首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our aim was to measure the influence of sarcoplasmic reticulum (SR) calcium content ([Ca](SRT)) and free SR [Ca] ([Ca](SR)) on the fraction of SR calcium released during voltage clamp steps in isolated rabbit ventricular myocytes. [Ca](SRT), as measured by caffeine application, was progressively increased by conditioning pulses. Sodium was absent in both the intracellular and in the extracellular solutions to block sodium/calcium exchange. Total cytosolic calcium flux during the transient was inferred from I(Ca), [Ca](SRT), [Ca](i), and cellular buffering characteristics. Fluxes via the calcium current (I(Ca)), the SR calcium pump, and passive leak from the SR were evaluated to determine SR calcium release flux (J(rel)). Excitation-contraction (EC) coupling was characterized with respect to both gain (integral J(rel)/integral I(Ca)) and fractional SR calcium release. Both parameters were virtually zero for a small, but measurable [Ca](SRT). Gain and fractional SR calcium release increased steeply and nonlinearly with both [Ca](SRT) and [Ca](SR). We conclude that potentiation of EC coupling can be correlated with both [Ca](SRT) and [Ca](SR). While fractional SR calcium release was not linearly dependent upon [Ca](SR), intra-SR calcium may play a crucial role in regulating the SR calcium release process.  相似文献   

2.
Previous studies have shown lower systolic intracellular Ca(2+) concentrations ([Ca(2+)](i)) and reduced sarcoplasmic reticulum (SR)-releasable Ca(2+) contents in myocytes isolated from rat hearts 3 wk after moderate myocardial infarction (MI). Ca(2+) entry via L-type Ca(2+) channels was normal, but that via reverse Na(+)/Ca(2+) exchange was depressed in 3-wk MI myocytes. To elucidate mechanisms of reduced SR Ca(2+) contents in MI myocytes, we measured SR Ca(2+) uptake and SR Ca(2+) leak in situ, i.e., in intact cardiac myocytes. For sham and MI myocytes, we first demonstrated that caffeine application to release SR Ca(2+) and inhibit SR Ca(2+) uptake resulted in a 10-fold prolongation of half-time (t(1/2)) of [Ca(2+)](i) transient decline compared with that measured during a normal twitch. These observations indicate that early decline of the [Ca(2+)](i) transient during a twitch in rat myocytes was primarily mediated by SR Ca(2+)-ATPase and that the t(1/2) of [Ca(2+)](i) decline is a measure of SR Ca(2+) uptake in situ. At 5.0 mM extracellular Ca(2+), systolic [Ca(2+)](i) was significantly (P 相似文献   

3.
Measurements of sarcoplasmic reticulum (SR) Ca(2+) uptake were made from aliquots of dissociated permeabilized ventricular myocytes using fura 2. Equilibration with 10 mM oxalate ensured a reproducible exponential decline of [Ca(2+)] from 600 nM to a steady state of 100-200 nM after addition of Ca(2+). In the presence of 5 microM ruthenium red, which blocks the ryanodine receptor, the time course of the decline of [Ca(2+)] can be modeled by a Ca(2+)-dependent uptake process and a fixed Ca(2+) leak. Partial inhibition of the Ca(2+) pump with 1 microM cyclopiazonic acid or 50 nM thapsigargin reduced the time constant for Ca(2+) uptake but did not affect the SR Ca(2+) leak. Addition of 10 mM inorganic phosphate (P(i)) decreased the rate of Ca(2+) accumulation by the SR and increased the Ca(2+) leak rate. This effect was reversed on addition of 10 mM phosphocreatine. 10 mM P(i) had no effect on Ca(2+) leak from the SR after complete inhibition of the Ca(2+) pump. In conclusion, P(i) decreases the Ca(2+) uptake capacity of cardiac SR via a decrease in pump rate and an increase in Ca(2+) pump-dependent Ca(2+) leak.  相似文献   

