首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From the liver of fish Dasyatis akajei, ferritin has been isolated by thermal denaturation and ammonium sulfate fractionation and then further purified by anion exchange chromatography and gel exclusion chromatography. The molecular weight of the liver ferritin of D. akajei (DALF) was measured to be 400 kDa by PAGE. Moreover, SDS-PAGE experimentation indicates that protein shell of DALF consists of the H and L subunits with molecular weight of 18 and 13 kDa, respectively. Using isoelectric focusing with pH ranging from 5.0 to 6.0, the ferritin purified by the PAGE exhibited three bands with different pI values in the gel slab. Diameters of the protein shell and iron core were also investigated by transmission electron microscope and determined to be 10–12 nm and 5–8 nm, respectively. A kinetic study of DALF reveals that the rate of self-regulation of the protein shell rather than the complex surface of the iron core plays an important role in forming a process for iron release with mixed orders.  相似文献   

2.
The mechanism of iron release from ferritin in vivo is still unclear even though it represents a key step of the metabolism of iron in vivo. Here, both interaction intensity and binding stability between epigallocatechin gallate (EGCG) from tea and liver ferritin of Dasyatis akajei (DALF) were investigated using UV–visible, fluorescence and circular dichroism (CD) spectrometry, respectively. The results indicated that EGCG could reduce the iron within the ferritin shell directly in the absence of chemical reducers such as Na2S2O4, but this process was strictly pH-dependent, and the rate of iron release is faster at low pH than at high pH. The kinetic study of iron release showed that this process fitted the law of zero order reaction, which differed from that of first order reaction by various chemical reducers such as Vitamin C. In addition, Both fluorescence and CD spectrometry were further used to study the reduction mechanism of iron release in vitro, showing that there was a slight conformation change of the ferritin shell during EGCG reduction because of a complex formation of DALF–EGCG. It appears that chemical reducers with large molecular sizes reduce the iron across the protein shell by the way of an electron transfer pathway (ETP). A novel pathway for iron release from DALF with EGCG reduction is suggested to explain for a reductive route of iron metabolism by biological reducers in vivo.  相似文献   

3.
马脾铁蛋白释放铁的反应级数和速率相数的转换   总被引:10,自引:0,他引:10  
采用差示法研究铁蛋白释放铁的动力学规律和反应级数的转换。结果表明:马脾铁蛋白释放铁的速率及相数与还原剂Na2S2O4浓度及铁还原速率无关,与该蛋白蛋白壳的调节速率有关。在pH5.0 ̄6.0范围内,马脾铁蛋白以三相不同速率方式释放占原铁核总铁量80%的铁。但在pH9.0介质中,OH^-不仅能参与铁蛋白铁核组成,减缓释放铁的速率,而且使原混合级反应转换为一级反应,从而使铁蛋白释放铁的动力学过程由复杂转  相似文献   

4.
Oral ingestion, by guinea pigs, of concentrated solutions of soluble hydroxy-iron(III) polymers rapidly induces a 7-fold increase of liver ferritin. Young guinea pigs imbibing 0.1 M iron for 2 weeks produced a significantly greater amount of ferritin than animals injected with an iron-dextran complex at 1.0 mmole Fe/kg body weight. Conventional methods for the isolation of tissue ferritin are more efficient and provide higher yields from such iron-replete animals. Dose/response curves are presented for the mouse to illustrate the kinetics of liver iron assimilation at various levels of oral iron supplementation.  相似文献   

