首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Norovirus (NoV) is the major pathogen causing the outbreaks of the viral gastroenteritis across the world. Among the various genotypes of NoV, GII.4 is the most predominant over the past decades. GII.4 NoVs interact with the histo-blood group antigens (HBGAs) to invade the host cell, and it is believed that the receptor HBGAs may play important roles in selecting the predominate variants by the nature during the evolution of GII.4 NoVs. However, the evolution-induced changes in the HBGA-binding affinity for the GII.4 NoV variants and the mechanism behind the evolution of the NoV-HBGA interactions remain elusive. In the present work, the virus-like particles (VLPs) of the representative GII.4 NoV stains epidemic in the past decades were expressed by using the Hansenula polymorpha yeast expression platform constructed by our laboratory, and then the enzyme linked immunosorbent assay (ELISA)-based HBGA-binding assays as well as the molecular dynamics (MD) simulations combined with the molecular mechanics/generalized born surface area (MMGBSA) calculations were performed to investigate the interactions between various GII.4 strains and different types of HBGAs. The HBGA-binding assays show that for all the studied types of HBGAs, the evolution of GII.4 NoVs results in the increased NoV-HBGA binding affinities, where the early epidemic strains have the lower binding activity and the newly epidemic strains exhibit relative stronger binding intensity. Based on the MD simulation and MMGBSA calculation results, a physical mechanism that accounts for the increased HBGA-binding affinity was proposed. The evolution-involved residue mutations cause the conformational rearrangements of loop-2 (residues 390–396), which result in the narrowing of the receptor-binding pocket and thus tighten the binding of the receptor HBGAs. Our experimental and computational studies are helpful for better understanding the mechanism behind the evolution-induced increasing of HBGA-binding affinity, which may provide useful information for the drug and vaccine designs against GII.4 NoVs.  相似文献   

2.
Over the last fifteen years there have been five pandemics of norovirus (NoV) associated gastroenteritis, and the period of stasis between each pandemic has been progressively shortening. NoV is classified into five genogroups, which can be further classified into 25 or more different human NoV genotypes; however, only one, genogroup II genotype 4 (GII.4), is associated with pandemics. Hence, GII.4 viruses have both a higher frequency in the host population and greater epidemiological fitness. The aim of this study was to investigate if the accuracy and rate of replication are contributing to the increased epidemiological fitness of the GII.4 strains. The replication and mutation rates were determined using in vitro RNA dependent RNA polymerase (RdRp) assays, and rates of evolution were determined by bioinformatics. GII.4 strains were compared to the second most reported genotype, recombinant GII.b/GII.3, the rarely detected GII.3 and GII.7 and as a control, hepatitis C virus (HCV). The predominant GII.4 strains had a higher mutation rate and rate of evolution compared to the less frequently detected GII.b, GII.3 and GII.7 strains. Furthermore, the GII.4 lineage had on average a 1.7-fold higher rate of evolution within the capsid sequence and a greater number of non-synonymous changes compared to other NoVs, supporting the theory that it is undergoing antigenic drift at a faster rate. Interestingly, the non-synonymous mutations for all three NoV genotypes were localised to common structural residues in the capsid, indicating that these sites are likely to be under immune selection. This study supports the hypothesis that the ability of the virus to generate genetic diversity is vital for viral fitness.  相似文献   

3.
Noroviruses (NoVs) are the leading cause of acute gastroenteritis, both in sporadic cases and outbreaks. Since the 1990s, the emergence of several GII.4 variants has been reported worldwide. To investigate the epidemic status of NoV, 6,724 stool samples collected from outbreaks in Yokohama, Japan, from the 2006–2007 to 2013–2014 seasons were assessed for NoVs. We genotyped one specimen from each GII outbreak and conducted a sequence analysis of the VP1 gene for several GII.4 strains. Of the 947 NoV outbreaks during our study, GII was detected in 835, and GII.4 was the predominant genotype of GII. Five different GII.4 variants, Yerseke 2006a, Den Haag 2006b (2006b), Apeldoorn 2007, New Orleans 2009, and Sydney 2012, were detected. During this study period, the most prevalent variant of GII.4 was 2006b, and in each individual season, either 2006b or Sydney 2012 was the predominant variant. Out of the 16 detected 2006b strains, 12 had some amino acid substitutions in their blockade epitope, and these substitutions were concentrated in three residues. Two of the 2006b strains detected in the 2012–2013 season had a S368E substitution, which is consistent with the amino acid residues at same site of NSW0514 (Sydney 2012 prototype). Among the 16 detected strains of Sydney 2012, a phylogenetic analysis showed that all five strains detected in Yokohama during the 2011–2012 season clustered away from the other Sydney 2012 strains that were detected in the 2012–2013 and 2013–2014 seasons. These five strains and other Sydney 2012 strains in Yokohama had a few amino acid differences in the blockade epitopes compared with NSW0514. The amino acid substitutions observed in this study provide informative data about the evolution of a novel GII.4 variant.  相似文献   

