首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most cases of candidosis have been attributed to Candida albicans, but recently non-C. albicans Candida species have been identified as frequent human pathogens. Candida pathogenicity has been attributed to several factors, including adhesion to medical devices and/or host cells, biofilm formation, and secretion of hydrolytic enzymes (proteases, phospholipases and haemolysins). Although 'new'Candida species are emerging, there is still a lack of information about their pathogenicity. This review discusses recent advances in our knowledge of Candida glabrata, Candida parapsilosis and Candida tropicalis virulence factors, specifically those of adhesion and biofilm formation, which are key components in Candida pathogenicity.  相似文献   

2.
The number of pathogens that are required to infect a host, termed infective dose, varies dramatically across pathogen species. It has recently been predicted that infective dose will depend upon the mode of action of the molecules that pathogens use to facilitate their infection. Specifically, pathogens which use locally acting molecules will require a lower infective dose than pathogens that use distantly acting molecules. Furthermore, it has also been predicted that pathogens with distantly acting immune modulators may be more virulent because they have a large number of cells in the inoculums, which will cause more harm to host cells. We formally test these predictions for the first time using data on 43 different human pathogens from a range of taxonomic groups with diverse life-histories. We found that pathogens using local action do have lower infective doses, but are not less virulent than those using distant action. Instead, we found that virulence was negatively correlated with infective dose, and higher in pathogens infecting wounded skin, compared with those ingested or inhaled. More generally, our results show that broad-scale comparative analyses can explain variation in parasite traits such as infective dose and virulence, whilst highlighting the importance of mechanistic details.  相似文献   

3.
Plant pathogens deliver a variety of virulence factors to host cells to suppress basal defence responses and create suitable environments for their propagation. Plants have in turn evolved disease resistance genes whose products detect the virulence factors as a signal of invasion and activate effective defence responses. Understanding how a virulence effector contributes to virulence on susceptible hosts but becomes an avirulence factor that triggers defence responses on resistance hosts has been a major focus in plant research. Recent studies have shown that a growing list of pathogen-encoded effectors functions as proteases that are secreted into plant cells to modify host proteins. In addition, several plant proteases have been found to function in activation of the defence mechanism. These findings reveal that post-translational modification of host proteins through proteolytic processing is a widely used mechanism in regulating the plant defence response.  相似文献   

4.
The HtrA family of chaperones and serine proteases is important for regulating stress responses and controlling protein quality in the periplasm of bacteria. HtrA is also associated with infectious diseases since inactivation of htrA genes results in significantly reduced virulence properties by various bacterial pathogens. These virulence features of HtrA can be attributed to reduced fitness of the bacteria, higher susceptibility to environmental stress and/or diminished secretion of virulence factors. In some Gram‐negative and Gram‐positive pathogens, HtrA itself can be exposed to the extracellular environment promoting bacterial colonisation and invasion of host tissues. Most of our knowledge on the function of exported HtrAs stems from research on Helicobacter pylori, Campylobacter jejuni, Borrelia burgdorferi, Bacillus anthracis, and Chlamydia species. Here, we discuss recent progress showing that extracellular HtrAs are able to cleave cell‐to‐cell junction factors including E‐cadherin, occludin, and claudin‐8, as well as extracellular matrix proteins such as fibronectin, aggrecan, and proteoglycans, disrupting the epithelial barrier and producing substantial host cell damage. We propose that the export of HtrAs is a newly discovered strategy, also applied by additional bacterial pathogens. Consequently, exported HtrA proteases represent highly attractive targets for antibacterial treatment by inhibiting their proteolytic activity or application in vaccine development.  相似文献   

5.
Macrophage infectivity potentiators (Mips) are FKBP domain-containing proteins reported as virulence factors in several human pathogens, such as members of genera Legionella, Salmonella and Chlamydia. The putative peptidylprolyl cis-trans isomerase (PPIase) encoded by XC2699 of the plant bacterial pathogen Xanthomonas campestris pv. campestris 8004 exhibits a 49% similarity at the amino-acid level to the Mip protein of Legionella pneumophila. This mip-like gene, XC2699, was overexpressed in Escherichia coli and the purified (His)6-tagged Mip-like protein encoded by XC2699 exhibited a PPIase activity specifically inhibited by FK-506. A mutation in the mip-like gene XC2699 led to significant reductions in virulence and replication capacity in the host plant Chinese radish (Raphanus sativus L. var. radiculus Pers.). Furthermore, the production of exopolysaccharide and the activity of extracellular proteases, virulence factors of X. campestris pv. campestris, were significantly decreased in the mip-like mutant. These results reveal that the mip-like gene is involved in the pathogenesis of X. campestris pv. campestris through an effect on the production of these virulence factors.  相似文献   

