yeast and produce distinct pools of PtdIns(4)P and PtdIns(4,5)P(2) that act on different intracellular membranes to recruit or activate as yet uncharacterized effector proteins.  相似文献   

2.
Phosphatidylinositol 4-phosphate (PtdIns(4)P) regulates diverse cellular processes, such as actin cytoskeletal organization, Golgi trafficking and vacuolar biogenesis. Synthesis and turnover of PtdIns(4)P is mediated by a set of specific lipid kinases and phosphatases. Here we show that the polyphosphoinositide phosphatase Sac1p has a central role in compartment-specific regulation of PtdIns(4)P. We have found that sac1Delta mutants show pleiotropic, synthetically lethal interactions with mutations in genes required for vacuolar protein sorting (Vps). Disruption of the SAC1 gene also caused a defect in the late endocytic pathway. These trafficking phenotypes correlated with a dramatic accumulation of PtdIns(4)P at vacuolar membranes. In addition, sac1 mutants displayed elevated endoplasmic reticulum PtdIns(4)P. The accumulation of PtdIns(4)P at the endoplasmic reticulum and vacuole and the endocytic defect could be compensated by mutations in the PtdIns 4-kinase Stt4p. Our results indicate that elimination of Sac1p causes accumulation of a Stt4p-specific PtdIns(4)P pool at internal membranes which impairs late endocytic and vacuolar trafficking. We conclude that Sac1p functions in confining PtdIns(4)P-dependent processes to specific intracellular membranes.  相似文献   

3.
Phosphoinositides direct membrane trafficking, facilitating the recruitment of effectors to specific membranes. In yeast phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) isproposed to regulate vacuolar fusion; however, in intact cells this phosphoinositide can only be detected at the plasma membrane. In Saccharomyces cerevisiae the 5-phosphatase, Inp54p, dephosphorylates PtdIns(4,5)P2 forming PtdIns(4)P, a substrate for the phosphatase Sac1p, which hydrolyzes (PtdIns(4)P). We investigated the role these phosphatases in regulating PtdIns(4,5)P2 subcellular distribution. PtdIns(4,5)P2 bioprobes exhibited loss of plasma membrane localization and instead labeled a subset of fragmented vacuoles in Deltasac1 Deltainp54 and sac1ts Deltainp54 mutants. Furthermore, sac1ts Deltainp54 mutants exhibited vacuolar fusion defects, which were rescued by latrunculin A treatment, or by inactivation of Mss4p, a PtdIns(4)P 5-kinase that synthesizes plasma membrane PtdIns(4,5)P2. Under these conditions PtdIns(4,5)P2 was not detected on vacuole membranes, and vacuole morphology was normal, indicating vacuolar PtdIns(4,5)P2 derives from Mss4p-generated plasma membrane PtdIns(4,5)P2. Deltasac1 Deltainp54 mutants exhibited delayed carboxypeptidase Y sorting, cargo-selective secretion defects, and defects in vacuole function. These studies reveal PtdIns(4,5)P2 hydrolysis by lipid phosphatases governs its spatial distribution, and loss of phosphatase activity may result in PtdIns(4,5)P2 accumulation on vacuole membranes leading to vacuolar fragmentation/fusion defects.  相似文献   

4.
The LSB6 gene product was identified from the Saccharomyces Genome Data Base (locus YJL100W) as a putative member of a novel type II phosphatidylinositol (PI) 4-kinase family. Cell extracts lacking the LSB6 gene had a reduced level of PI 4-kinase activity. In addition, multicopy plasmids containing the LSB6 gene directed the overexpression of PI 4-kinase activity in cell extracts of wild-type cells, in an lsb6Delta mutant, in a pik1(ts) stt4(ts) double mutant, and in an pik1(ts) stt4(ts) lsb6Delta triple mutant. The heterologous expression of the S. cerevisiae LSB6 gene in Escherichia coli resulted in the expression of a protein that possessed PI 4-kinase activity. Although the lsb6Delta mutant did not exhibit a growth phenotype and failed to exhibit a defect in phosphoinositide synthesis in vivo, the overexpression of the LSB6 gene could partially suppress the lethal phenotype of an stt4Delta mutant defective in the type III STT4-encoded PI 4-kinase indicating that Lsb6p functions as a PI 4-kinase in vivo. Lsb6p was localized to the membrane fraction of the cell, and when overexpressed, GFP-tagged Lsb6p was observed on both the plasma membrane and the vacuole membrane. The enzymological properties (pH optimum, dependence on magnesium or manganese as a cofactor, the dependence of activity on Triton X-100, the dependence on the PI surface concentration, and temperature sensitivity) of the LSB6-encoded enzyme were very similar to the membrane-associated 55-kDa PI 4-kinase previously purified from S. cerevisiae.  相似文献   