4.
The serological prevalence of IgG antibody to seven NoV strains (GI.1, GI.4, GII.3, GII.4, GII.10, GII.12 and GII.15) among inhabitants aged 1–62 years of Aichi Prefecture, Japan was studied. Age-related seroprevalence was measured by ELISA using baculovirus-expressed recombinant VLP antigens. Seropositive rates for all seven VLP antigens gradually increased with age. Among the tested antigens, the highest seropositive rate was for the GII.4 strain. This result is consistent with the recent epidemic of NoV infection due to GII.4 strain in Japan.  相似文献   

5.
Norovirus (NoV) is a causative agent of acute gastroenteritis. NoV binds to histo-blood group antigens (HBGAs), namely, ABH antigens and Lewis (Le) antigens, in which type 1 and type 2 carbohydrate core structures constitute antigenically distinct variants. Norwalk virus, the prototype strain of norovirus, binds to the gastroduodenal junction, and this binding is correlated with the presence of H type 1 antigen but not with that of H type 2 antigen (S. Marionneau, N. Ruvoen, B. Le Moullac-Vaidye, M. Clement, A. Cailleau-Thomas, G. Ruiz-Palacois, P. Huang, X. Jiang, and J. Le Pendu, Gastroenterology 122:1967-1977, 2002). It has been unknown whether NoV distinguishes between the type 1 and type 2 chains of A and B antigens. In this study, we synthesized A type 1, A type 2, B type 1, and B type 2 pentasaccharides in vitro and examined the function of the core structures in the binding between NoV virus-like particles (VLPs) and HBGAs. The attachment of five genogroup I (GI) VLPs from 5 genotypes and 11 GII VLPs from 8 genotypes, GI/1, GI/2, GI/3, GI/4, GI/8, GII/1, GII/3, GII/4, GII/5, GII/6, GII/7, GII/12, and GII/14, to ABH and Le HBGAs was analyzed by enzyme-linked immunosorbent assay-based binding assays and Biacore analyses. GI/1, GI/2, GI/3, GI/4, GI/8, and GII/4 VLPs were more efficiently bound to A type 2 than A type 1, and GI/8 and GII/4 VLPs were more efficiently bound to B type 2 than B type 1, indicating that NoV VLPs distinguish between type 1 and type 2 carbohydrates. The dissociation of GII/4 VLPs from B type 1 was slower than that from B type 2 in the Biacore experiments; moreover, the binding to B type 1 was stronger than that to B type 2 in the ELISA experiments. These results indicated that the type 1 carbohydrates bind more tightly to NoV VLPs than the type 2 carbohydrates. This property may afford NoV tissue specificity. GII/4 is known to be a global epidemic genotype and binds to more HBGAs than other genotypes. This characteristic may be linked with the worldwide transmission of GII/4 strains. GI/2, GI/3, GI/4, GI/8, GII/4, and GII/7 VLPs bound to Le(a) expressed by nonsecretors, suggesting that NoV can infect individuals regardless of secretor phenotype. Overall, our results indicated that HBGAs are important factors in determining tissue specificity and the risk of transmission.  相似文献   

6.
Mechanisms of GII.4 norovirus evolution   总被引:1,自引:0,他引:1  
Since the late 1990s norovirus (NoV) strains belonging to a single genotype (GII.4) have caused at least four global epidemics. To date, the higher epidemiological fitness of the GII.4 strains has been attributed to a faster rate of evolution within the virus capsid, resulting in the ability to escape herd immunity. Four key factors have been proposed to influence the rate of evolution in NoV. These include host receptor recognition, sequence space, duration of herd immunity, and replication kinetics. In this review we discuss recent advancements in our understanding of these four mechanisms in relation to GII.4 evolution.  相似文献   

