首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cancer results from an imbalance between cell cycle progression and apoptosis. Therefore, most anticancer drugs exert their antiproliferative and cytotoxic activity via cell cycle arrest and induction of apoptosis, a controlled form of cell death that is dysregulated in cancer. Many polyadenylation trans-acting factors, including polyadenylate polymerase (PAP), are increasingly found to be involved in cell cycle, apoptosis and cancer prognosis. The objective of the present study was to identify PAP modulations in the response of two epithelial cancer cell lines (HeLa and MCF-7) to apoptosis induction by the anticancer drugs etoposide and cordycepin. Cells were assessed for PAP activity and isoforms by the highly sensitive PAP activity assay and Western blotting, respectively. Induction of apoptosis was determined by endonucleosomal DNA cleavage, 4'6-diamidino-2-phenylindol (DAPI) staining and caspase-6 activity assay, whereas cytotoxicity and cell cycle status were assessed by trypan blue staining, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry. Our results indicate that PAP changes very early in response to either etoposide or cordycepin treatment, even prior to the hallmarks of apoptosis (chromatin condensation and cleavage), in both cell lines tested, but in a different mode. Our results suggest, for the first time, that in the epithelial cancer cell lines used, PAP modulations follow cell cycle progression rather than the course of apoptosis.  相似文献   

2.
K562 cells represent a classical model for the study of drug resistance. Induction of apoptosis is accompanied by concomitant distinct modulations of poly(A) polymerase (PAP) and other proteins involved in mRNA maturation. Recent data suggest the involvement of mRNA stability in the induction of specific apoptosis pathways. In this study we used a specific polyadenylation inhibitor, cordycepin (3-deoxyadenosine), to investigate the involvement of polyadenylation in K562 cell apoptosis and drug resistance. The combination of cordycepin with either 5-fluorouracil or interferon-alpha sensitized chemoresistant K562 cells to apoptosis. This sensitization was followed by distinct PAP modulations before and after the appearance of characteristic apoptosis pointers (DNA laddering, DAPI staining, mitochondrial transmembrane potential). PAP modulations appeared essential for K562 sensitization. mRNA polyadenylation therefore seemed to be involved not only in apoptosis but also in drug resistance. Polyadenylation inhibition by cordycepin under certain conditions sensitized chemoresistant K562 cells to apoptosis and thus polyadenylation could prove to be a fine target for overcoming drug resistance.  相似文献   

3.
A variety of endonucleases has been implicated in apoptotic DNA fragmentation. DNA fragmentation factor (DFF) is one of the endonucleases responsible for DNA fragmentation. Since an oligonucleosomal DNA ladder is not induced in apoptotic Molt-4 cells, we investigated whether or not the absence of ladder formation is related to an inability of DFF endonuclease in the cells. Semiquantitative RT-PCR analysis showed that the mRNA level of DFF-40 and DFF-45 in Molt-4 cells was approximately the same, compared with in other cells, which exhibit different levels of the fragmentation in apoptosis. When Molt-4 cells were induced to undergo apoptosis by neocarzinostatin (NCS) treatment, both caspase-3 activation and DFF-45 cleavage were observed. Furthermore, DFF immunoprecipitated from Molt-4 cells exhibited DNA degradation activity. These results suggest that functional expression of DFF is not sufficient for the induction of DNA fragmentation in Molt-4 cells.  相似文献   

4.
Poly(A) polymerase (PAP; EC 2.7.7.19) catalyzes mRNA polyadenylation. Its activity and isoform levels vary during cell cycle transformation and apoptosis. It has become widely accepted that cell death after DNA damage by anticancer agents is primarily the result of apoptosis and that cells able to evade apoptosis will be resistant to cell killing. The therapeutic agents interferon (IFN), 5-fluorouracil (5-FU) and tamoxifen (Tam) with different mechanisms of action mediate both partial dephosphorylation and inactivation of PAP, detected by immunoblotting analysis and PAP enzyme assay, respectively. We examined the apoptotic tendencies of HeLa and WISH cell lines caused by one of the drugs used, 5-FU. The trend in the cells examined, observed by DAPI and/or DNA fragmentation assay, was found to be accompanied by and reversibly related to PAP activity levels and PAP lower mobility phosphorylated forms of 106 and 100 kDa isoforms. Moreover, a cell type-modulated, differential response of HeLa (chemosensitive cells) versus WISH (drug-resistant diploid cells) has been revealed. This finding yields information on the possible use of PAP as a tumor marker involved in cell commitment and/or induction of apoptosis and may help to improve our understanding of tumor cell sensitivity to anticancer agents.  相似文献   