5.
Autophagy is regulated by phosphoinositides. We have previously shown that phosphatidylinositol 4-phosphate (PtdIns(4)P) is localized in the autophagosomal membrane. Additionally, in yeast cells, phosphatidylinositol 4-kinases Pik1p and Stt4p play important roles in the formation of the autophagosome and its fusion with the vacuole, respectively. In this study, we analyzed the primary role of PtdIns(4)P phosphatases in yeast autophagy. The PtdIns(4)P labeling densities in the membranes of the vacuoles, mitochondria, nucleus, endoplasmic reticulum, and plasma membrane dramatically increased in the phosphatase deletion mutants sac1? and sjl3?, and the temperature-sensitive mutant sac1ts/sjl3? at the restrictive temperature. GFP-Atg8 processing assay indicated defective autophagy in the sac1? and sac1ts/sjl3? mutants. In contrast to the localization of PtdIns(4)P in the luminal leaflet of autophagosomal membranes in the wild-type yeast, PtdIns(4)P was localized in both the luminal and cytoplasmic leaflets of the autophagosomal membranes in the sac1? strain. In addition, the number of autophagic bodies in the vacuole significantly decreased in the sac1? strain, although autophagosomes were present in the cytoplasm. In the sac1ts/sjl3? strain, the number of autophagosomes in the cytoplasm dramatically decreased at the restrictive temperature. Considering that the numbers of autophagosomes and autophagic bodies in the sjl3? strain were comparable to those in the wild-type yeast, we found that the autophagosome could not be formed when PtdIns(4)P phosphatase activities of both Sac1p and Sjl3p were diminished. Together, these results indicate that the turnover of PtdIns(4)P by phosphatases is essential for autophagosome biogenesis.  相似文献   

6.
The SEC14 gene encodes an essential phosphatidylinositol (PtdIns) transfer protein required for formation of Golgi-derived secretory vesicles in yeast. Suppressor mutations that rescue temperature-sensitive sec14 mutants provide an approach for determining the role of Sec14p in secretion. One suppressor, sac1-22, causes accumulation of PtdIns(4)P. SAC1 encodes a phosphatase that can hydrolyze PtdIns(4)P and certain other phosphoinositides. These findings suggest that PtdIns(4)P is limiting in sec14 cells and that elevation of PtdIns(4)P production can suppress the secretory defect. Correspondingly, we found that PtdIns(4)P levels were decreased significantly in sec14-3 mutants shifted to 37 degrees C and that sec14-3 cells could grow at an otherwise nonpermissive temperature (34 degrees C) when carrying a plasmid overexpressing PIK1, encoding one of two essential PtdIns 4-kinases. This effect is specific because overexpression of the other PtdIns 4-kinase gene (STT4) or a PtdIns 3-kinase gene (VPS34) did not rescue sec14-3 cells. To further address Pik1p function in secretion, two different pik1(ts) mutants were examined. Upon shift to restrictive temperature (37 degrees C), the PtdIns(4)P levels dropped by about 60% in both pik1(ts) strains within 1 h. During the same period, cells displayed a reduction (40-50%) in release of a secreted enzyme (invertase). However, similar treatment did not effect maturation of a vacuolar enzyme (carboxypeptidase Y). These findings indicate that, first, PtdIns(4)P limitation is a major contributing factor to the secretory defect in sec14 cells; second, Sec14p function is coupled to the action of Pik1p, and; third, PtdIns(4)P has an important role in the Golgi-to-plasma membrane stage of secretion.  相似文献   

