首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cancer results from an imbalance between cell cycle progression and apoptosis. Therefore, most anticancer drugs exert their antiproliferative and cytotoxic activity via cell cycle arrest and induction of apoptosis, a controlled form of cell death that is dysregulated in cancer. Many polyadenylation trans-acting factors, including polyadenylate polymerase (PAP), are increasingly found to be involved in cell cycle, apoptosis and cancer prognosis. The objective of the present study was to identify PAP modulations in the response of two epithelial cancer cell lines (HeLa and MCF-7) to apoptosis induction by the anticancer drugs etoposide and cordycepin. Cells were assessed for PAP activity and isoforms by the highly sensitive PAP activity assay and Western blotting, respectively. Induction of apoptosis was determined by endonucleosomal DNA cleavage, 4'6-diamidino-2-phenylindol (DAPI) staining and caspase-6 activity assay, whereas cytotoxicity and cell cycle status were assessed by trypan blue staining, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry. Our results indicate that PAP changes very early in response to either etoposide or cordycepin treatment, even prior to the hallmarks of apoptosis (chromatin condensation and cleavage), in both cell lines tested, but in a different mode. Our results suggest, for the first time, that in the epithelial cancer cell lines used, PAP modulations follow cell cycle progression rather than the course of apoptosis.  相似文献   

2.
Apoptosis is a cell suicide mechanism that requires the activation of cellular death proteases for its induction. We examined whether the progress of apoptosis involves cleavage of phospholipase C-gamma1 (PLC-gamma1), which plays a pivotal role in mitogenic signaling pathway. Pretreatment of T leukemic Molt-4 cells with PLC inhibitors such as U-73122 or ET-18-OCH(3) potentiated etoposide-induced apoptosis in these cells. PLC-gamma1 was fragmented when Molt-4 cells were treated with several apoptotic stimuli such as etoposide, ceramides, and tumor necrosis factor alpha. Cleavage of PLC-gamma1 was blocked by overexpression of Bcl-2 and by specific inhibitors of caspases such as Z-DEVD-CH(2)F and YVAD-cmk. Purified caspase-3 and caspase-7, group II caspases, cleaved PLC-gamma1 in vitro and generated a cleavage product of the same size as that observed in vivo, suggesting that PLC-gamma1 is cleaved by group II caspases in vivo. From point mutagenesis studies, Ala-Glu-Pro-Asp(770) was identified to be a cleavage site within PLC-gamma1. Epidermal growth factor receptor (EGFR) -induced tyrosine phosphorylation of PLC-gamma1 resulted in resistance to cleavage by caspase-3 in vitro. Furthermore, cleaved PLC-gamma1 could not be tyrosine-phosphorylated by EGFR in vitro. In addition, tyrosine-phosphorylated PLC-gamma1 was not significantly cleaved during etoposide-induced apoptosis in Molt-4 cells. This suggests that the growth factor-induced tyrosine phosphorylation may suppress apoptosis-induced fragmentation of PLC-gamma1. We provide evidence for the biochemical relationship between PLC-gamma1-mediated signal pathway and apoptotic signal pathway, indicating that the defect of PLC-gamma1-mediated signaling pathway can facilitate an apoptotic progression.  相似文献   

3.
4.
Gpn1 and Gpn3 are GTPases individually required for nuclear targeting of RNA polymerase II. Here we show that whereas Gpn3-EYFP distributed between the cytoplasm and cell nucleus, it was mainly cytoplasmic when coexpressed with Gpn1-Flag. Gpn3-Flag retained Gpn1-EYFP in the cytoplasm. However, Gpn3-EYFP/Gpn1-Flag nucleocytoplasmic shuttling was revealed after inhibiting nuclear export with leptomycin B. All Gpn3-EYFP coimmunoprecipitated with Gpn1-Flag, and all Gpn1-EYFP with Gpn3-Flag. Importantly, most endogenous Gpn1 and Gpn3 also associate. Gpn1–Gpn3 interaction was essential to maintain steady-state protein levels of both GTPases. We propose that most Gpn1 and Gpn3 associate, are mobilized, and function as a protein complex.  相似文献   