4.
We tested the hypothesis that increased Sarcoplasmic reticulum (SR) Ca content ([Ca](SRT)) in phospholamban knockout mice (PLB-KO) is because of increased SR Ca pump efficiency defined by the steady-state SR [Ca] gradient. The time course of thapsigargin-sensitive ATP-dependent (45)Ca influx into and efflux out of cardiac SR vesicles from PLB-KO and wild-type (WT) mice was measured at 100 nm free [Ca]. We found that PLB decreased the initial SR Ca uptake rate (0.13 versus 0.31 nmol/mg/s) and decreased steady-state (45)Ca content (0.9 versus 4.1 nmol/mg protein). Furthermore, at similar total SR [Ca], the pump-mediated Ca efflux rate was higher in WT (0.065 versus 0.037 nmol/mg/s). The pump-independent leak rate constant (k(leak)) was also measured at 100 nm free [Ca]. The results indicate that k(leak) was < 1% of pump-mediated backflux and was not different among nonpentameric mutant PLB (PLB-C41F), WT pentameric PLB (same expression level), and PLB-KO. Therefore differences in passive SR Ca leak cannot be the cause of the higher thapsigargin-sensitive Ca efflux from the WT membranes. We conclude that the decreased total SR [Ca] in WT mice is caused by decreased SR Ca influx rate, an increased Ca-pump backflux, and unaltered leak. Based upon both thermodynamic and kinetic analysis, we conclude that PLB decreases the energetic efficiency of the SR Ca pump.  相似文献   

5.
The sarcoplasmic reticulum (SR) of cardiac myocytes loses Ca during rest. In the present study, we estimated the rest-dependent unidirectional Ca efflux from the SR in intact rabbit and rat ventricular myocytes. We determined the time course of depletion of the SR Ca content (assessed as the amount of Ca released by caffeine) after inhibition of the SR Ca-ATPase by thapsigargin. Before rest intervals in Na-containing, Ca-free solution, a 3-min preperfusion with 0Na,0Ca solution was performed to deplete Nai but keep the SR Ca content constant. The decrease in Nai should stimulate Ca efflux via Na/Ca exchange when Nao is reintroduced. Thapsigargin treatment was limited to the last 2 min of preperfusion with 0Na,0Ca solution to minimize SR Ca loss before addition of Na, while attaining complete block of the SR Ca pump. Total SR Ca content was estimated from the [Ca]i transient evoked by caffeine, taking into account passive cellular Ca buffering. The time constants for SR Ca loss after thapsigargin were 385 and 355 s, whereas the pre-rest SR Ca content was estimated to be 106 and 114 microM (mumol/l nonmitochondrial cell volume) in rabbit and rat myocytes, respectively. The unidirectional Ca efflux from the SR was similar in the two cell types (rabbit: 0.27 microM s-1; rat: 0.32 microM s-1). These values are also comparable with that estimated from elementary Ca release events ("Ca sparks," 0.2-0.8 microM s-1). Thus, resting leak of Ca from SR may be primarily via occasional openings of SR Ca release channels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The relative contributions of Ca(2+) transporters to intracellular Ca(2+) concentration ([Ca(2+)](i)) decline associated with twitch relaxation were analyzed in intact ventricular myocytes from developing and adult rats. This was accomplished by estimation of individual integrated Ca(2+) fluxes with the use of kinetic parameters calculated from [Ca(2+)](i) measurements during twitches and caffeine-evoked contractures, and from myocardial passive Ca(2+) buffering data. Our main findings were the following: 1) twitch relaxation and [Ca(2+)](i) decline were significantly slower during the first postnatal week than in adults, 2) inhibition of sarcoplasmic reticulum (SR) Ca(2+) accumulation resulted in faster [Ca(2+)](i) decline in young cells than in adult cells, 3) the contributions of the SR Ca(2+) uptake and Na(+)/Ca(2+) exchange (NCX) to twitch relaxation increased from ~75 to 92%, and decreased from 24 to 5%, respectively, from birth to adulthood, and 4) Ca(2+) transport by the sarcolemmal Ca(2+)-ATPase was apparently increased in neonates. Our data indicate that despite a marked increase in NCX contribution to cell relaxation in immature rats, the SR Ca(2+)-ATPase appears to be the predominant transporter responsible for relaxation-associated [Ca(2+)](i) decline from birth to adulthood.  相似文献   