7.
Phosphoinositide signalling through the eukaryotic plasma membrane makes essential contributions to many processes, including remodelling of the actin cytoskeleton, vesicle trafficking and signalling from the cell surface. A proteome-wide screen performed in Saccharomyces cerevisiae revealed that Ypp1 interacts physically with the plasma-membrane-associated phosphoinositide 4-kinase, Stt4. In the present study, we demonstrate that phenotypes of ypp1 and stt4 conditional mutants are identical, namely osmoremedial temperature sensitivity, hypersensitivity to cell wall destabilizers and defective organization of actin. We go on to show that overexpression of STT4 suppresses the temperature-sensitive growth defect of ypp1 mutants. In contrast, overexpression of genes encoding the other two phosphoinositide 4-kinases in yeast, Pik1 and Lsb6, do not suppress this phenotype. This implies a role for Ypp1 in Stt4-dependent events at the plasma membrane, as opposed to a general role in overall metabolism of phosphatidylinositol 4-phosphate. Use of a pleckstrin homology domain sensor reveals that there are substantially fewer plasma-membrane-associated 4-phosphorylated phosphoinositides in ypp1 mutants in comparison with wild-type cells. Furthermore, in vivo labelling with [(3)H]inositol indicates a dramatic reduction in the level of phosphatidylinositol 4-phosphate in ypp1 mutants. This is the principal cause of lethality under non-permissive conditions in ypp1 mutants, as limiting the activity of the Sac1 phosphoinositide 4-phosphate phosphatase leads to restoration of viability. Additionally, the endocytic defect associated with elevated levels of PtdIns4P in sac1Delta cells is restored in combination with a ypp1 mutant, consistent with the opposing effects that these two mutations have on levels of this phosphoinositide.  相似文献   

8.
Autophagy is a degradative cellular pathway that protects eukaryotic cells from starvation/stress. Phosphatidylinositol 4-kinases, Pik1p and Stt4p, are indispensable for autophagy in budding yeast, but participation of PtdIns-4 kinases and their product, phosphatidylinositol 4-phosphate [PtdIns(4)P], is not understood. Nanoscale membrane lipid distribution analysis showed PtdIns(4)P is more abundant in yeast autophagosomes in the luminal leaflet than the cytoplasmic leaflet. PtdIns(4)P is confined to the cytoplasmic leaflet of autophagosomal inner and outer membranes in mammalian cells. Using temperature-conditional single PIK1 or STT4 PtdIns 4-kinase mutants, autophagic bodies in the vacuole of PIK1 and STT4 mutant cells dramatically decreased at restrictive temperatures, and the number of autophagosomes in the cytosol of PIK1 mutants cells was also decreased, whereas autophagosome levels of STT4 mutant cells were comparable to that of wild-type and STT4 mutant cells at permissive temperatures. Localization of PtdIns(4)P in the luminal leaflet in the biological membrane is a novel finding, and differences in PtdIns(4)P distribution suggest substantial differences between yeast and mammals. We also demonstrate in this study that Pik1p and Stt4p play essential roles in autophagosome formation and autophagosome–vacuole fusion in yeast cells, respectively.  相似文献   

9.
Interaction of Pik1p and Sjl proteins in membrane trafficking   总被引:2,自引:0,他引:2  
Phosphatidylinositol (PtdIns) phosphates are involved in signal transduction, cytoskeletal organization, and membrane traffic. PtdIns 4-phosphate [PtdIns(4)P], produced in yeast by PtdIns 4-kinase (Pik1p), appears to regulate Golgi secretory function. PtdIns(4)P is also produced by dephosphorylation of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], catalyzed by one of the three yeast Sjl proteins, homologs of the mammalian synaptic vesicle-associated PtdIns(4,5)P2 5-phosphatase, synaptojanin. To determine whether Pik1p and Sjl proteins operate in the same pathway or regulate the same process, we used a genetic approach. Mutation in the PIK1 gene displays synthetic genetic interactions with deletions of individual SJL genes. Deletion of SJL3 gene is synthetically lethal with pik1ts, and deletions of SJL1 or SJL2 genes in pik1ts cells exacerbate the temperature sensitivity, neomycin sensitivity, and defect in invertase secretion. A diminished level of PtdIns(4)P and increased level of PtdIns(4,5)P2 in pik1(ts)sjl1delta and pik1(ts)sjl2delta cells, compared with pik1ts cells, indicate that PtdIns(4)P is specifically required for secretion. Collectively, our results suggest that Pik1p and the Sjl proteins coordinately function to regulate the dynamic phosphorylation-dephosphorylation of the polar heads of phosphoinositides, and this process appears to be important for membrane trafficking pathways.  相似文献   

