首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Determinations of pulmonary diffusing capacity for CO (DLCO) by physiological and morphometric techniques have resulted in substantially different values for both DLCO and its major components. To evaluate the differences in these methods of measurement of DLCO, measurements were made under controlled conditions on isolated perfused dog lungs. Multiple gas-rebreathing techniques were used to measure DLCO, the membrane component of the diffusing capacity for CO (DmCO), and pulmonary capillary blood volume (Vc) in both anesthetized dogs and after isolation and perfusion of their lungs. The isolated perfused lungs were than perfusion fixed for morphometric analysis of the components of DLCO. The values obtained morphometrically for Vc were similar to those measured by physiological techniques. Perfusion fixation did not substantially alter the morphometric estimate of DmCO when compared with previous values obtained on inflation fixed lungs. However, the morphometric estimate of DmCO was over 10 times higher than that estimated physiologically. Analysis of the potential errors in the techniques suggests that the correct value for DmCO is substantially higher than that commonly estimated by use of physiological techniques and that the explanation for the difference is due to a number of factors that can influence the binding of CO to hemoglobin under in vivo conditions. The net effect of these factors can be represented by an unknown in each component of the Roughton-Forster relationship so that 1/DL = 1/(U1.Dm) + 1/(U2.theta Vc), where theta is the binding rate for CO to hemoglobin. Because the magnitudes of the unknown terms (U1 and U2) in the Roughton-Forster relationship are likely to be large, this relationship cannot be reliably used to determine Dm and Vc.  相似文献   

2.
The spleen acts as an erythrocyte reservoir in highly aerobic species such as the dog and horse. Sympathetic-mediated splenic contraction during exercise reversibly enhances convective O2 transport by increasing hematocrit, blood volume, and O2-carrying capacity. Based on theoretical interactions between erythrocytes and capillary membrane (Hsia CCW, Johnson RL Jr, and Shah D. J Appl Physiol 86: 1460-1467, 1999) and experimental findings in horses of a postsplenectomy reduction in peripheral O2-diffusing capacity (Wagner PD, Erickson BK, Kubo K, Hiraga A, Kai M, Yamaya Y, Richardson R, and Seaman J. Equine Vet J 18, Suppl: 82-89, 1995), we hypothesized that splenic contraction also augments diffusive O2 transport in the lung. Therefore, we have measured lung diffusing capacity (DL(CO)) and its components during exercise by a rebreathing technique in six adult foxhounds before and after splenectomy. Splenectomy eliminated exercise-induced polycythemia, associated with a 30% reduction in maximal O2 uptake. At any given pulmonary blood flow, DL(CO) was significantly lower after splenectomy owing to a lower membrane diffusing capacity, whereas pulmonary capillary blood volume changed variably; microvascular recruitment, indicated by the slope of the increase in DL(CO) with respect to pulmonary blood flow, was also reduced. We conclude that splenic contraction enhances both convective and diffusive O2 transport and provides another compensatory mechanism for maintaining alveolar O2 transport in the presence of restrictive lung disease or ambient hypoxia.  相似文献   

3.
The effects of blood velocity on gas transport within the alveolar region of lungs, and on the lung diffusing capacity DL have for many years been regarded as negligible. The present work reports on a preliminary, two-dimensional investigation of CO convection-diffusion phenomenon within a pulmonary capillary. Numerical simulations were performed using realistic clinical and morphological parameter values, with discrete circular red blood cells (RBCs) moving with plasma in a single capillary. Steady-state simulations with stationary blood (RBCs and plasma) were performed to validate the model by comparison with published data. Results for RBCs moving at speeds varying from 1.0 mm/s to 10 mm/s, and for capillary hematocrit (Ht) from 5% to 55%, revealed an increase of up to 60% in DL, as compared to the stationary blood case. The increase in DL is more pronounced at low Ht (less than 25%) and high RBC speed and it seems to be caused primarily by the presence of plasma. The results also indicate that capillary blood convection affects DL not only by improving the plasma mixing in the capillary bed but also by replenishing the capillary with fresh (zero concentration) plasma, providing an additional reservoir for the consumption of CO. Our findings cast doubt on the current belief that an increase in the lung diffusing capacity of humans (for instance, during exercising), with fixed hematocrit, can only be accomplished by an increase in the lung volume effectively active in the respiration process.  相似文献   