7.
Despa S  Bers DM 《Biophysical journal》2003,84(6):4157-4166
Na/K pump current (I(pump)) and intracellular Na concentration ([Na](i)) were measured simultaneously in voltage-clamped rabbit ventricular myocytes, under conditions where [Na](i) is controlled mainly by membrane transport. Upon abrupt pump reactivation (after 10-12 min blockade), I(pump) decays in two phases. Initially, I(pump) declines with little [Na](i) change, whereas the second phase is accompanied by [Na](i) decline. Initial I(pump) sag was still present at external [K] = 15 mM, but prevented by [Na](i) approximately 100 mM. Initial I(pump) sag might be explained by subsarcolemmal [Na](i) ([Na](SL)) depletion produced by rapid Na extrusion and I(pump). Brief episodes of pump blockade allowed [Na](SL) repletion, since peak postblockade I(pump) exceeded I(pump) at the end of previous activation (without appreciably altered global [Na](i)). The apparent K(m) for [Na](i) was higher for continuous I(pump) activation than peak I(pump) (14.1 +/- 0.2 vs. 11.2 +/- 0.2 mM), whereas that based on d[Na](i)/dt matched peak I(pump) (11.6 +/- 0.3 mM). [Na](SL) depletion (vs. [Na](i)) could be as high as 3 mM for [Na](i) approximately 18-20 mM. A simple diffusion model indicates that such [Na](SL) depletion requires a Na diffusion coefficient 10(3)- to 10(4)-fold below that expected in bulk cytoplasm (although this could be subsarcolemmal only). I(pump) integrals and [Na](i) decline were used to estimate intracellular Na buffering, which is slight (1.39 +/- 0.09).  相似文献   

8.
In skeletal muscle, the release of calcium (Ca(2+)) by ryanodine sensitive sarcoplasmic reticulum (SR) Ca(2+) release channels (i.e., ryanodine receptors; RyR1s) is the primary determinant of contractile filament activation. Much attention has been focused on calsequestrin (CASQ1) and its role in SR Ca(2+) buffering as well as its potential for modulating RyR1, the L-type Ca(2+) channel (dihydropyridine receptor, DHPR) and other sarcolemmal channels through sensing luminal [Ca(2+)]. The genetic ablation of CASQ1 expression results in significant alterations in SR Ca(2+) content and SR Ca(2+) release especially during prolonged activation. While these findings predict a significant loss-of-function phenotype in vivo, little information on functional status of CASQ1 null mice is available. We examined fast muscle in vivo and in vitro and identified significant deficits in functional performance that indicate an inability to sustain contractile activation. In single CASQ1 null skeletal myofibers we demonstrate a decrease in voltage dependent RyR Ca(2+) release with single action potentials and a collapse of the Ca(2+) release with repetitive trains. Under voltage clamp, SR Ca(2+) release flux and total SR Ca(2+) release are significantly reduced in CASQ1 null myofibers. The decrease in peak Ca(2+) release flux appears to be solely due to elimination of the slowly decaying component of SR Ca(2+) release, whereas the rapidly decaying component of SR Ca(2+) release is not altered in either amplitude or time course in CASQ1 null fibers. Finally, intra-SR [Ca(2+)] during ligand and voltage activation of RyR1 revealed a significant decrease in the SR[Ca(2+)](free) in intact CASQ1 null fibers and a increase in the release and uptake kinetics consistent with a depletion of intra-SR Ca(2+) buffering capacity. Taken together we have revealed that the genetic ablation of CASQ1 expression results in significant functional deficits consistent with a decrease in the slowly decaying component of SR Ca(2+) release.  相似文献   