10.
The phosphoinositide phosphatidylinositol 4-phosphate (PtdIns4P) is an essential signaling lipid that regulates secretion and polarization of the actin cytoskeleton. In Saccharomyces cerevisiae, the PtdIns 4-kinase Stt4 catalyzes the synthesis of PtdIns4P at the plasma membrane (PM). In this paper, we identify and characterize two novel regulatory components of the Stt4 kinase complex, Ypp1 and Efr3. The essential gene YPP1 encodes a conserved protein that colocalizes with Stt4 at cortical punctate structures and regulates the stability of this lipid kinase. Accordingly, Ypp1 interacts with distinct regions on Stt4 that are necessary for the assembly and recruitment of multiple copies of the kinase into phosphoinositide kinase (PIK) patches. We identify the membrane protein Efr3 as an additional component of Stt4 PIK patches. Efr3 is essential for assembly of both Ypp1 and Stt4 at PIK patches. We conclude that Ypp1 and Efr3 are required for the formation and architecture of Stt4 PIK patches and ultimately PM-based PtdIns4P signaling.  相似文献   

11.
The Stt4 phosphatidylinositol 4-kinase has been shown to generate a pool of phosphatidylinositol 4-phosphate (PI4P) at the plasma membrane, critical for actin cytoskeleton organization and cell viability. To further understand the essential role of Stt4-mediated PI4P production, we performed a genetic screen using the stt4(ts) mutation to identify candidate regulators and effectors of PI4P. From this analysis, we identified several genes that have been previously implicated in lipid metabolism. In particular, we observed synthetic lethality when both sphingolipid and PI4P synthesis were modestly diminished. Consistent with these data, we show that the previously characterized phosphoinositide effectors, Slm1 and Slm2, which regulate actin organization, are also necessary for normal sphingolipid metabolism, at least in part through regulation of the calcium/calmodulin-dependent phosphatase calcineurin, which binds directly to both proteins. Additionally, we identify Isc1, an inositol phosphosphingolipid phospholipase C, as an additional target of Slm1 and Slm2 negative regulation. Together, our data suggest that Slm1 and Slm2 define a molecular link between phosphoinositide and sphingolipid signaling and thereby regulate actin cytoskeleton organization.  相似文献   

12.
The requirement of Vps34p, the sole phosphatidylinositol (PI) 3-kinase in Saccharomyces cerevisiae, for protein sorting to the vacuole in yeast has exemplified the essential role for phosphoinositides, phosphorylated derivatives of PI, in membrane trafficking. To better understand mechanisms that regulate PI 3-phosphate [PI(3)P]-mediated signaling, the role of the yeast myotubularin-related PI(3)P phosphatase Ymr1p was investigated. We found that Ymr1p and the synaptojanin-like phosphatase Sjl3p function as key regulators of the localization and levels of PI(3)P. Our data indicated that the ymr1Delta sjl3Delta double mutant aberrantly accumulated PI(3)P and demonstrated a steady-state redistribution of this lipid that leads to enrichment on the vacuolar membrane. This resulted in vacuole protein sorting defects, vacuolar fragmentation, and the misregulation of PI(3)P-specific effectors. Triple deletion of YMR1, SJL2, and SJL3 was lethal, suggesting an essential requirement for phosphatase-mediated PI(3)P regulation. Consistent with this, growth was restored to a ymr1Delta sjl2Delta sjl3Delta triple mutant by a PI(3)P-targeted Sac1p domain chimera (GFP-Sac1DeltaC-FYVE(EEA1)) that returned PI(3)P to levels comparable with wild-type cells. Together, this study demonstrated that Ymr1p, a myotubularin phosphatase family member, functions in the control of PI(3)P-dependent signaling and the maintenance of endosomal system integrity. In addition, this work defined an essential overlapping role for lipid phosphatases in the regulation of 3' phosphoinositides in yeast.  相似文献   