4.
We investigated whether partitioning DLCO into membrane conductance for CO (DmCO) and pulmonary capillary blood volume (Vcap) was helpful in suspecting precapillary pulmonary (arterial) hypertension (P(A)H) in systemic sclerosis (SSc) patients with or without interstitial lung disease (ILD). We included 63 SSc patients with isolated PAH (n=6), isolated ILD (n=19), association of both (n=12) or without PAH and ILD (n=26). Partitioning of DLCO was performed by the combined DLNO/DLCO method. DLCO, DmCO and Vcap were equally reduced in patients with isolated PAH and patients with isolated ILD but Vcap/alveolar volume (VA) ratio was significantly lower in the isolated PAH group. In patients without ILD, DLCO, DmCO, Vcap and Vcap/VA ratio were reduced in patients with isolated PAH when compared to patients without PAH and both Vcap/VA and DLCO had the highest AUC to detect PAH. In patients with ILD, Vcap had the highest AUC and performed better than DLCO to detect PH in this subgroup. In conclusion, Vcap/VA was lower in PAH than in ILD in SSC whereas DLCO was not different. Vcap/VA ratio and DLCO had similar high performance to detect PAH in patients without ILD. Vcap had better AUC than DLCO, DmCO and FVC/DLCO ratio to detect PH in SSC patients with ILD. These results suggest that partitioning of DLCO might be of interest to detect P(A)H in SSC patients with or without ILD.  相似文献   

5.
Pulmonary capillary perfusion within a single alveolar wall continually switches among segments, even when large-vessel hemodynamics are constant. The mechanism is unknown. We hypothesize that the continually varying size of plasma gaps between individual red blood cells affects the likelihood of capillary segment closure and the probability of cells changing directions at the next capillary junction. We assumed that an increase in hematocrit would decrease the average distance between red blood cells, thereby decreasing the switching at each capillary junction. To test this idea, we observed 26 individual alveolar capillary networks by using videomicroscopy of excised canine lung lobes that were perfused first at normal hematocrit (31-43%) and then at increased hematocrit (51-62%). The number of switches decreased by 38% during increased hematocrit (P < 0.01). These results support the idea that a substantial part of flow switching among pulmonary capillaries is caused by the particulate nature of blood passing through a complex network of tubes with continuously varying hematocrit.  相似文献   

6.
When alveoli are inflated, the stretched alveolar walls draw their capillaries into oval cross sections. This causes the disk-shaped red blood cells to be oriented near alveolar gas, thereby minimizing diffusion distance. We tested these ideas by measuring red blood cell orientation in histological slides from rapidly frozen rat lungs. High lung inflation did cause the capillaries to have oval cross sections, which constrained the red blood cells within them to flow with their broad sides facing alveolar gas. Low lung inflation stretched alveolar walls less and allowed the capillaries to assume a circular cross section. The circular luminal profile permitted the red blood cells to have their edges facing alveolar gas, which increased the diffusion distance. Using a finite-element method to calculate the diffusing capacity of red blood cells in the broad-side and edge-on orientations, we found that edge-on red blood cells had a 40% lower diffusing capacity. This suggests that, when capillary cross sections become circular, whether through low-alveolar volume or through increased microvascular pressure, the red blood cells are likely to be less favorably oriented for gas exchange.  相似文献   

7.
A novel macroscopic gas transport model, derived from fundamental engineering principles, is used to simulate the three-dimensional, unsteady respiration process within the alveolar region of the lungs. The simulations, mimicking the single-breath technique for measuring the lung diffusing capacity for carbon-monoxide (CO), allow the prediction of the red blood cell (RBC) distribution effects on the lung diffusing capacity. Results, obtained through numerical simulations, unveil a strong relationship between the type of distribution and the lung diffusing capacity. Several RBC distributions are considered, namely: normal (random), uniform, center-cluster, and corner-cluster red cell distributions. A nondimensional correlation is obtained in terms of a geometric parameter characterizing the RBC distribution, and presented as a useful tool for predicting the RBC distribution effect on the lung diffusing capacity. The effect of red cell movement is not considered in the present study because CO does not equilibrate with capillary blood within the time spent by blood in the capillary. Hence, blood flow effect on CO diffusion is expected to be only marginal.  相似文献   

