首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The immunogenicity of adenovirus serotype 5 (Ad5) vectors has been shown to be suppressed by neutralizing antibodies (NAbs) directed primarily against the hexon hypervariable regions (HVRs). However, the role of NAbs directed against other capsid components, particularly the adenovirus fiber, remains unclear. Here we show that Ad5 NAbs target both hexon and fiber following vaccination and natural infection. Utilizing neutralization assays with capsid chimeric vectors, we observed that NAb responses to hexon appeared dominant and NAb responses against fiber were subdominant in sera from vaccinated mice, vaccinated humans, and naturally exposed humans. A novel chimeric Ad5 vector in which both the hexon HVRs and the fiber knob were exchanged nearly completely evaded Ad5-specific NAbs both in vitro and in vivo.  相似文献   

2.
The utility of recombinant adenovirus serotype 5 (rAd5) vector-based vaccines for HIV-1 and other pathogens will likely be limited by the high prevalence of pre-existing Ad5-specific neutralizing Abs (NAbs) in human populations. However, the immunodominant targets of Ad5-specific NAbs in humans remain poorly characterized. In this study, we assess the titers and primary determinants of Ad5-specific NAbs in individuals from both the United States and the developing world. Importantly, median Ad5-specific NAb titers were >10-fold higher in sub-Saharan Africa compared with the United States. Moreover, hexon-specific NAb titers were 4- to 10-fold higher than fiber-specific NAb titers in these cohorts by virus neutralization assays using capsid chimeric viruses. We next performed adoptive transfer studies in mice to evaluate the functional capacity of hexon- and fiber-specific NAbs to suppress the immunogenicity of a prototype rAd5-Env vaccine. Hexon-specific NAbs were remarkably efficient at suppressing Env-specific immune responses elicited by the rAd5 vaccine. In contrast, fiber-specific NAbs exerted only minimal suppressive effects on rAd5 vaccine immunogenicity. These data demonstrate that functionally significant Ad5-specific NAbs are directed primarily against the Ad5 hexon protein in both humans and mice. These studies suggest a potential strategy for engineering novel Ad5 vectors to evade dominant Ad5-specific NAbs.  相似文献   

3.
The high prevalence of preexisting immunity to adenovirus serotype 5 (Ad5) in human populations will likely limit the immunogenicity and clinical utility of recombinant Ad5 vector-based vaccines for human immunodeficiency virus type 1 and other pathogens. Ad5-specific neutralizing antibodies (NAbs) are thought to contribute substantially to anti-Ad5 immunity, but the potential importance of Ad5-specific T lymphocytes in this setting has not been fully characterized. Here we assess the relative contributions of Ad5-specific humoral and cellular immune responses in blunting the immunogenicity of a rAd5-Env vaccine in mice. Adoptive transfer of Ad5-specific NAbs resulted in a dramatic abrogation of Env-specific immune responses following immunization with rAd5-Env. Interestingly, adoptive transfer of Ad5-specific CD8(+) T lymphocytes also resulted in a significant and durable suppression of rAd5-Env immunogenicity. These data demonstrate that NAbs and CD8(+) T lymphocytes both contribute to immunity to Ad5. Novel adenovirus vectors that are currently being developed to circumvent the problem of preexisting anti-Ad5 immunity should therefore be designed to evade both humoral and cellular Ad5-specific immune responses.  相似文献   

4.
The high prevalence of preexisting immunity to adenovirus serotype 5 (Ad5) in human populations has led to the development of recombinant adenovirus (rAd) vectors derived from rare Ad serotypes as vaccine candidates for human immunodeficiency virus type 1 and other pathogens. Vaccine vectors have been constructed from Ad subgroup B, including rAd11 and rAd35, as well as from Ad subgroup D, including rAd49. However, the optimal combination of vectors for heterologous rAd prime-boost vaccine regimens and the extent of cross-reactive vector-specific neutralizing antibodies (NAbs) remain poorly defined. We have shown previously that the closely related vectors rAd11 and rAd35 elicited low levels of cross-reactive NAbs. Here we show that these cross-reactive NAbs correlated with substantial sequence homology in the hexon hypervariable regions (HVRs) and suppressed the immunogenicity of heterologous rAd prime-boost regimens. In contrast, vectors with lower hexon HVR homology, such as rAd35 and rAd49, did not elicit detectable cross-reactive vector-specific NAbs. Consistent with these findings, rAd35-rAd49 vaccine regimens proved more immunogenic than both rAd35-rAd5 and rAd35-rAd11 regimens in mice with anti-Ad5 immunity. These data suggest that optimal heterologous rAd prime-boost regimens should include two vectors that are both rare in human populations to circumvent preexisting antivector immunity as well as sufficiently immunologically distinct to avoid cross-reactive antivector immunity.  相似文献   