13.
PtdIns4P is a key regulator of the secretory pathway and plays an essential role in trafficking from the Golgi. Our recent work demonstrated that spatial control of PtdIns4P at the ER (endoplasmic reticulum) and Golgi co-ordinates secretion with cell growth. The central elements of this regulation are specific phosphoinositide 4-kinases and the phosphoinositide phosphatase Sac1. Growth-dependent translocation of Sac1 between the ER and Golgi modulates the levels of PtdIns4P and anterograde traffic at the Golgi. In yeast, this mechanism is largely dependent on the availability of glucose, but our recent results in mammalian cells suggest that Sac1 phosphatases play evolutionarily conserved roles in the growth control of secretion. Sac1 lipid phosphatase plays also an essential role in the spatial control of PtdIns4P at the Golgi complex. A restricted pool of PtdIns4P at the TGN (trans-Golgi network) is required for Golgi integrity and for proper lipid and protein sorting. In mammalian cells, the stress-activated MAPK (mitogen-activated protein kinase) p38 appears to play a critical role in transmitting nutrient signals to the phosphoinositide signalling machinery at the ER and Golgi. These results suggest that temporal and spatial integration of metabolic and lipid signalling networks at the Golgi is required for controlling the secretory pathway.  相似文献   

14.
Lee S  Kim S  Nahm M  Kim E  Kim TI  Yoon JH  Lee S 《Molecules and cells》2011,32(5):477-482
Sac1 phosphoinositide (PI) phosphatases are important regulators of PtdIns(4)P turnover at the ER, Golgi, and plasma membrane (PM) and are involved in diverse cellular processes including cytoskeletal organization and vesicular trafficking. Here, we present evidence that Sac1 regulates axon guidance in the embryonic CNS of Drosophila. Sac1 is expressed on three longitudinal axon tracts that are defined by the cell adhesion molecule Fasciclin II (Fas II). Mutations in the sac1 gene cause ectopic midline crossing of Fas II-positive axon tracts. This phenotype is rescued by neuronal expression of wild-type Sac1 but not by a catalytically-inactive mutant. Finally, sac1 displays dosage-sensitive genetic interactions with mutations in the genes that encode the midline repellent Slit and its axonal receptor Robo. Taken together, our results suggest that Sac1-mediated regulation of PIs is critical for Slit/Robo-dependent axon repulsion at the CNS midline.  相似文献   

15.
Signal transduction pathways that co-regulate a given biological process often are organized into networks by molecules that act as coincidence detectors. Phosphoinositides and the Rho-type GTPase Cdc42 regulate overlapping processes in all eukaryotic cells. However, the coincidence detectors that link these pathways into networks remain unknown. Here we show that the p21-activated protein kinase-related kinase Cla4 of yeast integrates signaling by Cdc42 and phosphatidylinositol 4-phosphate (PI4P). We found that the Cla4 pleckstrin homology (PH) domain binds in vitro to several phosphoinositide species. To determine which phosphoinositides regulate Cla4 in vivo, we analyzed phosphatidylinositol kinase mutants (stt4, mss4, and pik1). This indicated that the plasma membrane pool of PI4P, but not phosphatidylinositol 4,5-bisphosphate or the Golgi pool of PI4P, is required for localization of Cla4 to sites of polarized growth. A combination of the Cdc42-binding and PH domains of Cla4 was necessary and sufficient for localization to sites of polarized growth. Point mutations affecting either domain impaired the ability of Cla4 to regulate cell morphogenesis and the mitotic exit network (localization of Lte1). Therefore, Cla4 must retain the ability to bind both Cdc42 and phosphoinositides, the hallmark of a coincidence detector. PI4P may recruit Cla4 to the plasma membrane where Cdc42 activates its kinase activity and refines its localization to cortical sites of polarized growth. In mammalian cells, the myotonic dystrophy-related Cdc42-binding kinase possesses p21-binding and PH domains, suggesting that this kinase may be a coincidence detector of signaling by Cdc42 and phosphoinositides.  相似文献   