8.
We previously reported in weanling guinea pigs raised at high altitude (HA; 3,800 m) an elevated lung diffusing capacity estimated by morphometry from alveolar-capillary surface area, harmonic mean blood-gas barrier thickness, and pulmonary capillary blood volume (Vc) compared with litter-matched control animals raised at an intermediate altitude (IA; 1,200 m) (Hsia CCW, Polo Carbayo JJ, Yan X, Bellotto DJ. Respir Physiol Neurobiol 147: 105-115, 2005). To determine if HA-induced alveolar ultrastructural changes are associated with improved alveolar function, we measured lung diffusing capacity for carbon monoxide (DLCO), membrane diffusing capacity for carbon monoxide (DMCO), Vc, pulmonary blood flow, and lung volume by a rebreathing technique in litter-matched male weanling Hartley guinea pigs raised at HA or IA for 4 or 12 mo. Separate control animals were also raised and studied at sea level (SL). Resting measurements were obtained in the conscious nonsedated state. In HA animals compared with corresponding IA or SL controls, lung volume and hematocrit were significantly higher while pulmonary blood flow was lower. At a given pulmonary blood flow, DLCO and DMCO were higher in HA-raised animals than in control animals without a significant change in Vc. We conclude that 1) HA residence enhanced physiological diffusing capacity corresponding to that previously estimated on the basis of structural adaptation, 2) adaptation in diffusing capacity and its components should be interpreted with respect to pulmonary blood flow, and 3) this noninvasive rebreathing technique could be used to follow adaptive responses in small animals.  相似文献   

9.
Six pathophysiologic mechanisms of a reduced single breath CO diffusing capacity are discussed and the usefulness of relating carbon monoxide (CO) uptake to the functioning alveolar volume (DL/VA, specific diffusing capacity) is illustrated for several pulmonary diseases. In patients with emphysema and pulmonary emboli (pulmonary vascular occlusive disease), reduced CO uptake is associated with significantly reduced DL/VA and is compatible with reduction of pulmonary capillary bed. In patients with pulmonary alveolar proteinosis, improvement in CO uptake and DL/VA follows lung lavage and suggests that lung units partially filled with proteinaceous material are responsible for hypoxemia, reduced CO uptake and reduced DL/VA. In most cases of radiation fibrosis, sarcoidosis and miscellaneous interstitial fibrosis, reduced CO uptake is associated with a normal DL/VA and suggests that loss of alveolar units, both capillaries and alveoli, has occurred. New regression equations for DL and DL/VA are established for children and adults. DL/VA is linearly related to height and independent of age and sex, while different predictive equations must be used for DL for the 5 through 17 and 18 through 76 age groups. The new regression equations for DL show better correlation in adults we studied over 50 years of age than previous regression equations which use a constant reduction of 2 to 3 ml CO per minute per mm of mercury for each 10 years of adult aging.  相似文献   

10.
Although a considerable amount of information is available regarding the remodeling and growth of the pulmonary arterial circulation, relatively little is known regarding postnatal development of the pulmonary microcirculation. We hypothesized that the maximal velocity (Vmax) of pulmonary angiotensin-converting enzyme (ACE) activity, measured from indicator-dilution outflow curves using a synthetic substrate, 3H-labeled benzoyl-phenylalanyl-alanyl-proline (BPAP), is directly related to the capillary endothelial cell surface area in the lungs of developing lambs. Accordingly we measured apparent kinetics of pulmonary ACE activity in 22 anesthetized ventilated lambs (2-171 days old) and compared our functional assessment to simultaneous in vivo determinations of CO diffusing capacity (DLCO) and postmortem structural assessment of alveolar septal dimensions using stereology and electron microscopy. There was a progressive increase in Vmax of ACE in this age group, with little change in apparent affinity for BPAP. Similar functional manifestation of growth was noted by an age-dependent increase in DLCO. Neither Vmax nor DLCO was significantly affected by an increase in left atrial pressure to 19 Torr (via inflation of a balloon in the left atrium), suggesting little recruitment of vessels under conditions of the present protocol. A close correlation was observed when either Vmax for ACE activity or DLCO was plotted vs. capillary endothelial cell surface area. Double logarithmic transformation of capillary endothelial cell surface area, Vmax-ACE and DLCO vs. lung volume revealed power functions with slopes all greater than that predicted from isotropic growth, suggesting selective differential postnatal development of the endothelium of the alveolar septum in lambs from 2-171 days of age.  相似文献   