7.
8.
Noroviruses (NoVs) cause epidemic acute gastroenteritis, in which histo-blood group antigens (HBGAs) may play an important role in the host susceptibility. To further explore this issue, two outbreaks of acute gastroenteritis caused by a GII.4 and a GII.3 NoV, respectively, in China in 2009 were studied. Stool and saliva samples from symptomatic patients and water samples from the outbreak facilities were collected. RT-PCR showed that 23 out of 33 (GII.4 outbreak) and 12 out of 13 (GII.3outbreak) stool samples were NoV positive. For the GII.4 outbreak the NoV sequences of stool and water samples were from an identical GII.4 strain, while the same GII.3 NoV sequences were found in five stool samples from the GII.3 outbreak. The HBGA phenotypes (A, B, Lea, Leb, Lex, and Ley) of all saliva samples were determined, which revealed both secretors and nonsecretors in the symptomatic groups of the two outbreaks. In the GII.3 outbreak, type O individuals appeared less susceptible, while the type A may be more at risk of infection. However, No preference of HBGAs was observed in the GII.4 outbreak. The observation that nonsecretors were infected in both outbreaks differed from the previous results that nonsecretors are resistant to these two GII NoVs.  相似文献   

9.
10.
11.
Susceptibility to norovirus (NoV), a major pathogen of epidemic gastroenteritis, is associated with histo-blood group antigens (HBGAs), which are also cell attachment factors for this virus. GII.4 NoV strains are predominantly associated with worldwide NoV epidemics with a periodic emergence of new variants. The sequence variations in the surface-exposed P domain of the capsid protein resulting in differential HBGA binding patterns and antigenicity are suggested to drive GII.4 epochal evolution. To understand how temporal sequence variations affect the P domain structure and contribute to epochal evolution, we determined the P domain structure of a 2004 variant with ABH and secretor Lewis HBGAs and compared it with the previously determined structure of a 1996 variant. We show that temporal sequence variations do not affect the binding of monofucosyl ABH HBGAs but that they can modulate the binding strength of difucosyl Lewis HBGAs and thus could contribute to epochal evolution by the potentiated targeting of new variants to Lewis-positive, secretor-positive individuals. The temporal variations also result in significant differences in the electrostatic landscapes, likely reflecting antigenic variations. The proximity of some of these changes to the HBGA binding sites suggests the possibility of a coordinated interplay between antigenicity and HBGA binding in epochal evolution. From the observation that the regions involved in the formation of the HBGA binding sites can be conformationally flexible, we suggest a plausible mechanism for how norovirus disassociates from salivary mucin-linked HBGA before reassociating with HBGAs linked to intestinal epithelial cells during its passage through the gastrointestinal tract.  相似文献   

12.
诺如病毒(Noroviruses,NoVs)是引起非菌型胃肠炎暴发流行的主要病原体之一。为了解我国GII.3型NoVs毒株的变异以及受体结合模式,本研究对来自2015年一起中国广州NoVs胃肠炎暴发的GII.3型毒株GZ31597株进行聚合酶区和完整VP1区基因扩增、序列测定和序列分析,并表达VP1突出区蛋白(P蛋白),通过P蛋白与不同血型唾液样本的酶免疫分析法(EIA)测定实验确定其组织血型抗原(Histo-blood group antigens,HBGAs)结合模式。GZ31597株聚合酶和VP1基因系统进化分析表明,GZ31597株为GII.P12/GII.3-SubD基因型(聚合酶/衣壳区),该毒株较先前的GII.3毒株相比,在既是抗原表位又是HBGAs受体结合位点的氨基酸385残基发生了氨基酸转换。根据Western Blotting结果,证实P蛋白成功表达。唾液结合分析结果显示,该毒株P蛋白与A、B、AB、O型分泌型以及O型非分泌型唾液均可以结合,但结合值相对低。本研究表明该GII.P12/GII.3-SubD亚型的GII.3毒株在长期的流行过程中,通过氨基酸的转换,改变抗原性和受体结合活性,使GII.3型毒株在人群中继续流行。通过探索GII.3型NoVs在人群中长期广泛流行的原因,为GII.3型诺如病毒性胃肠炎的预防和控制提供重要依据。  相似文献   