5.
The killing and removal of superfluous cells is an important step during embryonic development, tissue homeostasis, wound repair and the resolution of inflammation. A specific sequence of biochemical events leads to a form of cell death termed apoptosis, and ultimately to the disassembly of the dead cell for phagocytosis. Dynamic rearrangements of the actin cytoskeleton are central to the morphological changes observed both in apoptosis and phagocytosis. Recent research has highlighted the importance of Rho GTPase signalling pathways to these changes in cellular architecture. In this review, we will discuss how these signal transduction pathways affect the structure of the actin cytoskeleton and allow for the efficient clearance of apoptotic cells.  相似文献   

6.
In this work, we studied the effect of intracellular 3',5'-cyclic adenosine monophosphate (cAMP) on Li+ transport in SH-SY5Y cells. The cells were stimulated with forskolin, an adenylate cyclase activator, or with the cAMP analogue, dibutyryl-cAMP. It was observed that under forskolin stimulation both the Li+ influx rate constant and the Li+ accumulation in these cells were increased. Dibutyryl-cAMP also increased Li+ uptake and identical results were obtained with cortical and hippocampal neurons. The inhibitor of the Na+/Ca2+ exchanger, KB-R7943, reduced the influx of Li+ under resting conditions, and completely inhibited the effect of forskolin on the accumulation of the cation. Intracellular Ca2+ chelation, or inhibition of N-type voltage-sensitive Ca2+ channels, or inhibition of cAMP-dependent protein kinase (PKA) also abolished the effect of forskolin on Li+ uptake. The involvement of Ca2+ on forskolin-induced Li+ uptake was confirmed by intracellular free Ca2+ measurements using fluorescence spectroscopy. Exposure of SH-SY5Y cells to 1 mm Li+ for 24 h increased basal cAMP levels, but preincubation with Li+, at the same concentration, decreased cAMP production in response to forskolin. To summarize, these results demonstrate that intracellular cAMP levels regulate the uptake of Li+ in a Ca(2+)-dependent manner, and indicate that Li+ plays an important role in the homeostasis of this second messenger in neuronal cells.  相似文献   

7.
To determine whether exposure to radiofrequency (RF) radiation can induce DNA damage or apoptosis, Molt-4 T lymphoblastoid cells were exposed with RF fields at frequencies and modulations of the type used by wireless communication devices. Four types of frequency/modulation forms were studied: 847.74 MHz code-division multiple-access (CDMA), 835.62 MHz frequency-division multiple-access (FDMA), 813.56 MHz iDEN(R) (iDEN), and 836.55 MHz time-division multiple-access (TDMA). Exponentially growing cells were exposed to RF radiation for periods up to 24 h using a radial transmission line (RTL) exposure system. The specific absorption rates used were 3.2 W/kg for CDMA and FDMA, 2.4 or 24 mW/kg for iDEN, and 2.6 or 26 mW/kg for TDMA. The temperature in the RTLs was maintained at 37 degrees C +/- 0.3 degrees C. DNA damage was measured using the single-cell gel electrophoresis assay. The annexin V affinity assay was used to detect apoptosis. No statistically significant difference in the level of DNA damage or apoptosis was observed between sham-treated cells and cells exposed to RF radiation for any frequency, modulation or exposure time. Our results show that exposure of Molt-4 cells to CDMA, FDMA, iDEN or TDMA modulated RF radiation does not induce alterations in level of DNA damage or induce apoptosis.  相似文献   