5.
Role of phosphate in initial iron deposition in apoferritin   总被引:1,自引:0,他引:1  
Y G Cheng  N D Chasteen 《Biochemistry》1991,30(11):2947-2953
Ferritins from microorganisms to man are known to contain varying amounts of phosphate which has a pronounced effect on the structural and magnetic properties of their iron mineral cores. The present study was undertaken to gain insight into the role of phosphate in the early stages of iron accumulation by ferritin. The influence of phosphate on the initial deposition of iron in apoferritin (12 Fe/protein) was investigated by EPR, 57Fe M?ssbauer spectroscopy, and equilibrium dialysis. The results indicate that phosphate has a significant influence on iron deposition. The presence of 1 mM phosphate during reconstitution of ferritin from apoferritin, Fe(II), and O2 accelerates the rate of oxidation of the iron 2-fold at pH 7.5. In the presence or absence of phosphate, the rate of oxidation at 0 degrees C follows simple first-order kinetics with respect to Fe(II) with half-lives of 1.5 +/- 0.3 or 2.8 +/- 0.2 min, respectively, consistent with a single pathway for iron oxidation when low levels of iron are added to the apoprotein. This pathway may involve a protein ferroxidase site where phosphate may bind iron(II), shifting its redox potential to a more negative value and thus facilitating its oxidation. Following oxidation, an intermediate mononuclear Fe(III)-protein complex is formed which exhibits a transient EPR signal at g' = 4.3. Phosphate accelerates the rate of decay of the signal by a factor of 3-4, producing EPR-silent oligonuclear or polynuclear Fe(III) clusters. In 0.5 mM Pi, the signal decays according to a single phase first-order process with a half-life near 1 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Zhang B  Harb JN  Davis RC  Choi S  Kim JW  Miller T  Chu SH  Watt GD 《Biochemistry》2006,45(18):5766-5774
Azotobacter vinelandii bacterioferritin (AvBF) containing 800-1500 Co or Mn atoms as Co(III) and Mn(III) oxyhydroxide cores (Co-AvBF, Mn-AvBF) was synthesized by the same procedure used previously for horse spleen ferritin (HoSF). The kinetics of reduction of Co-AvBF and Mn-AvBF by ascorbic acid are first-order in each reactant. The rate constant for the reduction of Mn-AvBF (8.52 M(-1) min(-1)) is approximately 12 times larger than that for Co-AvBF (0.72 M(-1) min(-1)), which is consistent with a previous observation that Mn-HoSF is reduced approximately 10-fold faster than Co-HoSF [Zhang, B. et al. (2005) Inorg. Chem. 44, 3738-3745]. The rates of reduction of M-AvBF (M = Co and Mn) are more than twice that for the reduction of the corresponding M-HoSF. HoSF containing reduced Fe(II) cores (Fe(II)-HoSF), prepared by methyl viologen and CO, also reduces M-HoSF and M-AvBF species, with both cores remaining within ferritin, suggesting that electrons transfer through the ferritin shell. Electron transfer from Fe(II)-HoSF to Co-AvBF occurs at a rate approximately 3 times faster than that to Co-HoSF, indicating that the Co cores in AvBF are more accessible to reduction than the Co cores in HoSF. The presence of nonconductive (SiO2) or conductive (gold) surfaces known to bind ferritins enhances the rate of electron transfer. A more than approximately 4-fold increase in the apparent reaction rate is observed in the presence of gold. Although both surfaces (SiO2 and gold) enhance reaction by providing binding sites for molecular interaction, results show that ferritins with different mineral cores bound to a gold surface transfer electrons through the gold substrate so that direct contact of the reacting molecules is not required.  相似文献   

7.
Subunit dimers in sheep spleen apoferritin. The effect on iron storage   总被引:6,自引:0,他引:6  
Ferritin with high and low iron content, 2000 and 790 iron atoms/molecule, was isolated from the spleens of copper-poisoned and control lambs, respectively. Differences in the iron content in vivo were reflected in the properties of the apoferritin protein shells, since the apoprotein from the low iron ferritin took up iron relatively more slowly (0.52 +/- 0.09) and released it more rapidly (1.68 +/- 0.06) in vitro. Although the two types of apoferritin were indistinguishable in terms of surface charge (pI range 4.98-5.43) and in consisting of both heavy and light subunits, the subunit interactions differed markedly; 40-50% of the subunits of low iron ferritin were in dimers stable to reduction and carboxylmethylation, 4% mercaptoethanol, 8% sodium dodecyl sulfate, and 100 degrees C for 30 min, 70% formic acid, and 30% methanol. Subunit dimers were also observed in liver ferritin from mouse and neonatal pig and were enriched in a low iron fraction of horse spleen ferritin. Based on cyanogen bromide fragmentation and NH2-terminal analysis, the natural and chemically cross-linked subunit dimers had two peptides in common; natural subunit dimers also appeared to have a second region cross-linked, suggesting the possibility of both intra- and intersubunit links in the natural dimers. In sheep spleen ferritin, both heavy and light subunits appeared to participate in subunit dimerization. Natural subunit dimers were enriched in low iron ferritin fractions of all ferritin preparations tested (linear correlation = 0.94) and can explain, at least in part, the previously observed effects of iron core size on the apoferritin shell. Whether the subunit cross-links represent part of the subunit assembly process subsequently cleaved by iron (or copper) or whether the cross-links form after iron core formation in vivo has yet to determined. In either case, it is clear that such post-translational variations can affect iron uptake and release and emphasize the importance of the protein shell in determining the iron storage properties of ferritin.  相似文献   