5.
The apoptotic trend of the widely used cell lines HL-60, U937, HeLa, Molt-3, and K562 has been found to be accompanied and reversibly related with Poly(A) polymerase (PAP; EC 2.7.7.19) activity levels. Moreover, variations in the pattern of multiple enzyme forms are revealed, being most prominent in apoptosis-prone cell lines, HL-60 and U937. Furthermore, in heat-shocked or nutrient-deprived apoptotic U937 Percoll-fractionated subpopulations, PAP lower mobility phosphorylated forms of 106 and 100 kDa as well as enzyme activity were progressively reduced along with the appearance of higher than 80 kDa mobility species. The kinetics of these alterations (dephosphorylation, proteolysis, and activity) coincided with the appearance of DNA fragmentation. In fact, PAP dephosphorylation appears to precede the appearance of DNA fragmentation. In addition, inhibition of PAP dephosphorylation, proteolysis, and decrease in its activity were tightly coupled with the concomitant prevention of apoptosis. This novel finding yields information on a possible involvement of PAP in cell commitment and execution to apoptosis.  相似文献   

6.
p38 MAPK is mainly activated by stress stimuli and mediates signals that regulate various cellular responses, including cell-cycle progression and apoptosis, depending on cell types and stimuli. Here we examine the role of p38 in regulation of apoptosis and cell cycle checkpoint in Daudi B-cell lymphoma cells treated with the topoisomerase II inhibitor etoposide. Etoposide activated p38, inhibited the G2/M transition with the persistent inhibitory phosphorylation of Cdc2 on Tyr15, and caused apoptosis of Daudi cells. Inducible expression of a dominant negative p38α mutant in Daudi cells reduced the inhibition of Cdc2 as well as G2/M arrest and augmented apoptosis induced by etoposide. SB203580, a specific inhibitor of p38α and p38β, similarly reduced the inhibitory phosphorylation of Cdc2 as well as G2/M arrest and augmented apoptosis of Daudi cells treated with etoposide. These results suggest that p38 plays a role in G2/M checkpoint activation through induction of the persistent inhibitory phosphorylation of Cdc2 and, thereby, inhibits apoptosis of Daudi cells treated with etoposide. The present study, thus, raises the possibility that p38 may represent a new target for sensitization of lymphoma cells to DNA-damaging chemotherapeutic agents.  相似文献   

7.
We report here that the novel protein kinase C isoform, PKCdelta, is required at or prior to the level of the mitochondria for apoptosis induced by a diverse group of cell toxins. We have used adenoviral expression of a kinase-dead (KD) mutant of PKCdelta to explore the requirement for PKCdelta in the mitochondrial-dependent apoptotic pathway. Expression of PKCdeltaKD, but not PKCalphaKD, in salivary epithelial cells resulted in a dose-dependent inhibition of apoptosis induced by etoposide, UV-irradiation, brefeldin A, and paclitaxel. DNA fragmentation was blocked up to 71% in parotid C5 cells infected with the PKCdeltaKD adenovirus, whereas caspase-3 activity was inhibited up to 65%. The activation of caspase-9-like proteases by all agents was also inhibited in parotid C5 cells expressing PKCdeltaKD. The ability of PKCdeltaKD to block the loss of mitochondrial membrane potential was similarly determined. Expression of PKCdeltaKD blocked the decrease in mitochondrial membrane potential observed in cells treated with etoposide, UV, brefeldin A, or paclitaxel in a dose-dependent manner. In contrast to the protective function of PKCdeltaKD, expression of PKCdeltaWT resulted in a potent induction of apoptosis, which could be inhibited by co-infection with PKCdeltaKD. These results suggest that PKCdelta is a common intermediate in mitochondrial-dependent apoptosis in salivary epithelial cells.  相似文献   