8.
Human neuroblastoma SH-SY5Y cells differentiate terminally in culture upon exposure to nerve growth factor (NGF) for 4-5 weeks. The neuronal phenotypic properties acquired in response to prolonged NGF treatment include morphological differentiation, cessation of mitotic activity, neuronal marker expression, increased membrane electrical potentials, and a survival dependence upon NGF for trophic support (Jensen, L.M. (1987) Dev. Biol. 120, 56-64). Thus, differentiated cultures survive indefinitely in the continued presence of NGF, however, withdrawal of NGF from differentiated cultures effects the loss of cellular viability within 3-6 days. Here, we show that death of differentiated SH-SY5Y cells caused by NGF deprivation is characteristic of apoptosis. To compare the differentiation promoting and the neurotrophic properties of NGF, whole SH-SY5Y cell extracts were analyzed by two-dimensional polyacrylamide gel electrophoresis using isoelectric focusing and nonequilibrium pH gradient electrophoresis gels in the first dimension. Steady-state levels of polypeptides extracted from whole-cell lysates of naive (untreated) cells, terminally differentiated cells, and NGF-deprived differentiated cells were compared. Over 1,000 spots from each were analyzed using computer-aided spot matching and densitometry. We noted 25 polypeptides that decreased during differentiation, including 15 that decreased by a factor of 10 or more. The levels of five polypeptides were induced from very low or undetectable levels in naive cells. Withdrawal of NGF from terminally differentiated cells produced alterations in steady-state protein patterns substantially distinct from those occurring during differentiation. While levels of most proteins do not appear affected early after NGF withdrawal, others rapidly return to levels comparable with those of the naive state and some changes occurring with differentiation are enhanced further upon NGF withdrawal. Three polypeptides were regulated uniquely by NGF withdrawal, including two that were induced, on average, 20- and 28-fold and another that was depressed more than 7-fold after NGF deprivation, before cell death. These data indicate that NGF elicits both constitutive and nonconstitutive changes in gene expression and suggest that the differentiation promoting and the neurotrophic properties of NGF correlate with the regulation of different gene products.  相似文献   

9.
Presenilins 1 and 2 are two transmembrane proteins that seem necessary for controlling the proteolytic cleavages of two substrates, betaAPP and Notch, giving rise to Abeta (amyloid beta-peptide) and NICD (Notch Intracellular Domain), respectively. It is a matter for discussion whether presenilins act directly as the cleaving enzyme (referred to as gamma-secretase) or indirectly as a regulator of the substrates/enzymes trafficking to the permissive cell compartment where gamma-secretase cleavage could occur. Here we examined whether betaAPP and Notch undergo mutually exclusive proteolytic events in HEK293 cells or whether they behave as substrates able to compete for a single protease. We show that the overexpression of mDeltaE-Notch-1 does not influence the endogenous recovery of secreted and intracellular Abeta nor those derived from betaAPP-overexpressing HEK293 cells. We establish, conversely, that increasing amounts of betaAPP do not modify the steady-state generation of NICD nor affect the kinetic of production. These data indicate that the proteolytic cleavages leading to the productions of Abeta and NICD are mutually exclusive events in HEK293 cells, and suggest that distinct proteolytic activities contribute to betaAPP and Notch processing.  相似文献   

10.
p38 MAPK is mainly activated by stress stimuli and mediates signals that regulate various cellular responses, including cell-cycle progression and apoptosis, depending on cell types and stimuli. Here we examine the role of p38 in regulation of apoptosis and cell cycle checkpoint in Daudi B-cell lymphoma cells treated with the topoisomerase II inhibitor etoposide. Etoposide activated p38, inhibited the G2/M transition with the persistent inhibitory phosphorylation of Cdc2 on Tyr15, and caused apoptosis of Daudi cells. Inducible expression of a dominant negative p38α mutant in Daudi cells reduced the inhibition of Cdc2 as well as G2/M arrest and augmented apoptosis induced by etoposide. SB203580, a specific inhibitor of p38α and p38β, similarly reduced the inhibitory phosphorylation of Cdc2 as well as G2/M arrest and augmented apoptosis of Daudi cells treated with etoposide. These results suggest that p38 plays a role in G2/M checkpoint activation through induction of the persistent inhibitory phosphorylation of Cdc2 and, thereby, inhibits apoptosis of Daudi cells treated with etoposide. The present study, thus, raises the possibility that p38 may represent a new target for sensitization of lymphoma cells to DNA-damaging chemotherapeutic agents.  相似文献   

11.