13.
Our norovirus (NoV) surveillance group reported a >4-fold increase in NoV infection in Japan during the winter of 2006-2007 compared to the previous winter. Because the increase was not linked to changes in the surveillance system, we suspected the emergence of new NoV GII/4 epidemic variants. To obtain information on viral changes, we conducted full-length genomic analysis. Stool specimens from 55 acute gastroenteritis patients of various ages were collected at 11 sites in Japan between May 2006 and January 2007. Direct sequencing of long PCR products revealed 37 GII/4 genome sequences. Phylogenetic study of viral genome and partial sequences showed that the two new GII/4 variants in Europe, termed 2006a and 2006b, initially coexisted as minorities in early 2006 in Japan and that 2006b alone had dominated over the resident GII/4 variants during 2006. A combination of phylogenetic and entropy analyses revealed for the first time the unique amino acid substitutions in all eight proteins of the new epidemic strains. These data and computer-assisted structural study of the NoV capsid protein are compatible with a model of antigenic drift with tuning of the structure and functions of multiple proteins for the global outgrowth of new GII/4 variants. The availability of comprehensive information on genome sequences and unique protein changes of the recent global epidemic variants will allow studies of diagnostic assays, molecular epidemiology, molecular biology, and adaptive changes of NoV in nature.  相似文献   

14.
Norovirus (NOV), a member of the family Caliciviridae, is a major cause of water and food-borne acute nonbacterial gastroenteritis, and forms many morphologically similar but antigenically diverse groups of viruses. The virus-like particles (VLPs) derived from the prototype strain of NoV, Norwalk virus (NV/68), bind to histo-blood group antigens (HBGAs). HBGAs are carbohydrates that contain structurally related saccharide moieties, and are found in saliva and mucosal secretions from intestinal epithelial cells of secretor individuals who have FUT2 gene encoding a fucosyltransferase. From volunteer challenge studies, there is strong evidence that the carbohydrate-binding is essential for the NV/68 infection. Non-secretors, who do not express FUT2 fucosyltransferase and consequently do not express H type 1 or Leb in the gut, were not infected after the challenge with NV/68. However, other NoV VLPs display different ABH and Lewis carbohydrate-binding profiles, and indeed epidemiological studies showed that some NoV strains could infect individuals with another ABH phenotypes. GII/4 is known to be global epidemic strain and bound more HBGAs when compared with other strains. The strength of the transmission of GII/4 strains may be linked with their wide recognition of HBGAs. It is obvious that HBGAs are important factors to determine the host specificity, although it is still unclear whether the HBGAs act as the primary receptor or enhance NoV infectivity. Further investigation is needed.  相似文献   

15.
The present study has determined the detection rate of norovirus (NoV) with acute gastroenteritis (AGE) in hospitalized children and describes the molecular epidemiology of NoV circulating in Seoul, Korea. Six hundred and eighty‐three (9.8%) of samples were positive for NoV. Of these, the NoV GII genogroup was the most commonly found, with a prevalence of 96.2% (683 of 710). Only 27 samples were positive for the NoV GI genogroup. Ten kinds of GI genotype (GI/1, GI/2, GI/3, GI/4, GI/5, GI/6, GI/7, GI/9, GI/12, and GI/13) and eight kinds of GII genotype (GII/2, GII/3, GII/4, GII/8, GII/14, GII/15, GII/16, and GII/17) were identified in children with AGE during the years 2008–2011.  相似文献   

16.
Human noroviruses (NoV) were quantified and characterized in an 18 month survey conducted along the Llobregat river catchment in Spain. Sample types included freshwater, untreated and treated wastewater and drinking water. High NoV genome copy numbers were reported, reaching up to 10(6) l(-1) and 10(9) l(-1) in freshwater and raw sewage respectively. In both types of samples, GII NoV genome copies outnumbered those of GI, although without significance. All samples of semi-treated and treated drinking water were negative for NoV. A clear seasonality of NoV occurrence was observed both in river water and sewage samples, with significantly higher genome copy numbers in the cold than in the warm months period. Mean NoV log reduction rates after biological treatment of sewage were 2.2 and 3.1 for GI and GII respectively. A total of 77 NoV strains isolated in the Llobregat river catchment could be phylogenetically characterized, 44 belonging to GI and 33 to GII. The most prevalent genotype was GI.4, followed by GII.4 and GII.21. Several variants of the pandemic GII.4 strain were detected in the environment, corroborating their circulation among the population.  相似文献   

17.