8.
The ability to eliminate malignant cells from bone marrow (BM) while retaining sufficient numbers of normal progenitors to ensure engraftment, may well establish the future of autologous BM transplantation (ABMT) for hematologic malignancies. In this study, we describe the effects of methylprednisolone (MP) and etoposide (VP16) alone or in combination on 5 tumor cell lines (HL-60, a promyelocytic cell line; Molt-4, a T cell leukemia; Daudi, a Burkitt's lymphoma and R10/8226 and R40/8226, doxorubicin-resistant myeloma cell lines). The tumor cell kill efficiency of the drugs was assayed using the limiting dilution assay. We determined the toxic effect on progenitor cells by assaying granulocyte-macrophage colony-forming units (CFU). With a combination of MP at 10(-3) M and VP16 at 75 microM, we observed the following log reduction in tumor cell clones: HL-60, 4.695 +/- 0.001; Molt-4, 3.626 +/- 0.036; Daudi, 5.633 +/- 0.001; R10/8226, 3.052 +/- 0.544; R40/8226, 3.126 +/- 0.080. CFU recovery was 24% +/- 5%. Mixing tumor cell lines with a 20-fold excess of normal irradiated BM cells did not eliminate the inhibitory effect of the drug combination. We propose that MP and VP16 used in concert produce effective purging of malignant hematopoietic cells from BM while sparing normal progenitors needed for engraftment.  相似文献   

9.
Apoptosis is a cell suicide mechanism that requires the activation of cellular death proteases for its induction. We examined whether the progress of apoptosis involves cleavage of phospholipase C-gamma1 (PLC-gamma1), which plays a pivotal role in mitogenic signaling pathway. Pretreatment of T leukemic Molt-4 cells with PLC inhibitors such as U-73122 or ET-18-OCH(3) potentiated etoposide-induced apoptosis in these cells. PLC-gamma1 was fragmented when Molt-4 cells were treated with several apoptotic stimuli such as etoposide, ceramides, and tumor necrosis factor alpha. Cleavage of PLC-gamma1 was blocked by overexpression of Bcl-2 and by specific inhibitors of caspases such as Z-DEVD-CH(2)F and YVAD-cmk. Purified caspase-3 and caspase-7, group II caspases, cleaved PLC-gamma1 in vitro and generated a cleavage product of the same size as that observed in vivo, suggesting that PLC-gamma1 is cleaved by group II caspases in vivo. From point mutagenesis studies, Ala-Glu-Pro-Asp(770) was identified to be a cleavage site within PLC-gamma1. Epidermal growth factor receptor (EGFR) -induced tyrosine phosphorylation of PLC-gamma1 resulted in resistance to cleavage by caspase-3 in vitro. Furthermore, cleaved PLC-gamma1 could not be tyrosine-phosphorylated by EGFR in vitro. In addition, tyrosine-phosphorylated PLC-gamma1 was not significantly cleaved during etoposide-induced apoptosis in Molt-4 cells. This suggests that the growth factor-induced tyrosine phosphorylation may suppress apoptosis-induced fragmentation of PLC-gamma1. We provide evidence for the biochemical relationship between PLC-gamma1-mediated signal pathway and apoptotic signal pathway, indicating that the defect of PLC-gamma1-mediated signaling pathway can facilitate an apoptotic progression.  相似文献   

10.
Caspases have been implicated in the induction of apoptosis in most systems studied. The importance of caspases for apoptosis was further investigated using the system of didemnin B-induced apoptosis. We found that benzyloxycarbonyl-VAD-fluoromethylketone, a general caspase inhibitor, inhibits didemnin B-induced apoptosis in HL-60 and Daudi cells. Acetyl-YVAD-chloromethylketone, a caspase-1-like activity inhibitor, inhibits didemnin B-induced apoptosis in Daudi cells, whereas the caspase-3-like activity inhibitor, acetyl-DEVD-aldehyde, has no effect. Using immunoblots to investigate cleavage of caspases-1 and -3, we found that both caspases are activated in both cell lines. We showed that the caspase substrate poly(ADP-ribose)polymerase is cleaved in these cells after didemnin B treatment. In both cell lines, poly(ADP-ribose)polymerase cleavage is inhibited by benzyloxycarbonyl-VAD-fluoromethylketone and also by acetyl-YVAD-chloromethylketone in Daudi cells. These results indicate that a caspase(s) other than caspase-3 is required for didemnin B-induced apoptosis. We show that caspases may be activated during apoptosis that are not required for the progression of apoptosis.  相似文献   