Background

Neutrophils are key-players in the innate host defense and their programmed cell death and removal are essential for efficient resolution of inflammation. These cells recognize a variety of pathogens, and the NOD-like receptors (NLRs) have been suggested as intracellular sensors of microbial components and cell injury/stress. Some NLR will upon activation form multi-protein complexes termed inflammasomes that result in IL-1β production. NLR mutations are associated with auto-inflammatory syndromes, and our previous data propose NLRP3 (Q705K)/CARD-8 (C10X) polymorphisms to contribute to increased risk and severity of inflammatory disease by acting as genetic susceptibility factors. These gene products are components of the NALP3 inflammasome, and approximately 6.5% of the Swedish population are heterozygote carriers of these combined gene variants. Since patients carrying the Q705K/C10X polymorphisms display leukocytosis, the aim of the present study was to find out whether the inflammatory phenotype was related to dysfunctional apoptosis and impaired clearance of neutrophils by macrophages.

Methods and Findings

Patients carrying the Q705K/C10X polymorphisms displayed significantly delayed spontaneous as well as microbe-induced apoptosis compared to matched controls. Western blotting revealed increased levels and phosphorylation of Akt and Mcl-1 in the patients'' neutrophils. In contrast to macrophages from healthy controls, macrophages from the patients produced lower amounts of TNF; suggesting impaired macrophage clearance response.

Conclusions

The Q705K/C10X polymorphisms are associated with delayed apoptosis of neutrophils. These findings are explained by altered involvement of different regulators of apoptosis, resulting in an anti-apoptotic profile. Moreover, the macrophage response to ingestion of microbe-induced apoptotic neutrophils is altered in the patients. Taken together, the patients display impaired turnover and clearance of apoptotic neutrophils, pointing towards a dysregulated innate immune response that influences the resolution of inflammation. The future challenge is to understand how microbes affect the activation of inflammasomes, and why this interaction will develop into severe inflammatory disease in certain individuals.  相似文献   

12.
A functional relationship between the apoptotic endonuclease DNAS1L3 and the chemotherapeutic drug VP-16 was established. The lymphoma cell line, Daudi, exhibited a significant resistance to VP-16 treatment in comparison to the lymphoma/leukemia cell line, U-937. While U-937 cells degraded their DNA into internucleosomal fragments, Daudi cells failed to undergo such fragmentation in response to the drug. Activation of both caspase-3 and DNA fragmentation factor was not sufficient to trigger internucleosomal DNA fragmentation in Daudi cells. No correlation was found between expression levels of topoisomerase-II, Pgp, Bcl-2, Bax, or Bad and decreased sensitivity of Daudi cells to VP-16. Daudi cells failed to express DNAS1L3 and ectopic expression of this protein significantly sensitized the cells to VP-16. An enhancement of caspase-3 activity and collapse of mitochondrial membrane potential underlie DNAS1L3-mediated sensitization of Daudi cells to VP-16, which may be a direct result of DNAS1L3-mediated increase in PARP-1-activating DNA breaks after VP-16 treatment. Our results suggest that DNAS1L3 plays an active role in lymphoma cell sensitization to VP-16 and that its deficiency may constitute a novel mechanism of drug resistance in these cells.  相似文献   