Background

Human noroviruses (NoVs) are the primary cause of acute gastroenteritis and are characterized by antigenic variation between genogroups and genotypes and antigenic drift of strains within the predominant GII.4 genotype. In the context of this diversity, an effective NoV vaccine must elicit broadly protective immunity. We used an antibody (Ab) binding blockade assay to measure the potential cross-strain protection provided by a multivalent NoV virus-like particle (VLP) candidate vaccine in human volunteers.

Methods and Findings

Sera from ten human volunteers immunized with a multivalent NoV VLP vaccine (genotypes GI.1/GII.4) were analyzed for IgG and Ab blockade of VLP interaction with carbohydrate ligand, a potential correlate of protective immunity to NoV infection and illness. Immunization resulted in rapid rises in IgG and blockade Ab titers against both vaccine components and additional VLPs representing diverse strains and genotypes not represented in the vaccine. Importantly, vaccination induced blockade Ab to two novel GII.4 strains not in circulation at the time of vaccination or sample collection. GII.4 cross-reactive blockade Ab titers were more potent than responses against non-GII.4 VLPs, suggesting that previous exposure history to this dominant circulating genotype may impact the vaccine Ab response. Further, antigenic cartography indicated that vaccination preferentially activated preexisting Ab responses to epitopes associated with GII.4.1997. Study interpretations may be limited by the relevance of the surrogate neutralization assay and the number of immunized participants evaluated.

Conclusions

Vaccination with a multivalent NoV VLP vaccine induces a broadly blocking Ab response to multiple epitopes within vaccine and non-vaccine NoV strains and to novel antigenic variants not yet circulating at the time of vaccination. These data reveal new information about complex NoV immune responses to both natural exposure and to vaccination, and support the potential feasibility of an efficacious multivalent NoV VLP vaccine for future use in human populations.

Trial Registration

ClinicalTrials.gov NCT01168401  相似文献   

18.
Norovirus (NoV) infections are a major cause of acute gastroenteritis outbreaks around the world. In Brazil, the surveillance system for acute diarrhoea does not include the diagnosis of NoV, precluding the ability to assess its impact on public health. The present study assessed the circulation of NoV genotypes in different Brazilian states by partial nucleotide sequencing analysis of the genomic region coding for the major capsid viral protein. NoV genogroup II genotype 4 (GII.4) was the prevalent (78%) followed by GII.6, GII.7, GII.12, GII.16 and GII.17, demonstrating the great diversity of NoV genotypes circulating in Brazil. Thus, this paper highlights the importance of a virological surveillance system to detect and characterize emerging strains of NoV and their spreading potential.  相似文献   

19.
20.
Noroviruses (NoVs) are one of the major causal agents of acute gastroenteritis in both industrial and developing countries including China. Recent studies have revealed that NoV genome is highly prone to mutation and recombination which may lead to emergence of new strains. In the present study, three full-length genomes of human NoV from China were determined and the genomic organization and recombination were analyzed. They had similar genome organization and contained three predicted ORFs, though the 5′UTR of those three strains were 2, 4 and 8 nucleotides, respectively. Phylogenetic analysis showed that the HU/GII/SHANGHAI/SH312/2008/CHN strain may be a recombinant of GII-3 capsid and GII-4 polymerase. To confirm the finding and detect the breakpoints where the recombination event occurred, we performed recombination analysis based on the genomic sequences of HU/GII/SHANGHAI/SH312/2008/CHN as the query sequence, and AB220921/NOV/JP/GII-4 and AB365435/NOV/US/GII-3 as the background sequences, using RPD software. Results indicated that the two parental strains were AB220921/NOV/JP/GII-4 and AB365435/NOV/US/GII-3. The breakpoint for this recombination event located at position 5,107 nt of the genome (in the ORF1 and ORF2 overlap).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号