11.
Discrete cleavages within 28S rRNA divergent domains have previously been found to coincide with DNA fragmentation during apoptosis. Here we show that rRNA and DNA cleavages can occur independently in apoptotic cells, i.e. that the previously observed correlation is likely to be coincidental. In HL-60 cells, apoptosis with massive DNA fragmentation could be induced without any signs of rRNA cleavage. The opposite situation; rRNA cleavage without concomitant internucleosomal DNA fragmentation, was found in okadaic acid-treated Molt-4 cells. Other leukemia cell lines underwent apoptosis either without (K562 and Molt-3) or with (U937) both forms of polynucleotide cleavage. In K562 cells transfected with a temperature-sensitive p53 mutant, internucleosomal DNA fragmentation but not 28S rRNA cleavage was inducible by wild-type p53 expression. The absence of apoptotic rRNA cleavage in some cell types suggests that this phenomenon is tightly regulated and unrelated to DNA fragmentation or a presumed scheme for general macromolecular degradation in apoptotic cells.  相似文献   

12.
We have previously shown that parotid C5 salivary acinar cells undergo apoptosis in response to etoposide treatment as indicated by alterations in cell morphology, caspase-3 activation, DNA fragmentation, sustained activation of c-Jun N-terminal kinase, and inactivation of extracellular regulated kinases 1 and 2. Here we report that apoptosis results in the caspase-dependent cleavage of protein kinase C-delta (PKCdelta) to a 40-kDa fragment, the appearance of which correlates with a 9-fold increase in PKCdelta activity. To understand the function of activated PKCdelta in apoptosis, we have used the PKCdelta-specific inhibitor, rottlerin. Pretreatment of parotid C5 cells with rottlerin prior to the addition of etoposide blocks the appearance of the apoptotic morphology, the sustained activation of c-Jun N-terminal kinase, and inactivation of extracellular regulated kinases 1 and 2. Inhibition of PKCdelta also partially inhibits caspase-3 activation and DNA fragmentation. Immunoblot analysis shows that the PKCdelta cleavage product does not accumulate in parotid C5 cells treated with rottlerin and etoposide together, suggesting that the catalytic activity of PKCdelta may be required for cleavage. PKCalpha and PKCbeta1 activities also increase during etoposide-induced apoptosis. Inhibition of these two isoforms with G?6976 slightly suppresses the apoptotic morphology, caspase-3 activation, and DNA fragmentation, but has no effect on the sustained activation of c-Jun N-terminal kinase or inactivation of extracellular regulated kinase 1 and 2. These data demonstrate that activation of PKCdelta is an integral and essential part of the apoptotic program in parotid C5 cells and that specific activated isoforms of PKC may have distinct functions in cell death.  相似文献   

13.
Exposure of the two related human leukemic cell lines U937 and TUR to chemotherapeutic compounds resulted in opposite effects on induction and resistance to apoptosis. Incubation of U937 cells with 1-beta-d-arabinofuranosylcytosine or the etoposide VP-16 was accompanied by growth arrest in G0/G1 of the cell cycle and an accumulation of a population in the sub-G1 phase which exhibited characteristics typical for the apoptotic pathway. In contrast, human TUR leukemia cells demonstrated no significant effects after a similar treatment with Ara-C and VP-16. Thus, TUR cells continued to proliferate in the presence of these anti-cancer drugs and the number of apoptotic cells as evaluated by propidium iodide staining and the detection of internucleosomal DNA fragmentation was significantly reduced when compared to the parental U937 cells. Similar effects were observed upon serum-starvation demonstrating resistance to apoptosis in TUR cells. Whereas induction of apoptosis is regulated by a network of distinct factors including the activation of proteolytically active caspases, we investigated these pathways in both cell lines. U937 cells demonstrated activation of the 32-kDa caspase-3 upon drug treatment by cleavage into the 20-kDa activated form. However, there was no 20-kDa caspase-3 fragment detectable in TUR cells. Simultaneously, the enzymatic activity of caspase-3 was significantly increased in drug-treated U937 cells as measured in vitro by enhanced metabolization of a fluorescence substrate and in vivo by cleavage of an appropriate substrate for caspase-3, namely, protein kinase Cdelta. In contrast, there was little if any caspase-3 activation detectable in drug-treated TUR cells. Taken together, these data suggest a signaling defect in the activation of the caspase-3 proteolytic system in TUR cells upon treatment with chemotherapeutic compounds which is associated with resistance to apoptosis in these human leukemia cells.  相似文献   