8.
猪脾铁蛋白电子隧道特性及释放铁途径的研究   总被引:13,自引:0,他引:13  
维生素C和连二亚硫酸钠混合后只能加速猪脾铁蛋白释放铁的速率,并不能使铁蛋白释放铁的动力学途径由复杂转化为简单.而单独维生素C却能利用蛋白壳上的电子隧道传递电子,迫使铁蛋白以二分之一的反应级数方式释放整体铁核的铁并起着抗磷酸盐阻遏释放铁速率的作用,简化释放铁的途径.对维生素C参与铁蛋白释放铁的机理进行了讨论.  相似文献   

9.
A method for the purification of ferritin from rainbow trout liver by heat extraction and gel filtration is described. The number of iron atoms varied from 500 to 2000 in purified ferritin. The neutral sugar composition detected was 86 mol of glucose, 24 mol of fucose, 12 mol of galactose, and 8 mol of mannose per mol of ferritin and apoferritin. Release of iron was achieved using low molecular weight chelating agents. The order of effectiveness of chelators was nitrilotriacetate greater than EDTA greater than citrate. Removal of the iron does not imply reduction of Fe3+. The rate of release of iron increased with decreasing pH. The slowest release was at pH 7.5. The endogenous chelator is not only sulphydrylic but seems to include carbohydrates that participate in the binding of Fe2+. Trout ferritin exhibits heterogeneity upon isoelectric focusing; four isoferritins with pI values of 4.5 to 4.85 were detected. This heterogeneity represents polymorphic, not polymer, forms. The amino acid composition differs from that of ferritins from other species. High concentrations of glutamic and aspartic acids, alanine, leucine, glycine, and lysine were detected along with low concentrations of methionine and cysteine.  相似文献   

10.
Ferritin molecules contain 24 subunits forming a shell around an inorganic iron-core. Release of iron(III) from ferritin and its isolated iron-cores by a series of hydroxypyridinone chelators with high affinities for iron(III) has been compared. The results collectively suggest that the chelators act by penetrating the protein shell and interacting directly with the iron-core in ferritin. Iron(III) is probably removed bound to a single ligand, but once outside the protein shell, the trihydroxypyridinone iron(III) complex predominates. The order of effectiveness of a group of pyridinones found for iron removal from ferritin molecules in solution differs from that obtained with hepatocytes in culture or with whole animals, where membrane solubility and other factors may modulate the response.  相似文献   

11.
High levels of haemosiderin occur in iron overload syndromes such as idiopathic haemochromatosis or secondary iron overload in thalassaemic patients; haemosiderin is the predominant iron-storage compound in such cases. It consists of a large aggregate of FeOOH cores, many of which have an incomplete shell of protein, and is probably derived from ferritin by lysosomal proteolysis. In addition, some chemical degradation of the ferritin cores appears to occur on conversion to haemosiderin. Other biochemical components are phosphate and magnesium, which may be adsorbed to the core surface, and perhaps certain lipids. Haemosiderin may have a central role, either directly or indirectly, in iron cytotoxicity and therefore the chemistry and biochemistry of this material warrants further study.  相似文献   