11.
Steady-state diffusing capacity of the lungs for carbon monoxide (DLCO) was measured in 13 anesthetized, paralyzed dogs ventilated at constant tidal volume and rate, using four different inspired CO levels (190, 600, 1,110, and 2,000 ppm). DLCO increased and reached a maximum as the inspired CO level was raised from 190 to 600 ppm. Further increases in inspired CO concentration were accompanied by a decrease in inspired CO concentration were accompanied by a decrease in DLCO. CO dead space and Pao2 remained constant at all inspired O2 levels. In some experiments a second set of measurements was made, the results of which were similar to those of the first set. The results cannot be explained by changes in CO back pressure, pulmonary capillary volume, or reaction rate of CO with hemoglobin, but can be explained if there is carrier-mediated CO transport in the alveolar capillary membrane.  相似文献   

12.
In the transition from rest to steady-state exercise, O2 uptake from the lungs (VO2) depends on the product of pulmonary blood flow and pulmonary arteriovenous O2 content difference. The kinetics of pulmonary blood flow are believed to be somewhat faster than changes in pulmonary arteriovenous O2 content difference. We hypothesized that during CO breathing, the kinetics of CO uptake (VCO) and diffusing capacity for CO (DLCO) should be faster than VO2 because changes in pulmonary arteriovenous CO content difference should be relatively small. Six subjects went abruptly from rest to constant exercise (inspired CO fraction = 0.0005) at 40, 60, and 80% of their peak VO2, measured with an incremental test (VO2peak). At all exercise levels, DLCO and VCO rose faster than VO2 (P less than 0.001), and DLCO rose faster than VCO (P less than 0.001). For example, at 40% VO2peak, the time constant (tau) for DLCO in phase 2 was 19 +/- 5 (SD), 24 +/- 5 s for VCO, and 33 +/- 5 s for VO2. Both VCO and DLCO increased with exercise intensity but to a lesser degree than VO2 at all exercise intensities (P less than 0.001). In addition, no significant rise in DLCO was observed between 60 and 80% VO2peak. We conclude that the kinetics of VCO and DLCO are faster than VO2, suggesting that VCO and DLCO kinetics reflect, to a greater extent, changes in pulmonary blood flow and thus recruitment of alveolar-capillary surface area. However, other factors, such as the time course of ventilation, may also be involved.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
To model lung nitric oxide (NO) and carbon monoxide (CO) uptake, a membrane oxygenator circuit was primed with horse blood flowing at 2.5 l/min. Its gas channel was ventilated with 5 parts/million NO, 0.02% CO, and 22% O2 at 5 l/min. NO diffusing capacity (Dno) and CO diffusing capacity (Dco) were calculated from inlet and outlet gas concentrations and flow rates: Dno = 13.45 ml.min(-1).Torr(-1) (SD 5.84) and Dco = 1.22 ml.min(-1).Torr(-1) (SD 0.3). Dno and Dco increased (P = 0.002) with blood volume/surface area. 1/Dno (P < 0.001) and 1/Dco (P < 0.001) increased with 1/Hb. Dno (P = 0.01) and Dco (P = 0.004) fell with increasing gas flow. Dno but not Dco increased with hemolysis (P = 0.001), indicating Dno dependence on red cell diffusive resistance. The posthemolysis value for membrane diffusing capacity = 41 ml.min(-1).Torr(-1) is the true membrane diffusing capacity of the system. No change in Dno or Dco occurred with changing blood flow rate. 1/Dco increased (P = 0.009) with increasing Po2. Dno and Dco appear to be diffusion limited, and Dco reaction limited. In this apparatus, the red cell and plasma offer a significant barrier to NO but not CO diffusion. Applying the Roughton-Forster model yields similar specific transfer conductance of blood per milliliter for NO and CO to previous estimates. This approach allows alteration of membrane area/blood volume, blood flow, gas flow, oxygen tension, red cell integrity, and hematocrit (over a larger range than encountered clinically), while keeping other variables constant. Although structurally very different, it offers a functional model of lung NO and CO transfer.  相似文献   