14.
15.
Stable transfected human p53 (mt/mt) B lymphoma Namalwa variant lines showing differential expression of the Bax-alpha protein were derived under hygromycin selection. Overexpression of Bax-alpha in these variant cells accelerates cell death induced by short or continuous treatments with various concentrations of camptothecin, etoposide, vinblastine and shows no accelerating cell death activity in cis-platinum and paclitaxel-treated cells. Activation of apoptosis and oligonucleosome-sized DNA fragmentation was observed in the variant lines with more pronounced effect in cells containing high level of Bax-alpha protein. These results suggest that increased cell death mediated by anticancer drugs correlates with Bax-alpha level of expression and that Bax-alpha sensitizes Namalwa cells treated at low drug concentrations. The extent of DNA synthesis inhibition following DNA topoisomerase inhibitor treatments was similar in control and all transfected Namalwa cells suggesting that Bax-alpha acts downstream of DNA topoisomerase-mediated DNA strand breaks. To define further the relation between Bax-alpha expression and apoptosis activation, kinetics of caspase activation was measured in drug-treated cells. Caspase activities were measured using specific fluorogenic peptide derivatives DABCYL-YVADAPV-EDANS and Ac-DEVD-AMC, substrates of the caspase 1-like and caspase 3-like families, respectively. In control and Bax-alpha transfected Namalwa cells no increase in caspase 1-like activity was detected following camptothecin and etoposide treatments. In contrast, a significant difference in Ac-DEVD-AMC hydrolysis activity was observed in Bax-alpha transfected Namalwa cells compared to that of control Namalwa cells after camptothecin and etoposide treatment. Increased caspase 3-like activity correlated also with poly(ADPribosyl) polymerase cleavage. Taken together, these results suggest that Bax-alpha sensitize B lymphoma cells to series of anticancer drugs and accelerates the activation of apoptotic protease cascade.  相似文献   

16.
We have examined the ability of etoposide to induce apoptosis in two recently established rat salivary acinar cell lines. Etoposide induced apoptosis in the parotid C5 cell line as evidenced by the appearance of cytoplasmic blebbing and nuclear condensation, DNA fragmentation and cleavage of PARP. Etoposide also induced activation of c-jun N-terminal kinase (JNK) in parotid C5 cells by 4 h after treatment, with maximal activation at 8 - 10 h. Coincident with activation of JNK, the amount of activated ERK1 and ERK2 decreased in etoposide-treated parotid C5 cells. In contrast to the parotid C5 cells, the vast majority of submandibular C6 cells appeared to be resistant to etoposide-induced apoptosis. Likewise, activation of JNKs was not observed in etoposide-treated submandibular C6 cells, and the amount of activated ERK1 and ERK2 decreased only slightly. Etoposide treatment of either cell line had no effect upon the activation of p38. Treatment of the parotid C5 cells with Z-VAD-FMK, a caspase inhibitor, inhibited etoposide-induced activation of JNK and DNA fragmentation. These data suggest that etoposide may induce apoptosis in parotid C5 cells by activating JNKs and suppressing the activation of ERKs, thus creating an imbalance in these two signaling pathways.  相似文献   