9.
p21-Activated kinase-1 (Pak1) is a serine-threonine kinase that associates with and activates protein phosphatase 2A in adult ventricular myocytes and, thereby, induces increased Ca2+ sensitivity of skinned-fiber tension development mediated by dephosphorylation of myofilament proteins (Ke Y, Wang L, Pyle WG, de Tombe PP, Solaro RJ. Circ Res 94: 194-200, 2004). We test the hypothesis that activation of Pak1 also moderates cardiac contractility through regulation of intracellular Ca2+ fluxes. We found no difference in field-stimulated intracellular Ca2+ concentration ([Ca2+]i) transient amplitude and extent of cell shortening between myocytes expressing constitutively active Pak1 (CA-Pak1) and controls expressing LacZ; however, time to peak shortening was significantly faster and rate of [Ca2+]i decay and time of relengthening were slower. Neither caffeine-releasable sarcoplasmic reticulum (SR) Ca2+ content nor fractional release was different in CA-Pak1 myocytes compared with controls. Isoproterenol application revealed a significantly blunted increase in [Ca2+]i transient amplitude, as well as a slowed rate of [Ca2+]i decay, increased SR Ca2+ content, and increased cell shortening, in CA-Pak1 myocytes. We found no significant change in phospholamban phosphorylation at Ser16 or Thr17 in CA-Pak1 myocytes. Analysis of cardiac troponin I revealed a significant reduction in phosphorylated species that are primarily attributable to Ser(23/24) in CA-Pak1 myocytes. Nonstimulated, spontaneous SR Ca2+ release sparks were significantly smaller in amplitude in CA-Pak1 than LacZ myocytes. Propagation of spontaneous Ca2+ waves resulting from SR Ca2+ overload was significantly slower in CA-Pak1 myocytes. Our data indicate that CA-Pak1 expression has significant effects on ventricular myocyte contractility through altered myofilament Ca2+ sensitivity and modification of the [Ca2+]i transient.  相似文献   

10.
Ca(2+) influx through the L-type Ca(2+) channels is the primary pathway for triggering the Ca(2+) release from the sarcoplasmic reticulum (SR). However, several observations have shown that Ca(2+) influx via the reverse mode of the Na(+)-Ca(2+) exchanger current (I(Na-Ca)) could also trigger the Ca(2+) release. The aim of the present study was to quantitate the role of this alternative pathway of Ca(2+) influx using a mathematical model. In our model 20% of the fast sodium channels and the Na(+)-Ca(2+) exchanger molecules are located in the restricted subspace between the sarcolemma and the SR where triggering of the calcium-induced calcium release (CICR) takes place. After determining the strengths of the alternative triggers with simulated voltage-clamps in varied membrane voltages and resting [Na](i) values, we studied the CICR in simulated action potentials, where fast sodium channel current contributes [Na](i) of the subspace. In low initial [Na](i) the Ca(2+) influx via the L-type Ca(2+) channels is the major trigger for Ca(2+) release from the SR, and the Ca(2+) influx via the reverse mode of the Na(+)-Ca(2+) exchanger cannot trigger the CICR. However, depending on the initial [Na](i), the contribution of the Ca(2+) entry via the exchanger may account for 25% (at [Na](i) = 10 mM) to nearly 100% ([Na](i) = 30 mM) of the trigger Ca(2+). The shift of the main trigger from L-type calcium channels to the exchanger reduced the delay between the action potential upstroke and the intracellular calcium transient. This may contribute to the function of the myocyte in physiological situations where [Na](i) is elevated. These main results remain the same when using different estimates for the most crucial parameters in the modeling or different models for the exchanger.  相似文献   