16.
BACKGROUND: Phosphoinositides are required for the recruitment of many proteins to both the plasma membrane and the endosome; however, their role in protein targeting to other organelles is less clear. The pleckstrin homology (PH) domains of oxysterol binding protein (OSBP) and its relatives have been shown to bind to the Golgi apparatus in yeast and mammalian cells. Previous in vitro binding studies identified phosphatidylinositol (PtdIns) (4)P and PtdIns(4,5)P(2) as candidate ligands, but it is not known which is recognized in vivo and whether phosphoinositide specificity can account for Golgi-specific targeting. RESULTS: We have examined the distribution of GFP fusions to the PH domain of OSBP and to related PH domains in yeast strains carrying mutations in individual phosphoinositide kinases. We find that Golgi targeting requires the activity of the PtdIns 4-kinase Pik1p but not phosphorylation of PtdIns at the 3 or 5 positions and that a PH domain specific for PtdIns(4,5)P(2) is targeted exclusively to the plasma membrane. However, a mutant version of the OSBP PH domain that does not bind phosphoinositides in vitro still shows some targeting in vivo. This targeting is independent of Pik1p but dependent on the Golgi GTPase Arf1p. CONCLUSIONS: Phosphorylation of PtdIns at the 4 position but not conversion to PtdIns(4,5)P(2) contributes to recruitment of PH domains to the Golgi apparatus. However, potential phosphoinositide ligands for these PH domains are not restricted to the Golgi, and the OSBP PH domain also recognizes a second determinant that is ARF dependent, indicating that organelle specificity reflects a combinatorial interaction.  相似文献   

17.
The Saccharomyces cerevisiae FAB1 gene encodes the sole phosphatidylinositol 3-phosphate [PtdIns(3)P] 5-kinase responsible for synthesis of the polyphosphoinositide PtdIns(3,5)P(2). VAC7 encodes a 128-kDa transmembrane protein that localizes to vacuolar membranes. Both vac7 and fab1 null mutants have dramatically enlarged vacuoles and cannot grow at elevated temperatures. Additionally, vac7Delta mutants have nearly undetectable levels of PtdIns(3,5)P(2), suggesting that Vac7 functions to regulate Fab1 kinase activity. To test this hypothesis, we isolated a fab1 mutant allele that bypasses the requirement for Vac7 in PtdIns(3,5)P(2) production. Expression of this fab1 allele in vac7Delta mutant cells suppresses the temperature sensitivity, vacuolar morphology, and PtdIns(3,5)P(2) defects normally exhibited by vac7Delta mutants. We also identified a mutant allele of FIG4, whose gene product contains a Sac1 polyphosphoinositide phosphatase domain, which suppresses vac7Delta mutant phenotypes. Deletion of FIG4 in vac7Delta mutant cells suppresses the temperature sensitivity and vacuolar morphology defects, and dramatically restores PtdIns(3,5)P(2) levels. These results suggest that generation of PtdIns(3,5)P(2) by the Fab1 lipid kinase is regulated by Vac7, whereas turnover of PtdIns(3,5)P(2) is mediated in part by the Sac1 polyphosphoinositide phosphatase family member Fig4.  相似文献   