6.
The incidence of infections caused by Candida species (candidosis) has increased considerably over the past three decades, mainly due to the rise of the AIDS epidemic, an increasingly aged population, higher numbers of immunocompromised patients and the more widespread use of indwelling medical devices. Candida albicans is the main cause of candidosis; however, non-C. albicans Candida (NCAC) species such as Candida glabrata, Candida tropicalis and Candida parapsilosis are now frequently identified as human pathogens. The apparent increased emergence of these species as human pathogens can be attributed to improved identification methods and also associated with the degree of diseases of the patients, the interventions that they were subjected and the drugs used. Candida pathogenicity is facilitated by a number of virulence factors, most importantly adherence to host surfaces including medical devices, biofilm formation and secretion of hydrolytic enzymes (e.g. proteases, phospholipases and haemolysins). Furthermore, despite extensive research to identify pathogenic factors in fungi, particularly in C. albicans, relatively little is known about NCAC species. This review provides information on the current state of knowledge on the biology, identification, epidemiology, pathogenicity and antifungal resistance of C. glabrata, C. parapsilosis and C. tropicalis.  相似文献   

7.
8.
Studies of the impact of enteric pathogens and their virulence factors on the proteins comprising the tight junction and zonula adherens offer a novel approach to dissection of tight junctional complex regulation. Most studies to date provide only tantalizing clues that select pathogens may indeed assault the tight junctional complex. Information on critical human pathogens such as Campylobacter jejuni and Shigella and Salmonella subspecies is lacking. Mechanistic studies are currently sparse, but available results on pathogenic Escherichia coli and specific virulence factors such as the Rho-modifying and protease bacterial toxins indicate four major mechanisms by which these pathogens may act: 1) direct cleavage of tight junctional structural proteins; 2) modification of the actin cytoskeleton; 3) activation of cellular signal transduction; and 4) triggering transmigration of polymorphonuclear cells across the epithelial cell barrier. New therapeutics may evolve from detailed studies of these pathogens and the cellular processes and proteins they disrupt.  相似文献   

9.
Cellulolytic, xylanolytic, chitinolytic and beta-1,3-glucanolytic enzyme systems of species belonging to the filamentous fungal genus Trichoderma have been investigated in details and are well characterised. The ability of Trichoderma strains to produce extracellular proteases has also been known for a long time, however, the proteolytic enzyme system is relatively unknown in this genus. Fortunately, in the recent years more and more attention is focused on the research in this field. The role of Trichoderma proteases in the biological control of plant pathogenic fungi and nematodes has been demonstrated, and it is also suspected that they may be important for the competitive saprophytic ability of green mould isolates and may represent potential virulence factors of Trichoderma strains as emerging fungal pathogens of clinical importance. The aim of this review is to summarize the information available about the extracellular proteases of Trichoderma. Numerous studies are available about the extracellular proteolytic enzyme profiles of Trichoderma strains and about the effect of abiotic environmental factors on protease activities. A number of protease enzymes have been purified to homogeneity and some protease encoding genes have been cloned and characterized. These results will be reviewed and the role of Trichoderma proteases in biological control as well as their advantages and disadvantages in biotechnology will be discussed.  相似文献   

10.
The biochemical properties, virulence for mice and trout, and the extracellular virulence factors at 28° and 37°C of 11 environmental and nine human strains of Aeromonas hydrophila were compared. All the environmental isolates and four of the human group were virulent for trout at 3 x 107 cfu, but only human strains were able to cause death or lesions in mice by the intramuscular route. Extracellular virulence factors such as haemolysins, cytotoxins and proteases were also investigated in supernatant fluids of cultures grown at 28°C and 37°C. The production of haemolysins, caseinases, elastases and growth yields of environmental strains decreased sharply during cultivation at 37°C but cytotoxins were produced to the same extent, or slightly less, than at 28°C. The human strains differed from the environmental strains in response to growth temperatures: protease activity decreased at 37°C, although growth yield was not affected, but more haemolysins and cytotoxins were produced by the virulent strains at this temperature than at 28°C. Sodium caseinate SDS-PAGE of culture supernatant fluids of selected human strains revealed that temperature selectively inhibited the production of certain proteases.  相似文献   