11.
Intracellular passive Ca2+, buffering was measured in voltage-clamped rat ventricular myocytes. Cells were loaded with indo-1 (K+ salt) to an estimated cytosolic concentration of 44 +/- 5 microM (Mean +/- SEM, n = 5), and accessible cell volume was estimated to be 24.5 +/- 3.6 pl. Ca2+ transport by the sarcoplasmic reticulum (SR) Ca-ATPase and sarcolemmal Na-Ca exchange was inhibited by treatment with thapsigargin and Na-free solutions, respectively. Extracellular [Ca2+] was maintained at 10 mM and, in some experiments, the mitochondrial uncoupler "1799" was used to assess the degree of mitochondrial Ca2+ uptake. To perform single cell titrations, intracellular Ca2+ ([Ca2+]i) was increased progressively by a train of depolarizing voltage clamp pulses from -40 to +10 mV. The total Ca2+ gain with each pulse was calculated by integration of the Ca current and then analyzed as a function of the rapid change in [Ca2+]i during the pulse. In the range of [Ca2+]i from 0.1 to 2 microM, overall cell buffering was well described as a single lumped Michaelis-Menten type species with an apparent dissociation constant, KD, of of 0.63 +/- 0.07 microM (n = 5) and a binding capacity, Bmax, of 162 +/- 15 mumol/l cell H2O. Correction for buffering attributable to cytosolic indo-1 gives intrinsic cytosolic Ca2+ buffering parameters of KD = 0.96 +/- 0.18 microM and Bmax = 123 +/- 18 mumol/l cell H2O. The fast Ca2+ buffering measured in this manner agrees reasonably with the characteristics of known rapid Ca buffers (e.g., troponin C, calmodulin, and SR Ca-ATPase), but is only about half of the total Ca2+ buffering measured at equilibrium. Inclusion of slow Ca buffers such as the Ca/Mg sites on troponin C and myosin can account for the differences between fast Ca2+ buffering in phase with the Ca current measured in the present experiments and equilibrium Ca2+ buffering. The present data indicate that a rapid rise of [Ca2+]i from 0.1 to 1 microM during a contraction requires approximately 50 microM Ca2+ to be added to the cytosol.  相似文献   

12.
Early cardiovascular changes evoked by pressure overload (PO) may reveal adaptive strategies that allow immediate survival to the increased hemodynamic load. In this study, systolic and diastolic Ca(2+) cycling was analyzed in left ventricular rat myocytes before (day 2, PO-2d group) and after (day 7, PO-7d group) development of hypertrophy subsequent to aortic constriction, as well as in myocytes from time-matched sham-operated rats (sham group). Ca(2+) transient amplitude was significantly augmented in the PO-2d group. In the PO-7d group, intracellular Ca(2+) concentration ([Ca(2+)](i)) was reduced during diastole, and mechanical twitch relaxation (but not [Ca(2+)](i) decline) was slowed. In PO groups, fractional sarcoplasmic reticulum (SR) Ca(2+) release at a twitch, SR Ca(2+) content, SR Ca(2+) loss during diastole, and SR-dependent integrated Ca(2+) flux during twitch relaxation were significantly greater than in sham-operated groups, whereas the relaxation-associated Ca(2+) flux carried by the Na(+)/Ca(2+) exchanger was not significantly changed. In the PO-7d group, mRNA levels of cardiac isoforms of SR Ca(2+)-ATPase (SERCA2a), phospholamban, calsequestrin, ryanodine receptor, and NCX were not significantly altered, but the SERCA2a-to-phospholamban ratio was increased 2.5-fold. Moreover, greater sensitivity to the inotropic effects of the beta-adrenoceptor agonist isoproterenol was observed in the PO-7d group. The results indicate enhanced Ca(2+) cycling between SR and cytosol early after PO imposition, even before hypertrophy development. Increase in SR Ca(2+) uptake may contribute to enhancement of excitation-contraction coupling (augmented SR Ca(2+) content and release) and protection against arrhythmogenesis due to buildup of [Ca(2+)](i) during diastole.  相似文献   