18.
During yeast sporulation, internal membrane synthesis ensures that each haploid nucleus is packaged into a spore. Prospore membrane formation requires Spo14p, a phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]-stimulated phospholipase D (PLD), which hydrolyzes phosphatidylcholine (PtdCho) to phosphatidic acid (PtdOH) and choline. We found that both meiosis and spore formation also require the phosphatidylinositol (PtdIns)/PtdCho transport protein Sec14p. Specific ablation of the PtdIns transport activity of Sec14p was sufficient to impair spore formation but not meiosis. Overexpression of Pik1p, a PtdIns 4-kinase, suppressed the sec14-1 meiosis and spore formation defects; conversely, pik1-ts diploids failed to undergo meiosis and spore formation. The PtdIns(4)P 5-kinase, Mss4p, also is essential for spore formation. Use of phosphoinositide-specific GFP-PH domain reporters confirmed that PtdIns(4,5)P2 is enriched in prospore membranes. sec14, pik1, and mss4 mutants displayed decreased Spo14p PLD activity, whereas absence of Spo14p did not affect phosphoinositide levels in vivo, suggesting that formation of PtdIns(4,5)P2 is important for Spo14p activity. Spo14p-generated PtdOH appears to have an essential role in sporulation, because treatment of cells with 1-butanol, which supports Spo14p-catalyzed PtdCho breakdown but leads to production of Cho and Ptd-butanol, blocks spore formation at concentrations where the inert isomer, 2-butanol, has little effect. Thus, rather than a role for PtdOH in stimulating PtdIns(4,5)P2 formation, our findings indicate that during sporulation, Spo14p-mediated PtdOH production functions downstream of Sec14p-, Pik1p-, and Mss4p-dependent PtdIns(4,5)P2 synthesis.  相似文献   

19.
The yeast protein Sac1p is involved in a range of cellular functions, including inositol metabolism, actin cytoskeletal organization, endoplasmic reticulum ATP transport, phosphatidylinositol-phosphatidylcholine transfer protein function, and multiple-drug sensitivity. The activity of Sac1p and its relationship to these phenotypes are unresolved. We show here that the regulation of lipid phosphoinositides in sac1 mutants is defective, resulting in altered levels of all lipid phos- phoinositides, particularly phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. We have identified two proteins with homology to Sac1p that can suppress drug sensitivity and also restore the levels of the phosphoinositides in sac1 mutants. Overexpression of truncated forms of these suppressor genes confirmed that suppression was due to phosphoinositide phosphatase activity within these proteins. We have now demonstrated this activity for Sac1p and have characterized its specificity. The in vitro phosphatase activity and specificity of Sac1p were not altered by some mutations. Indeed, in vivo mutant Sac1p phosphatase activity also appeared unchanged under conditions in which cells were drug-resistant. However, under different growth conditions, both drug sensitivity and the phosphatase defect were manifest. It is concluded that SAC1 encodes a novel lipid phosphoinositide phosphatase in which specific mutations can cause the sac1 phenotypes by altering the in vivo regulation of the protein rather than by destroying phosphatase activity.  相似文献   

20.
The Saccharomyces cerevisiae SAC1 gene was identified via independent analyses of mutations that modulate yeast actin function and alleviate the essential requirement for phosphatidylinositol transfer protein (Sec14p) activity in Golgi secretory function. The SAC1 gene product (Sac1p) is an integral membrane protein of the endoplasmic reticulum and the Golgi complex. Sac1p shares primary sequence homology with a subfamily of cytosolic/peripheral membrane phosphoinositide phosphatases, the synaptojanins, and these Sac1 domains define novel phosphoinositide phosphatase modules. We now report the characterization of a rat counterpart of Sac1p. Rat Sac1 is a ubiquitously expressed 65-kDa integral membrane protein of the endoplasmic reticulum that is found at particularly high levels in cerebellar Purkinje cells. Like Sac1p, rat Sac1 exhibits intrinsic phosphoinositide phosphatase activity directed toward phosphatidylinositol 3-phosphate, phosphatidylinositol 4-phosphate, and phosphatidylinositol 3,5-bisphosphate substrates, and we identify mutant rat sac1 alleles that evoke substrate-specific defects in this enzymatic activity. Finally, rat Sac1 expression in Deltasac1 yeast strains complements a wide phenotypes associated with Sac1p insufficiency. Biochemical and in vivo data indicate that rat Sac1 phosphatidylinositol-4-phosphate phosphatase activity, but not its phosphatidylinositol-3-phosphate or phosphatidylinositol-3, 5-bisphosphate phosphatase activities, is essential for the heterologous complementation of Sac1p defects in vivo. Thus, yeast Sac1p and rat Sac1 are integral membrane lipid phosphatases that play evolutionary conserved roles in eukaryotic cell physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号