17.
Two cell lines which show different patterns of DNA fragmentation have been examined for variations of their nuclear morphology during apoptosis. FDCP-Mix, a pluripotent murine haemopoietic stem cell line which undergoes typical internucleosomal cleavage of DNA when induced to apoptosis either by drugs or withdrawal of growth factor (IL-3) was compared with the human lymphoid leukemia cell line MOLT-4, a cell line which undergoes apoptosis without production of a typical DNA 'ladder'. The nuclear morphology of FDCP-Mix cells was consistent after apoptotic induction by drug or by growth factor withdrawal. Apoptotic nuclear morphology for MOLT-4 and FDCP-Mix showed variations in the distribution, density and texture of the electron dense nuclear marginations. Despite these differences, clustering of nuclear pore complexes (NPCs) after treatment with the topoisomerase II inhibitor etoposide was a common phenomenon for both cell lines. Moreover, pore clustering for FDCP-Mix nuclei occurred independently from the way in which apoptosis was induced, either by growth factor withdrawal or etoposide treatment. In a novel approach, we visualised the clustering of NPCs three-dimensionally by field emission in-lens scanning electron microscopy (FEISEM).  相似文献   

18.
Almost all ovarian follicles undergo atresia during follicular development. However, the number of corpora lutea roughly equals the number of preovulatory follicles in the ovary. Because apoptosis is the cellular mechanism behind follicle and luteal cell demise, this suggests a change in apoptosis susceptibility during the periovulatory period. Sex steroids are important regulators of follicular cell survival and apoptosis. The aim of the present work was to study the role of progesterone receptor-mediated effects in the regulation of granulosa cell apoptosis. The levels of internucleosomal DNA fragmentation were evaluated in rat granulosa cells before and after induction of the nuclear progesterone receptor, using hCG treatment to eCG-primed rats to mimic the naturally occurring LH surge. Granulosa cells isolated from hCG-treated rats showed a several-fold increase in the expression of progesterone receptor mRNA and a 47% decrease (P < 0.01) in DNA fragmentation after 24 h incubation in serum-free medium compared to granulosa cells isolated from rats treated with eCG only. The effect of hCG treatment in vivo was dose-dependently reversed in vitro by addition of antiprogestins (Org 31710 or RU 486) to the culture medium, demonstrated by increased DNA fragmentation as well as increased caspase-3 activity. Addition of antiprogestins to granulosa cells isolated from immature or eCG-treated rats did not result in increased DNA fragmentation. The results suggest that progesterone receptor-mediated effects are involved in regulating the susceptibility to apoptosis in LH receptor-stimulated preovulatory rat granulosa cells.  相似文献   

19.
The natural killer (NK) sensitivity of two Epstein-Barr virus (EBV)-carrying Burkitt lymphoma lines (Daudi and Raji) and one EBV-negative acute lymphocytic leukemia-derived T-cell line (Molt-4) increased when they were cultured for 24 hr in the presence of the phorbol ester TPA. In the EBV-carrying lines, this increase occurred independently of the entry of the cells into the viral cycle. 12-O-Tetradecanoylphorbol-13-acetate (TPA)-treated Daudi and Molt-4 cells cross-competed for the effectors in the NK assay as indicated by the cold-target inhibition tests. TPA-treated cells showed an increased binding of human but not of mouse lymphocytes.  相似文献   

20.
Burkitt lymphoma (BL) commonly exhibits Epstein-Barr virus (EBV) positivity associated with latent chronic infection. Models of acute EBV infection have been associated with cellular resistance to apoptosis. However, the effect of latent long-term EBV infection on apoptosis induced by drugs is not well defined. To determine this, we have studied the response of the Akata EBV+ cell line (type I latency) to etoposide, before and after downregulating EBV gene expression. We observed that downregulating EBV nuclear antigen-1 (EBNA-1) expression with siRNAs reverted cellular sensitivity to etoposide. In accordance with this finding, Akata EBV+ cells showed increased sensitivity to etoposide, when compared to the Akata EBV- cells. We also observed that Akata EBV+ cells presented increased apoptosis levels and decreased Bcl-xL mRNA and protein levels, when compared to the Akata EBV- cells. In addition, Akata EBV+ cells contained less endoplasmic reticulum (ER) than EBV- cells. Finally, downregulation of EBV with EBNA-1 siRNAs caused an increase in the expression of Bcl-xL indicating that EBV is responsible for the differences found between the Akata EBV+ and EBV- cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号