11.
Vibrio parahaemolyticus, a Gram-negative bacterium, inhabits marine and estuarine environments and it is a major pathogen responsible globally for most cases of seafood-associated gastroenteritis in humans and acute hepatopancreatic necrosis syndrome in shrimps. There has been a dramatic worldwide increase in V. parahaemolyticus infections over the last two decades. The pathogenicity of V. parahaemolyticus has been linked to the expression of different kinds of virulence factors including extracellular proteases, such as metalloproteases and serine proteases. V. parahaemolyticus expresses the metalloproteases; PrtV, VppC, VPM and the serine proteases; VPP1/Protease A, VpSP37, PrtA. Extracellular proteases have been identified as potential virulence factors which directly digest many kinds of host proteins or indirectly are involved in the processing of other toxic protein factors. This review summarizes findings on the metalloproteases and serine proteases produced by V. parahaemolyticus and their roles in infections. Identifying the role of V. parahaemolyticus virulence-associated extracellular proteases deepens our understanding of diseases caused by this bacterium.  相似文献   

12.
Two highly infectious bordetellae, Bordetella pertussis and B. parapertussis, have emerged in historical times as co-dominant in human populations. Both of these cause acute disease (whooping cough), whereas their progenitor, B. bronchiseptica, is of variable virulence in a wide variety of animals. The remarkably close phylogenetic relatedness of these three bordetellae and the two independent jumps to humans provide a unique opportunity to examine the evolution and genetics involved in the emergence of acute human pathogens. We hypothesize that the more virulent strains in humans reflects how acutely infectious pathogens might be favored in communities with large contact networks. Furthermore, we suggest that the differential expression of the various virulence factors by the two human pathogens can be explained by immune-mediated competition between the strains. The evolutionarily favored strategies of both of the human bordetellae result in immunizing infections and acute epidemics.  相似文献   

13.
IgA1 protease     
IgA1 proteases are proteolytic enzymes that cleave specific peptide bonds in the human immunoglobulin A1 (IgA1) hinge region sequence. Several species of pathogenic bacteria secrete IgA1 proteases at mucosal sites of infection to destroy the structure and function of human IgA1 thereby eliminating an important aspect of host defence. IgA1 proteases are known as autotransporter proteins as their gene structure encodes the information to direct their own secretion out of the bacterial cell. The iga gene structure is also thought to contribute to the antigenic heterogeneity demonstrated by the IgA1 proteases during infections and the cleavage specificity of the IgA1 proteases for human IgA1. The IgA1 proteases have therefore been implicated as important virulence factors that contribute to bacterial infection and colonisation. The development of strategies to inactivate these IgA1 proteases has become the subject of recent research, as this has the potential to reduce bacterial colonisation at mucosal surfaces.  相似文献   

14.

Background  

The C10 family of cysteine proteases includes enzymes that contribute to the virulence of bacterial pathogens, such as SpeB in Streptococcus pyogenes. The presence of homologues of cysteine protease genes in human commensal organisms has not been examined. Bacteroides fragilis is a member of the dominant Bacteroidetes phylum of the human intestinal microbiota, and is a significant opportunistic pathogen.  相似文献   

15.
Many bacterial pathogens produce extracellular proteases that degrade the extracellular matrix of the host and therefore are involved in disease pathogenesis. Dichelobacter nodosus is the causative agent of ovine footrot, a highly contagious disease that is characterized by the separation of the hoof from the underlying tissue. D. nodosus secretes three subtilisin-like proteases whose analysis forms the basis of diagnostic tests that differentiate between virulent and benign strains and have been postulated to play a role in virulence. We have constructed protease mutants of D. nodosus; their analysis in a sheep virulence model revealed that one of these enzymes, AprV2, was required for virulence. These studies challenge the previous hypothesis that the elastase activity of AprV2 is important for disease progression, since aprV2 mutants were virulent when complemented with aprB2, which encodes a variant that has impaired elastase activity. We have determined the crystal structures of both AprV2 and AprB2 and characterized the biological activity of these enzymes. These data reveal that an unusual extended disulphide-tethered loop functions as an exosite, mediating effective enzyme-substrate interactions. The disulphide bond and Tyr92, which was located at the exposed end of the loop, were functionally important. Bioinformatic analyses suggested that other pathogenic bacteria may have proteases that utilize a similar mechanism. In conclusion, we have used an integrated multidisciplinary combination of bacterial genetics, whole animal virulence trials in the original host, biochemical studies, and comprehensive analysis of crystal structures to provide the first definitive evidence that the extracellular secreted proteases produced by D. nodosus are required for virulence and to elucidate the molecular mechanism by which these proteases bind to their natural substrates. We postulate that this exosite mechanism may be used by proteases produced by other bacterial pathogens of both humans and animals.  相似文献   