13.
The functional consequences of overexpression of rat heart Na+/Ca2+ exchanger (NCX1) were investigated in adult rat myocytes in primary culture. When maintained under continued electrical field stimulation conditions, cultured adult rat myocytes retained normal contractile function compared with freshly isolated myocytes for at least 48 h. Infection of myocytes by adenovirus expressing green fluorescent protein (GFP) resulted in >95% infection as ascertained by GFP fluorescence, but contraction amplitude at 6-, 24-, and 48-h postinfection was not affected. When they were examined 48 h after infection, myocytes infected by adenovirus expressing both GFP and NCX1 had similar cell sizes but exhibited significantly altered contraction amplitudes and intracellular Ca2+ concentration ([Ca2+]i) transients, and lower resting and diastolic [Ca2+]i when compared with myocytes infected by the adenovirus expressing GFP alone. The effects of NCX1 overexpression on sarcoplasmic reticulum (SR) Ca2+ content depended on extracellular Ca2+ concentration ([Ca2+]o), with a decrease at low [Ca2+]o and an increase at high [Ca2+]o. The half-times for [Ca2+]i transient decline were similar, suggesting little to no changes in SR Ca2+-ATPase activity. Western blots demonstrated a significant (P < or = 0.02) threefold increase in NCX1 but no changes in SR Ca2+-ATPase and calsequestrin abundance in myocytes 48 h after infection by adenovirus expressing both GFP and NCX1 compared with those infected by adenovirus expressing GFP alone. We conclude that overexpression of NCX1 in adult rat myocytes incubated at high [Ca2+]o resulted in enhanced Ca2+ influx via reverse NCX1 function, as evidenced by greater SR Ca2+ content, larger twitch, and [Ca2+]i transient amplitudes. Forward NCX1 function was also increased, as indicated by lower resting and diastolic [Ca2+]i.  相似文献   

14.
Increased calcium influx in dystrophic muscle   总被引:16,自引:0,他引:16  
We examined pathways which might result in the elevated resting free calcium [( Ca2+]i) levels observed in dystrophic mouse (mdx) skeletal muscle fibers and myotubes and human Duchenne muscular dystrophy myotubes. We found that mdx fibers, loaded with the calcium indicator fura-2, were less able to regulate [Ca2+]i levels in the region near the sarcolemma. Increased calcium influx or decreased efflux could lead to elevated [Ca2+]i levels. Calcium transient decay times were identical in normal and mdx fibers if resting [Ca2+]i levels were similar, suggesting that calcium-sequestering mechanisms are not altered in dystrophic muscle, but are slowed by the higher resting [Ca2+]i. The defect appears to be specific for calcium since resting free sodium levels and sodium influx rates in the absence of Na+/K(+)-ATPase activity were identical in normal and dystrophic cells when measured with sodium-binding benzofuran isophthalate. Calcium leak channels, whose opening probabilities (Po) were voltage independent, could be the major calcium influx pathway at rest. We have shown previously that calcium leak channel Po is significantly higher in dystrophic myotubes. These leak channels were selective for calcium over sodium under physiological conditions. Agents that increased leak channel activity also increased [Ca2+]i in fibers and myotubes. These results suggest that increased calcium influx, as a result of increased leak channel activity, could result in the elevated [Ca2+]i in dystrophic muscle.  相似文献   