14.
Hsia, C. C. W., C. J. C. Chuong, and R. L. Johnson, Jr.Red cell distortion and conceptual basis of diffusing capacity estimates: finite element analysis. J. Appl.Physiol. 83(4): 1397-1404, 1997.To understandthe effects of dynamic shape distortion of red blood cells (RBCs) as itdevelops under high-flow conditions on the standard physiological andmorphometric methods of estimating pulmonary diffusing capacity, wecomputed the uptake of CO across a two-dimensional geometric capillarymodel containing a variable number of equally spaced RBCs. RBCs arecircular or parachute shaped, with the same perimeter length. Total COdiffusing capacity (DLCO)and membrane diffusing capacity(DMCO)were calculated by a finite element method.DLCOcalculated at two levels of alveolar PO2 were used to estimateDMCO by theRoughton-Forster (RF) technique. The same capillary model was subjectedto morphometric analysis by the random linear intercept method toobtain morphometric estimates ofDMCO. Results show thatshape distortion of RBCs significantly reduces capillary diffusive gasuptake. Shape distortion exaggerates the conceptual errors inherent inthe RF technique (J. Appl. Physiol.79: 1039-1047, 1995); errors are exaggerated at a high capillaryhematocrit. Shape distortion also introduces additional error inmorphometric estimates ofDMCO causedby a biased sampling distribution of random linear intercepts; errors are exaggerated at a low capillary hematocrit.

  相似文献   

15.
Muscle contractions evoke an immediate rise in blood flow. Distribution of this hyperemia within the capillary bed may be deterministic for muscle O(2) diffusing capacity and remains unresolved. We developed the exteriorized rat (n = 4) spinotrapezius muscle for evaluation of capillary hemodynamics before (rest), during, and immediately after (post) a bout of twitch contractions to resolve (second-by-second) alterations in red blood cell velocity (V(RBC)) and flux (f(RBC)). Contractions increased (all P < 0.05) capillary V(RBC) (rest: 270 +/- 62 microm/s; post: 428 +/- 47 microm/s), f(RBC) (rest: 22.4 +/- 5.5 cells/s; post: 44.3 +/- 5.5 cells/s), and hematocrit but not the percentage of capillaries supporting continuous RBC flow (rest: 84.0 +/- 0.7%; post: 89.5+/-1.4%; P > 0.05). V(RBC) peaked within the first one or two contractions, whereas f(RBC) increased to an initial short plateau (first 12-20 s) followed by a secondary rise to steady state. Hemodynamic temporal profiles were such that capillary hematocrit tended to decrease rather than increase over the first approximately 15 s of contractions. We conclude that contraction-induced alterations in capillary RBC flux and distribution augment both convective and diffusive mechanisms for blood-myocyte O(2) transfer. However, across the first 10-15 s of contractions, the immediate and precipitous rise in V(RBC) compared with the biphasic and prolonged increase of f(RBC) may act to lower O(2) diffusing capacity by not only reducing capillary transit time but by delaying the increase in the instantaneous RBC-to-capillary surface contact thought crucial for blood-myocyte O(2) flux.  相似文献   

16.
The purpose of these experiments was to quantify stagnant intrapulmonary blood caused by a pulmonary arterial occlusion (PAO). The hypothesis was that the diffusing capacity of the lung for CO (DLCO) would be altered little by PAO when measured with the usual inspired concentrations (0.3%) of CO, since stagnant blood distal to the occlusion takes up CO for 20 s or more before significant CO backpressure would develop. However, higher levels of CO (i.e., greater than or equal to 3%) would equilibrate faster with capillary blood (within 5-10 s), and DLCO measured 10-20 s subsequent to the high CO exposure would reflect only the DLCO in the unoccluded regions. Thus the fractional reduction in DLCO measured with 3% CO, with respect to that measured with 0.3% CO, should be related to the fractional occlusion of the pulmonary artery in a predictable way. We occluded the right pulmonary artery (RPAO), the left pulmonary artery (LPAO), or the left lower lobar artery (LLPAO) and found that DLCO measured during rebreathing a 0.3% CO mixture was 80, 87, and 94%, respectively, of the preocclusion value, whereas the DLCO measured during rebreathing a 3.3% CO mixture was 59, 73, and 87% of the preocclusion value. A computer model was developed to predict the reduction in DLCO at different levels of CO exposure that would be caused by varying fractions of PAO. Our data indicated that RPAO corresponded to a 42% vascular occlusion, LPAO a 35% occlusion, and LLPAO a 20% occlusion. Measurement of DLCO using low and high concentrations of CO might be useful in assessing the fraction of vascular bed occluded and in following noninvasively the course of vascular occlusion in a variety of pulmonary diseases.  相似文献   