16.
Enterococci have recently emerged as nosocomial pathogens. Their ubiquitous nature determines their frequent finding in foods as contaminants. In addition, the notable resistance of enterococci to adverse environmental conditions explains their ability to colonise different ecological niches and their spreading within the food chain through contaminated animals and foods. Enterococci can also contaminate finished products, such as fermented foods and, for this reason, their presence in many foods (such as cheeses and fermented sausages) can only be limited but not completely eliminated using traditional processing technologies. Enterococci are low grade pathogens but their intrinsic resistance to many antibiotics and their acquisition of resistance to the few antibiotics available for treatment in clinical therapy, such as the glycopeptides, have led to difficulties and a search for new drugs and therapeutic options. Enterococci can cause food intoxication through production of biogenic amines and can be a reservoir for worrisome opportunistic infections and for virulence traits. Clearly, there is no consensus on the acceptance of their presence in foodstuffs and their role as primary pathogens is still a question mark. In this review, the following topics will be covered: (i) emergence of the enterococci as human pathogens due to the presence of virulence factors such as the production of adhesins and aggregation substances, or the production of biogenic amines in fermented foods; (ii) their presence in foods; (iii) their involvement in food-borne illnesses; (iv) the presence, selection and spreading of antibiotic-resistant enterococci as opportunistic pathogens in foods, with particular emphasis on vancomycin-resistant enterococci.  相似文献   

17.
Bacterial pathogens rely on a variety of virulence factors to establish the colonization of a new niche. Although peptidoglycan and its muropeptide derivatives have been known to possess potent biological properties, until recently the molecular bases were poorly understood. With the identification of the cytosolic surveillance mechanism mediated by the nucleotide-binding oligomerization domain (Nod)1 and Nod2 proteins, which detect unique peptidoglycan-derived muropeptides, these muropeptides should be considered as potential virulence factors. Recent research highlights the role of peptidoglycan in the pathogenesis of different human pathogens such as Streptococcus pneumoniae, Listeria monocytogenes or Helicobacter pylori.  相似文献   

18.
Prevotella intermedia is a major periodontopathogen contributing to human gingivitis and periodontitis. Such pathogens release proteases as virulence factors that cause deterrence of host defenses and tissue destruction. A new cysteine protease from the cysteine-histidine-dyad class, interpain A, was studied in its zymogenic and self-processed mature forms. The latter consists of a bivalved moiety made up by two subdomains. In the structure of a catalytic cysteine-to-alanine zymogen variant, the right subdomain interacts with an unusual prodomain, thus contributing to latency. Unlike the catalytic cysteine residue, already in its competent conformation in the zymogen, the catalytic histidine is swung out from its active conformation and trapped in a cage shaped by a backing helix, a zymogenic hairpin, and a latency flap in the zymogen. Dramatic rearrangement of up to 20A of these elements triggered by a tryptophan switch occurs during activation and accounts for a new activation mechanism for proteolytic enzymes. These findings can be extrapolated to related potentially pathogenic cysteine proteases such as Streprococcus pyogenes SpeB and Porphyromonas gingivalis periodontain.  相似文献   

19.
It is commonly known that animal pathogens often target and suppress programmed cell death (pcd) pathway components to manipulate their hosts. In contrast, plant pathogens often trigger pcd. In cases in which plant pcd accompanies disease resistance, an event called the hypersensitive response, the plant surveillance system has learned to detect pathogen-secreted molecules in order to mount a defence response. In plants without genetic disease resistance, these secreted molecules serve as virulence factors that act through largely unknown mechanisms. Recent studies suggest that plant bacterial pathogens also secrete antiapoptotic proteins to promote their virulence. In contrast, a number of fungal pathogens secrete pcd-promoting molecules that are critical virulence factors. Here, we review recent progress in determining the role and regulation of plant pcd responses that accompany both resistance and susceptible interactions. We also review progress in discerning the mechanisms by which plant pcd occurs during these different interactions.  相似文献   

20.
Mycopathologia - Dermatophytes are among the most successful fungal pathogens in humans, but their virulence mechanisms have not yet been fully characterized. Dermatophytic fungi secrete proteases...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号