12.
Summary The main iron-binding protein in the hepatopancreas of the musselMytilus edulis, which had been previously iron-loaded by exposure to carbonyl iron (spheres of elemental iron less than 5 m diameter), has been isolated to electrophoretic purity and identified as ferritin. This ferritin hasM r, of 480000, pI of 4.7–5.0 and is composed of two subunits,M r 18500 andM r 24600. Under the electron microscope, it appears as electron-dense iron cores of average diameter 5 nm surrounded by a polypeptide shell to a final average overall diameter of 11 nm. The purified protein contains, on average, 200 iron atoms/molecule protein. On immunodiffusion,M. edulis hepatopancreas ferritin gives a partial cross-reaction with antiserum to horse spleen ferritin and lamprey (Geotria australis) liver ferritin but does not react with antiserum to chiton (Acanthopleura hirtosa) haemolymph ferritin.  相似文献   

13.
Iron is one of the most important minor elements in the shell of bivalves. This study was designed to investigate the involvement of ferritin, the principal protein for iron storage, in shell formation. A novel ferritin cDNA from the pearl oyster (Pinctada fucata) was isolated and characterized. The ferritin cDNA encodes a 206 amino acid polypeptide, which shares high similarity with snail soma ferritin and the H-chains of mammalian ferritins. Oyster ferritin mRNA shows the highest level of expression in the mantle, the organ for shell formation. In situ hybridization analysis revealed that oyster ferritin mRNA is expressed at the highest level at the mantle fold, a region essential for metal accumulation and contributes to metal incorporation into the shell. Taken together, these results suggest that ferritin is involved in shell formation by iron storage. The identification and characterization of oyster ferritin also helps to further understand the structural and functional properties of molluscan ferritins.  相似文献   

14.
电化学技术研究铁蛋白接受电子的能力   总被引:3,自引:2,他引:3  
Hong鱼肝脏铁蛋白(Liver Ferritin of Dasyatis Akajei,DALF)利用自身的电子隧道直接从铂金电极上获得还原电子且用于释放铁反应。血红素不仅能络合于DALF,形成DALF-heme分子(DALFH),并构建成电子隧道-血红素结构,而且加速DALFH从铂金电极上接受电子的速率,从而达到提高释放铁速率的效果。用抗环血酸作为还原剂时,DALF和DALFH释放铁速率几乎相  相似文献   

15.

Background

Most models for ferritin iron release are based on reduction and chelation of iron. However, newer models showing direct Fe(III) chelation from ferritin have been proposed. Fe(III) chelation reactions are facilitated by gated pores that regulate the opening and closing of the channels.

Scope of review

Results suggest that iron core reduction releases hydroxide and phosphate ions that exit the ferritin interior to compensate for the negative charge of the incoming electrons. Additionally, chloride ions are pumped into ferritin during the reduction process as part of a charge balance reaction. The mechanism of anion import or export is not known but is a natural process because phosphate is a native component of the iron mineral core and non-native anions have been incorporated into ferritin in vitro. Anion transfer across the ferritin protein shell conflicts with spin probe studies showing that anions are not easily incorporated into ferritin. To accommodate both of these observations, ferritin must possess a mechanism that selects specific anions for transport into or out of ferritin. Recently, a gated pore mechanism to open the 3-fold channels was proposed and might explain how anions and chelators can penetrate the protein shell for binding or for direct chelation of iron.

Conclusions and general significance

These proposed mechanisms are used to evaluate three in vivo iron release models based on (1) equilibrium between ferritin iron and cytosolic iron, (2) iron release by degradation of ferritin in the lysosome, and (3) metallo-chaperone mediated iron release from ferritin.  相似文献   