13.
The hydrophobic (HPB) nature of most polymeric biomaterials has been a major obstacle in using those materials in vivo due to low compatibility with cells. However, there is little knowledge of the molecular detail to explain how surface hydrophobicity affects cell responses. In this study, we compared the proliferation and apoptosis of human osteoblastic MG63 cells adhered to hydrophilic (HPL) and hydrophobic surfaces. On the hydrophobic surface, less formation of focal contacts and actin stress fibers, a delay in cell cycle progression, and an increase in apoptosis were observed. By using fibroblast growth factor 1 (FGF1) as a model growth factor, we also investigated intracellular signaling pathways on hydrophilic and hydrophobic surfaces. The activation of Ras, Akt, and ERK by FGF1 was impaired in MG63 cells on the hydrophobic surface. The overexpression of constitutively active form of Ras and Akt rescued those cells from apoptosis and recovered cell cycle progression. Furthermore, their overexpression also restored the actin cytoskeletal organization on the hydrophobic surface. Finally, the proliferative, antiapoptotic, and cytoskeletal effects of constitutively active Ras in MG63 cells on the hydrophobic surface were blocked by wortmannin and PD98059 that inhibit Akt and ERK activation, respectively. Therefore, our results suggest that the activation of Ras and its downstream molecules Akt and ERK to an appropriate level is one of crucial elements in the determination of osteoblast cell responses. The Ras pathway may represent a cell biological target that should be considered for successful surface modification of biomaterials to induce adequate cell responses in the bone tissue.  相似文献   

14.
One of the mechanisms that has been put forward for the development of the androgen-resistant status is neuroendocrine differentiation. Neuroendocrine cells secrete neuropeptides that may represent one of the possible molecular bases by which hormone-dependent prostate cancer cells could escape treatment. LNCaP prostate cancer cells were treated with either etoposide or neuropeptides. Morphological changes related to apoptosis and cell viability were assessed. Changes in intracellular ion content were quantitatively analyzed by electron probe X-ray microanalysis. Etoposide treatment consistently induces a decrease in K and an increase in Na, which are inhibited by bombesin or calcitonin. The Na/K ratio increased markedly after exposure to etoposide, and both bombesin and calcitonin blocked this increase. Etoposide also caused changes in the intracellular P and S concentrations that to a large extent could be blocked by neuropeptides. These results support the hypothesis that neuropeptides confer anti-apoptotic capabilities onto non-neuroendocrine cells in close proximity to neuroendocrine cells.  相似文献   

15.
Resveratrol, a natural polyphenolic antioxidant, has been reported to possess the cancer chemopreventive potential in wide range by means of triggering tumor cells apoptosis through various pathways. It induced apoptosis through the activation of the mitochondrial pathway in some kinds of cells. In the present reports, we showed that resveratrol-induced HepG2 cell apoptosis and mitochondrial dysfunction was dependent on the induction of the mitochondrial permeability transition (MPT), because resveratrol caused the collapse of the mitochondrial membrane potential (ΔΨm) with the concomitant release of cytochrome c (Cyt.c). In addition, resveratrol induced a rapid and sustained elevation of intracellular [Ca2+], which compromised the mitochondrial ΔΨm and triggered the process of HepG2 cell apoptosis. In permeabilized HepG2 cells, we further demonstrated that the effect of the resveratrol was indeed synergistic with that of Ca2+ and Ca2+ is necessary for resveratrol-induced MPT opening. Calcium-induced calcium release from mitochondria (mCICR) played a key role in mitochondrial dysfunction and cell apoptosis: (1) mCICR inhibitor, ruthenium red (RR), prevent MPT opening and Cyt.c release; and (2) RR attenuated resveratrol-induced HepG2 cell apoptotic death. Furthermore, resveratrol promotes MPT opening by lowering Ca2+-threshold. These data suggest modifying mCICR and Ca2+ threshold to modulate MPT opening may be a potential target to control cell apoptosis induced by resveratrol. Xuemei Tian—Foundation item: Chinese National Natural Science Foundation (No.30300455).  相似文献   

