首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hall BG 《Genetica》1999,107(1-3):181-187
The concept of transposable elements (TEs) as purely selfish elements is being challenged as we have begun to appreciate the extent to which TEs contribute to allelic diversity, genome building, etc. Despite these long-term evolutionary contributions, there are few examples of TEs that make a direct, positive contribution to adaptive fitness. In E.coli cryptic (silent) catabolic operons can be activated by small TEs called insertion sequences (IS elements). Not only do IS elements make a direct contribution to fitness by activating cryptic operons, they do so in a regulated manner, transposing at a higher rate in starving cells than in growing cells. In at least one case, IS elements activate an operon during starvation only if the substrate for that operon is present in the environment. It appears that E. coli has managed to take advantage of ISelements for its own benefit. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
《Current biology : CB》2022,32(17):R904-R909
  相似文献   

3.
Transposable elements   总被引:170,自引:0,他引:170  
M P Calos  J H Miller 《Cell》1980,20(3):579-595
  相似文献   

4.
With the development of new sequencing technologies in the past decade, yeast genomes have been extensively sequenced and their structures investigated. Transposable elements (TEs) are ubiquitous in eukaryotes and constitute a limited part of yeast genomes. However, due to their ability to move in genomes and generate dispersed repeated sequences, they contribute to modeling yeast genomes and thereby induce plasticity. This review assesses the TE contents of yeast genomes investigated so far. Their diversity and abundance at the inter- and intraspecific levels are presented, and their effects on gene expression and genome stability is considered. Recent results concerning TE-host interactions are also analyzed.  相似文献   

5.
We describe the current state of knowledge about transposable elements (TEs) in different mosquito species. DNA-based elements (class II elements), non-LTR retrotransposons (class I elements), and MITEs (Miniature Inverted Repeat Transposable Elements) are found in the three genera, Anopheles, Aedes and Culex, whereas LTR retrotransposons (class I elements) are found only in Anopheles and Aedes. Mosquitoes were the first insects in which MITEs were reported; they have several LTR retrotransposons belonging to the Pao family, which is distinct from the Gypsy-Ty3 and Copia-Ty1 families. The number of TE copies shows huge variations between classes of TEs within a given species (from 1 to 1000), in sharp contrast to Drosophila, which shows only relatively minor differences in copy number between elements (from 1 to 100). The genomes of these insects therefore display major differences in the amount of TEs and therefore in their structure and global composition. We emphasize the need for more population genetic data about the activity of TEs, their distribution over chromosomes and their frequencies in natural populations of mosquitoes, to further the current attempts to develop a transgenic mosquito unable to transmit malaria that is intended to replace the natural populations.  相似文献   

6.
Transposable elements comprise a major fraction of eukaryotic genomes. They are studied both because of their intrinsic biological interest and because they can be exploited as valuable research tools. Many interesting papers dealing with various aspects of the biology of these elements have been published during the past year and a number of new elements have been reported. Four areas in which particularly valuable contributions have been made are the mechanisms of transposition, the regulation of transposition, the use of transposable elements as research tools, and the biological function of transposable elements.  相似文献   

7.
DNA-based transposable elements appear to have been nearly or completely inactivated in vertebrates. Therefore the elements of the medaka fish Oryzias latipes that still have transposition activity provide precious materials for studying transposition mechanisms, as well as the evolution, of transposable elements in vertebrates. Fortunately, the medaka fish has a strong background for genetic and evolutionary studies. The advantages of this host species and their elements, together with results so far obtained, are here described.  相似文献   

8.
9.
10.
Transposable elements (TEs) are commonly thought to be of universal occurrence in eukaryotes. Analysis of complete higher eukaryotic genomes confirms TE status as substantial genome components and provides insights into their role in shaping the genome structure of extant eukaryotes. This review addresses several recently investigated problems in transposon biology, including potential roles of promoter organization in transposon function and evolution, the ubiquity of TEs in numerous phyla of the animal kingdom, and possible connections between transposon content and the mode of reproduction.  相似文献   

11.
12.
Transposable elements and fitness in Drosophila melanogaster   总被引:4,自引:0,他引:4  
T F Mackay 《Génome》1989,31(1):284-295
Transposable elements constitute a significant fraction of the Drosophila melanogaster genome. The five families of moderately repeated transposable elements identified to date occupy dispersed and variable genomic locations, but have relatively constant copy numbers per individual. What effect to these elements have on the fitness of the individuals harboring them? Experimental evidence relating to this question is reviewed. The relevant data fall into two broad categories. The first involves the determination of the distribution of transposable elements in natural populations, by restriction mapping or in situ hybridization, and the comparison of the observed distribution with different theoretical expectations. The second approach is to study directly the effects of new transposable element-induced mutations on fitness. The P family of transposable elements is a particularly efficient mutagen, and the results of experiments in which initially P-free chromosomes are contaminated with P elements are discussed with regard to P-induced fitness mutations.  相似文献   

13.
Transposable elements controlling genetic instabilities in mammals   总被引:2,自引:0,他引:2  
It is proposed that the instabilities in gene action of some alleles at certain loci in the mouse (e.g., a, c, H-2 Mi, p, pe, T, Va, W), which do not seem to conform to traditional hypotheses of gene action, are better interpretable in the light of modern studies of transposable DNA elements (insertion sequences and transposons of prokaryotic organisms; controlling elements of maize; transposable controlling elements of Drosophila). Some phenotypic evidence in the mouse in support of this hypothesis is presented for the a, Mi, p, and W loci, which affect pigmentation.  相似文献   

14.
A stochastic model was designed to describe the evolution of bacterial cultures during 10,000 generations. It is based on a decreasing law for the generation of beneficial mutations as they become fixed in the genomes. Seven beneficial mutations on average were necessary to improve the relative fitness from 1.0 to 1.43 and the model was consistent with the population biology and the genetic data of 12 experimental lines. In one bacterial line, comparison between the model and the data suggests that pivotal mutations mediated by insertion sequences account for a large part of bacterial adaptation. In a more detailed analysis of one simulation, it was shown that only 0.01% of the mutations generated by a population over 10,000 generations can go to fixation as a consequence of their improved fitness. However in the model, the probability of being better fit than its parent should be set initially at ca. 10% to promote an evolution similar to the observed data.  相似文献   

15.
Transposable elements and the plant pan-genomes   总被引:1,自引:0,他引:1  
  相似文献   

16.
Several recent reports have challenged the idea that transposable elements (TEs) are mainly 'selfish' or 'junk' DNA with little importance for host evolution. It has been proposed that TEs have the potential to provide host genomes with the ability to enhance their own evolution. They might also be a major source of genetic diversity, allowing response to environmental changes. Because the relationships between TEs and host genomes are highly variable, and because the selfish, junk and beneficial DNA hypotheses are by no means mutually exclusive, a single label for these relationships appears to be inappropriate and potentially misleading.  相似文献   

17.
18.
转座因子和宿主基因组的进化   总被引:1,自引:0,他引:1  
金振华 《生命科学》2002,14(4):220-222
转座因子主要是一些“自在”或“无功能”的DNA,其对宿主进化无关紧要的观点受到了质疑。新近的报道指出,它们有增强宿主基因组自身进化,对环境变化作出反应的潜在能力,很可能是遗传多样性的主要源泉。  相似文献   

19.
20.
Although alterations in the genomes of somatic cells cannot be passed on to future generations, they can have beneficial or detrimental effects on the host organism, depending on the context in which they occur. This review outlines the ways in which transposable elements have important consequences for somatic cell genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号