16.
The ferritin consists of a protein shell constructed of 24 subunits and an iron core. The liver ferritin of Sphyrna zygaena (SZLF) purified by column chromatography is a protein composed of eight ferritins containing varying iron numbers ranging from 400+/-20 Fe3+/SZLF to 1890+/-20 Fe3+/SZLF within the protein shell. Nature SZLF (SZLFN) consisting of holoSZLF and SZLF with unsaturated iron (SZLFUI) to have been purified with polyacrylamide gel electrophoresis (PAGE) exhibited five ferritin bands with different pI values ranging from 4.0 to 7.0 in the gel slab of isoelectric focusing (IEF). HoloSZLF purified by PAGE (SZLFE) not only had 1890+/-20 Fe3+/SZLFE but also showed an identical size of iron core observed by transmission electron microscopy (TEM). Molecular weight of approximately 21 kDa for SZLFE subunit was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Four peaks of molecular ions at mass/charge (m/z) ratios of 10611.07, 21066.52, 41993.16, and 63555.64 that come from the SZLFE were determined by matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF MS), which were identified as molecular ions of the ferritin subunit (M+) and its polymers, namely, [M]2+, [M]+, [2M]+, and [3M]+, respectively. Both SZLFE and a crude extract from shark liver of S. zygaena showed similar kinetic characteristics of complete iron release with biphasic behavior. In addition, a combined technique of visible spectrometry and column chromatography was used for studying ratio of phosphate to Fe3+ within the SZLFE core. Interestingly, this ratio maintained invariable even after the iron release, which differed from that of other mammal ferritins.  相似文献   

17.
The ferritin from the spleen of the chickens has been isolated by a method of salt fractionation and by a pH change followed by purification in sephadex G-200. 2. The identification of the protein was carried out by acrylamide gel electrophoresis showing a single band. 3. The characterization of ferritin has been made by determination of molecular weight, amino acids analysis and the number of iron atoms (4520) which bound the ferritin. 4. The ferritin from the spleen of chicken is compared with the ferritin from the liver of pigeon.  相似文献   

18.
The number of metal atoms contained within a displaceable inorganic component of a metalloprotein was determined by considering X-ray absorption by single crystal samples of holo- and apo-proteins. Since this method is non-destructive, it can be used to determine the number of metal atoms associated with the molecules forming the crystal actually used for X-ray diffraction data collection and subsequent structure solution. The method has been applied to the iron storage protein ferritin, isolated from horse spleen, to give a reliable estimate of the average iron content of the ferritin molecules within the crystal. This value, of around 2000 iron atoms per molecule is consistent with that found for a typical ferritin preparation in solution and suggests non-selectivity of the crystallisation process for ferritin in terms of molecular iron content.  相似文献   

19.
Binding of nonferrous metal ions to ferritin was compared to that of the phosphate-free or phosphate containing synthetic iron cores. The Scatchard plots for the synthetic cores reveal a high affinity site for Cd, Zn, Be, and Al, with KD in the range 10?5–10?7 M. Preloading the cores with phosphate increased the number of metal ions bound without altering the KD. The metal ions with smaller ionic radii (Be, Al) were bound in larger numbers than those with larger ionic radii (Cd, Zn). Ferritin isolated from soybean (Glycina max), horse spleen, and rat liver bound the metal ions in amounts larger than predicted from their iron core. Whereas the iron cores and their nonferrous metal ion complexes were insoluble, those in the protein shell remained in solution. Thus apoferritin precipitated with lower concentrations of aluminum than did holoferritin. Also, Al bound to apoferritin reduced the rate of iron loading into the protein.  相似文献   

20.
We describe a method for the purification of ferritin from Musca domestica larval hemolymph. Musca ferritin occurs in hemolymph predominantly as a native protein with molecular weight equal to 550,000 and subunits of 26,000. The average iron content of purified ferritin was determined to be 3,000 ± 600 iron atoms per molecule. The iron contents of ferritin was heterogeneous; both fully iron loaded molecules and apoferritin are probably present in the Musca hemolymph. The anti-ferritin serum raised in rabbit was able to recognize native ferritin but was not reactive with the protein subunits isolated by SDS-PAGE. The ferritin concentration in hemolymph attains a maximum of 0.28 mg/ml in the wandering stage larvae, decreasing to 0.13 mg/ml at the middle of pupal stadium. The ferritin contents of midgut and fat bodies were also determined. Fat body ferritin content is greatly reduced when the feeding larva passes into wandering stage. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号