17.
Steady state estimates of the pulmonary diffusing capacity for carbon monoxide (DLCO) require measurement of the uptake and the average alveolar partial pressure of carbon monoxide (PACO). The expired alveolar sample obtained by different experimental methods and/or breathing patterns rarely represents the actual PACO. It is widely accepted that nonuniform distribution of ventilation, diffusion and perfusion causes discrepancies in the measurement of diffusing capacity. tan additional source of error in choosing PACO arises in the sampling time chosen by the experimental method. A theoretical study of a ramp-with-pause and a square breathing pattern demonstrates that the sample-time error exists even in the homogeneous lung. The study shows for the homogeneous lung that the correct fractional concentration of alveolar carbon monoxide (FAV) occurs at a time (TAV), one-half of a breathing period after the effective inspiration time (TI) for the two very different breathing patterns. TI is well-defined in relation to any breathing pattern which can be approximated by ramps and pauses. If TAV and the sample time chosen by the experimental method are known, then the measured DLCO can be corrected to the actual diffusing capacity (DL). The theory agrees with experimental results and computer simulations of inhomogeneous lungs from the literature. This agreement suggests that the theory for the homogeneous lung is also relevant to the inhomogeneous lung.  相似文献   

18.
Hysteresis of the alveolar capillary membrane in normal subjects   总被引:1,自引:0,他引:1  
Weibel and associates (Respir. Physiol. 18: 285-308, 1973), using morphometric techniques, demonstrated in the rat that changes in lung volume related to inflation and deflation caused a hysteretic variation in alveolar capillary membrane which is locally pleated at low pulmonary volume, unfolds during inflation but does not immediately refold during deflation, possibly enhancing the CO diffusion throughout the membrane. The present study was conducted to verify the existence of this hysteresis in human lungs in vivo. Single-breath diffusing capacity for CO (DLCO) was measured in five healthy seated subjects before and 0, 0.5, 1, 3, and 7 min after an inflation-deflation maneuver (IDM) in 6 separate days. The value of mean DLCO was 36.4 +/- 3 (SD) before and 42.1 +/- 2.9, 41.6 +/- 3.3, 40.3 +/- 3.3, 39.2 +/- 3.2, and 38.1 +/- 2.7 ml X min-1 X Torr-1 after the IDM. Two mechanisms can explain our findings: an active filling of the capillary bed, or an unfolding of the alveolar capillary membrane. The first mechanism should be accompanied by changes in pulmonary circulation. Therefore, right-heart catheterization was performed in two normal subjects and in four patients examined for a chest pain syndrome. At the end of the IDM, the values for the pulmonary artery pressure and capillary wedge pressure had returned to control levels. This suggests that the capillary bed is not directly involved in the DLCO increase observed from 0.5 to 7 min after the IDM. The unfolding of the alveolar capillary membrane appears to better explain our findings.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Equations governing oxygen transport from alveolar gas to red blood cells flowing through pulmonary capillaries are written down. Some analytical predictions are made on factors affecting the rate at which this process takes place. Numerical simulations are carried out to investigate the effect of red blood cell shape, capillary dimensions, haematocrit and choice of oxygen dissociation curve on pulmonary oxygen transport. These factors all have an effect on pulmonary transport, with the effect being much more marked for simulations with low oxygen levels, typical of those seen in some subjects with respiratory disease.  相似文献   

20.
Noninvasive techniques for assessing cardiopulmonary function in small animals are limited. We previously developed a rebreathing technique for measuring lung volume, pulmonary blood flow, diffusing capacity for carbon monoxide (Dl(CO)) and its components, membrane diffusing capacity (Dm(CO)) and pulmonary capillary blood volume (Vc), and septal volume, in conscious nonsedated guinea pigs at rest. Now we have extended this technique to study guinea pigs during voluntary treadmill exercise with a sealed respiratory mask attached to a body vest and a test gas mixture containing 0.5% SF(6) or Ne, 0.3% CO, and 0.8% C(2)H(2) in 40% or 98% O(2). From rest to exercise, O(2) uptake increased from 12.7 to 25.5 ml x min(-1) x kg(-1) while pulmonary blood flow increased from 123 to 239 ml/kg. The measured Dl(CO), Dm(CO), and Vc increased linearly with respect to pulmonary blood flow as expected from alveolar microvascular recruitment; body mass-specific relationships were consistent with those in healthy human subjects and dogs studied with a similar technique. The results show that 1) cardiopulmonary interactions from rest to exercise can be measured noninvasively in guinea pigs, 2) guinea pigs exhibit patterns of exercise response and alveolar microvascular recruitment similar to those of larger species, and 3) the rebreathing technique is widely applicable to human ( approximately 70 kg), dog (20-30 kg), and guinea pig (1-1.5 kg). In theory, this technique can be extended to even smaller animals provided that species-specific technical hurdles can be overcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号