15.
16.
We have developed a detailed mathematical model for Ca2+ handling and ionic currents in the rabbit ventricular myocyte. The objective was to develop a model that: 1), accurately reflects Ca-dependent Ca release; 2), uses realistic parameters, particularly those that concern Ca transport from the cytosol; 3), comes to steady state; 4), simulates basic excitation-contraction coupling phenomena; and 5), runs on a normal desktop computer. The model includes the following novel features: 1), the addition of a subsarcolemmal compartment to the other two commonly formulated cytosolic compartments (junctional and bulk) because ion channels in the membrane sense ion concentrations that differ from bulk; 2), the use of realistic cytosolic Ca buffering parameters; 3), a reversible sarcoplasmic reticulum (SR) Ca pump; 4), a scheme for Na-Ca exchange transport that is [Na]i dependent and allosterically regulated by [Ca]i; and 5), a practical model of SR Ca release including both inactivation/adaptation and SR Ca load dependence. The data describe normal electrical activity and Ca handling characteristics of the cardiac myocyte and the SR Ca load dependence of these processes. The model includes a realistic balance of Ca removal mechanisms (e.g., SR Ca pump versus Na-Ca exchange), and the phenomena of rest decay and frequency-dependent inotropy. A particular emphasis is placed upon reproducing the nonlinear dependence of gain and fractional SR Ca release upon SR Ca load. We conclude that this model is more robust than many previously existing models and reproduces many experimental results using parameters based largely on experimental measurements in myocytes.  相似文献   

17.
Calcium leak from intracellular stores--the enigma of calcium signalling   总被引:2,自引:0,他引:2  
Wherever you travel through the cytoplasm of the cells you will find organelles with internal [Ca(2+)] levels higher than in the surrounding cytosol. This is particularly true of the endoplasmic reticulum (ER) (or sarcoplasmic reticulum (SR) in muscle cells); such organelles serve as the main sources of releasable Ca(2+) for cytosolic cellular signalling. Calcium pumps of the SERCA family (sarcoplasmic and endoplasmic reticulum calcium ATP-ases) import calcium into the organelle lumen. The other mechanism that is responsible for the steady state calcium level within the lumen of ER or SR is a calcium leak that balances the influx created by the pumps. The leak remains the most enigmatic of the processes involved in calcium regulation. The molecular nature of the leak mechanism is not known. The basal leak is a relatively slow process, which is difficult to investigate and which is easily outmatched (both in the amplitude of calcium responses and in attractiveness to experimenters) by substantially faster second messenger-induced release. Nevertheless, information on the properties of the calcium leak, although thinly scattered through the pages of PubMed, has been slowly accumulating. In this review we will discuss the properties of the calcium leak and speculate about possible mechanisms, which could mediate this process.  相似文献   

18.
Simulation of calcium sparks in cut skeletal muscle fibers of the frog   总被引:7,自引:0,他引:7  
Spark mass, the volume integral of Delta F/F, was investigated theoretically and with simulations. These studies show that the amount of Ca2+ bound to fluo-3 is proportional to mass times the total concentration of fluo-3 ([fluo-3T]); the proportionality constant depends on resting Ca2+ concentration ([Ca2+]R). In the simulation of a Ca2+ spark in an intact frog fiber with [fluo-3T] = 100 microM, fluo-3 captures approximately one-fourth of the Ca2+ released from the sarcoplasmic reticulum (SR). Since mass in cut fibers is several times that in intact fibers, both with similar values of [fluo-3T] and [Ca2+]R, it seems likely that SR Ca2+ release is larger in cut fiber sparks or that fluo-3 is able to capture a larger fraction of the released Ca2+ in cut fibers, perhaps because of reduced intrinsic Ca2+ buffering. Computer simulations were used to identify these and other factors that may underlie the differences in mass and other properties of sparks in intact and cut fibers. Our spark model, which successfully simulates calcium sparks in intact fibers, was modified to reflect the conditions of cut fiber measurements. The results show that, if the protein Ca2+-buffering power of myoplasm is the same as that in intact fibers, the Ca2+ source flux underlying a spark in cut fibers is 5-10 times that in intact fibers. Smaller source fluxes are required for less buffer. In the extreme case in which Ca2+ binding to troponin is zero, the source flux needs to be 3-5 times that in intact fibers. An increased Ca2+ source flux could arise from an increase in Ca2+ flux through one ryanodine receptor (RYR) or an increase in the number of active RYRs per spark, or both. These results indicate that the gating of RYRs, or their apparent single channel Ca2+ flux, is different in frog cut fibers--and, perhaps, in other disrupted preparations--than in intact fibers.  相似文献   