16.
17.
Cucurbitacins B and D were among the compounds identified as sensitizers of cancer cells to TRAIL-mediated apoptosis in a high-throughput screen. Therefore a series of cucurbitacins was further investigated for TRAIL sensitization and possible mechanisms of action. A total of six cucurbitacins promoted TRAIL-induced apoptosis (B, I, E, C, D, and K) and one (P) was inactive. Sensitization of renal adenocarcinoma cells to TRAIL was apparent after as little as 1–4 h pretreatment and did not require continued presence of cucurbitacin. Active cucurbitacins induced caspase-8 activation only after subsequent TRAIL addition and caspase activation was required for apoptosis suggesting amplified proximal signaling from TRAIL death receptors. Cucurbitacin-sensitized TRAIL-induced cytotoxicity was inhibited by N-acetyl cysteine. Structure–activity relationship analysis in comparison to published studies suggests that TRAIL-sensitizing and general cytotoxic activities of cucurbitacins may be decoupled. Cucurbitacins are reported to be inhibitors of STAT3 activation. However, their TRAIL-sensitizing activity is STAT3-independent. Treatment of renal carcinoma cells with active cucurbitacins produced rapid and dramatic changes in cell morphology and cytoskeletal organization (also prevented by NAC). Therefore, cucurbitacins may be useful as tools for investigating the molecular mechanism(s) of action of TRAIL sensitizers, particularly with regard to temporal aspects of sensitization and modulation of TRAIL signaling by cell morphology, and could form the basis for future therapeutic development in combination with TRAIL death receptor agonists.  相似文献   

18.
Raji and Daudi cells were opsonized with C3b, iC3b, and C3d fragments by using purified complement components. The sensitivity of C3-opsonized cells to lysis mediated by low density blood lymphocytes was studied. Raji and Daudi cells carrying C3b or C3d fragments were lysed with similar efficiencies as the nonopsonized cells. The presence of iC3b on the target surface imposed elevated NK sensitivity. The iC3b-mediated enhancement of NK lysis was inhibited when iC3b fragments or rabbit anti-human C3 antibodies were included into the lytic assays. These results indicate that the iC3b fragments fixed on the targets bind to the CR3 on the lymphocytes. Results obtained in immobilized conjugate-lytic assays showed that iC3b-opsonized targets interact more readily with the lymphocytes. This was reflected by the elevated proportion of lymphocytes that were bound to the iC3b-carrying targets. The proportions of conjugates in which target damage occurred were similar with the control and with the iC3b-carrying cells. It seems therefore that opsonization of targets with iC3b leads to recruitment of effector lymphocytes due to contact with their CR3. However, once the effector-target contact is established, the triggering of lytic function does not seem to be influenced by the iC3b/CR3 bridge.  相似文献   

19.
JinML ZhanP 《Cell research》2001,11(2):125-134
INTRODUCTIIONThe nuclear matrix is an essential component ofthe nucleus which is important for the nuclear structural integrity and specific genomic functions[1, 2].Several articles have reported that the nuclear matrix, as a higher order framework structures, mightbe disassembled du-ring the apoptotic process[3-5].Accordingly3 nuclear lamins A/C or B have beenfound to decrease in apoptotic thymocytes[6], Tcells[7], and carcinoma cell line[8, 9]. The nucleolar protein B23, an obscure ma…  相似文献   

20.
The addition of K2Cr2O7, at concentrations ranging from 0.1 to 0.5 microng/ml, to hamster total embryonic cells for 24 h, resulted in consistent and drastic chromosomal aberrations including gaps, breaks and exchanges. The above effect, however, was reduced successfully by the addition of a reducing agent, Na2SO3. Among other chromium compounds examined, divalent and trivalent chromium salts were ineffective on chromosome morphology even at a concentration of 3.5 microng/ml as chromium, whereas a hexavalent compound, CrO3, was highly effective. K2Cr2O7 also enhanced the morphological transformation rate in a short-term colony assay, in whicy hamster embryonic cells (1x10(4) cells/60-mm dish) were treated and the morphology was observed 8 to 10 days after the treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号