19.
The cardiac sarcolemmal Na-Ca exchanger (NCX) is allosterically regulated by [Ca](i) such that when [Ca](i) is low, NCX current (I(NCX)) deactivates. In this study, we used membrane potential (E(m)) and I(NCX) to control Ca entry into and Ca efflux from intact cardiac myocytes to investigate whether this allosteric regulation (Ca activation) occurs with [Ca](i) in the physiological range. In the absence of Ca activation, the electrochemical effect of increasing [Ca](i) would be to increase inward I(NCX) (Ca efflux) and to decrease outward I(NCX). On the other hand, Ca activation would increase I(NCX) in both directions. Thus, we attributed [Ca](i)-dependent increases in outward I(NCX) to allosteric regulation. Ca activation of I(NCX) was observed in ferret myocytes but not in wild-type mouse myocytes, suggesting that Ca regulation of NCX may be species dependent. We also studied transgenic mouse myocytes overexpressing either normal canine NCX or this same canine NCX lacking Ca regulation (Delta680-685). Animals with the normal canine NCX transgene showed Ca activation, whereas animals with the mutant transgene did not, confirming the role of this region in the process. In native ferret cells and in mice with expressed canine NCX, allosteric regulation by Ca occurs under physiological conditions (K(mCaAct) = 125 +/- 16 nM SEM approximately resting [Ca](i)). This, along with the observation that no delay was observed between measured [Ca](i) and activation of I(NCX) under our conditions, suggests that beat to beat changes in NCX function can occur in vivo. These changes in the I(NCX) activation state may influence SR Ca load and resting [Ca](i), helping to fine tune Ca influx and efflux from cells under both normal and pathophysiological conditions. Our failure to observe Ca activation in mouse myocytes may be due to either the extent of Ca regulation or to a difference in K(mCaAct) from other species. Model predictions for Ca activation, on which our estimates of K(mCaAct) are based, confirm that Ca activation strongly influences outward I(NCX), explaining why it increases rather than declines with increasing [Ca](i).  相似文献   

20.
In cardiac hypertrophy and failure it has been shown that the amount of Na/Ca exchanger protein can increase. Several studies have investigated this modification in overt heart failure. However, the role of Na/Ca exchanger overexpression during the development of hypertrophy is unknown. To address this question we investigated Ca2+ regulation in an early stage of cardiac hypertrophy before signs of heart failure occurred and evaluated the role of Na/Ca exchanger overexpression. Cardiac hypertrophy was induced by a constant infusion of angiotensin II (Ang, 1 microg/min/kg) via an osmotic pump for 14 days. Thereafter, ventricular myocytes from either wild type (NON) or transgenic mice overexpressing the Na/Ca exchanger (TR) were isolated. Myocytes were loaded with indo-1 AM or fluo-4 AM to monitor cytoplasmic [Ca2+] with all experiments performed at 37 degrees C. In myocytes exposed to Ang there was an increase in cell capacitance of more than 20% indicating cellular hypertrophy. Ca2+ transients were prolonged in hypertrophied NON myocytes but not in TR myocytes. Action potentials had a less negative plateau in TR myocytes. Sarcoplasmic reticulum (SR) Ca2+ content, measured using rapid caffeine application, was greater in TR myocytes but unaffected by hypertrophy. Ca2+ spark frequency was significantly greater in TR. Na/Ca exchanger overexpression prevented the prolongation of the Ca2+ transient observed in hypertrophy and maintained a similar SR Ca2+ leak suggesting a compensatory role in Ca2+ regulation in hypertrophied cardiac myocytes from transgenic mice. We suggest this compensatory effect is mediated by increased SR Ca2+ content and faster Ca2+ removal via the Na/Ca exchanger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号