5.
The high prevalence of preexisting immunity to adenovirus serotype 5 (Ad5) in human populations will likely limit the immunogenicity and clinical utility of recombinant Ad5 (rAd5) vector-based vaccines for human immunodeficiency virus type 1 and other pathogens. A potential solution to this problem is to utilize rAd vaccine vectors derived from rare Ad serotypes such as Ad35 and Ad11. We have previously reported that rAd35 vectors were immunogenic in the presence of anti-Ad5 immunity, but the immunogenicity of heterologous rAd prime-boost regimens and the extent that cross-reactive anti-vector immunity may limit this approach have not been fully explored. Here we assess the immunogenicity of heterologous vaccine regimens involving rAd5, rAd35, and novel rAd11 vectors expressing simian immunodeficiency virus Gag in mice both with and without anti-Ad5 immunity. Heterologous rAd prime-boost regimens proved significantly more immunogenic than homologous regimens, as expected. Importantly, all regimens that included rAd5 were markedly suppressed by anti-Ad5 immunity. In contrast, rAd35-rAd11 and rAd11-rAd35 regimens elicited high-frequency immune responses both in the presence and in the absence of anti-Ad5 immunity, although we also detected clear cross-reactive Ad35/Ad11-specific humoral and cellular immune responses. Nevertheless, these data suggest the potential utility of heterologous rAd prime-boost vaccine regimens using vectors derived from rare human Ad serotypes.  相似文献   

6.
Recombinant human adenovirus serotype 5 (HAd5V) vectors are gold standards of T-cell immunogenicity as they efficiently induce also humoral responses to exogenous antigens, in particular when used in prime-boost protocols. Some investigators have shown that pre-existing immunity to adenoviruses interferes with transduction by adenoviral vectors, but the actual extent of this interference is not known since it has been mostly studied in mice using unnatural routes of infection and virus doses. Here we studied the effects of HAd5V-specific immune responses induced by intranasal infection on the transduction efficiency of recombinant adenovirus vectors. Of interest, when HAd5V immunity was induced in mice by the natural respiratory route, the pre-existing immunity against HAd5V did not significantly interfere with the B and T-cell immune responses against the transgene products induced after a prime/boost inoculation protocol with a recombinant HAd5V-vector, as measured by ELISA and in vivo cytotoxic T-cell assays, respectively. We also correlated the levels of HAd5V-specific neutralizing antibodies (Ad5NAbs) induced in mice with the levels of Ad5NAb titers found in humans. The data indicate that approximately 60% of the human serum samples tested displayed Ad5NAb levels that could be overcome with a prime-boost vaccination protocol. These results suggest that recombinant HAd5V vectors are potentially useful for prime-boost vaccination strategies, at least when pre-existing immunity against HAd5V is at low or medium levels.  相似文献   

7.
Recombinant adenovirus serotype 5 (rAd5) vector-based vaccines are currently being developed for both human immunodeficiency virus type 1 and other pathogens. The potential limitations associated with rAd5 vectors, however, have led to the construction of novel rAd vectors derived from rare Ad serotypes. Several rare serotype rAd vectors have already been described, but a detailed comparison of multiple rAd vectors from subgroups B and D has not previously been reported. Such a comparison is critical for selecting optimal rAd vectors for advancement into clinical trials. Here we describe the construction of three novel rAd vector systems from Ad26, Ad48, and Ad50. We report comparative seroprevalence and immunogenicity studies involving rAd11, rAd35, and rAd50 vectors from subgroup B; rAd26, rAd48, and rAd49 vectors from subgroup D; and rAd5 vectors from subgroup C. All six rAd vectors from subgroups B and D exhibited low seroprevalence in a cohort of 200 individuals from sub-Saharan Africa, and they elicited Gag-specific cellular immune responses in mice both with and without preexisting anti-Ad5 immunity. The rAd vectors from subgroup D were also evaluated using rhesus monkeys and were shown to be immunogenic after a single injection. The rAd26 vectors proved the most immunogenic among the rare serotype rAd vectors studied, although all rare serotype rAd vectors were still less potent than rAd5 vectors in the absence of anti-Ad5 immunity. These studies substantially expand the portfolio of rare serotype rAd vectors that may prove useful as vaccine vectors for the developing world.  相似文献   

8.
The high prevalence of pre-existing immunity to adenovirus serotype 5 (Ad5) in human populations may substantially limit the immunogenicity and clinical utility of recombinant Ad5 vector-based vaccines for HIV-1 and other pathogens. A potential solution to this problem is to use vaccine vectors derived from adenovirus (Ad) serotypes that are rare in humans, such as Ad35. However, cross-reactive immune responses between heterologous Ad serotypes have been described and could prove a major limitation of this strategy. In particular, the extent of immunologic cross-reactivity between Ad5 and Ad35 has not previously been determined. In this study we investigate the impact of pre-existing anti-Ad5 immunity on the immunogenicity of candidate rAd5 and rAd35 vaccines expressing SIV Gag in mice. Anti-Ad5 immunity at levels typically found in humans dramatically blunted the immunogenicity of rAd5-Gag. In contrast, even high levels of anti-Ad5 immunity did not substantially suppress Gag-specific cellular immune responses elicited by rAd35-Gag. Low levels of cross-reactive Ad5/Ad35-specific CD4(+) T lymphocyte responses were observed, but were insufficient to suppress vaccine immunogenicity. These data demonstrate the potential utility of Ad35 as a candidate vaccine vector that is minimally suppressed by anti-Ad5 immunity. Moreover, these studies suggest that using Ad vectors derived from immunologically distinct serotypes may be an effective and general strategy to overcome the suppressive effects of pre-existing anti-Ad immunity.  相似文献   

9.
Success in resolving hepatitis C virus (HCV) infection has been correlated to vigorous, multispecific, and sustained CD8(+) T-cell response in humans and chimpanzees. The efficacy of inducing T-cell-mediated immunity by recombinant serotype 5 adenovirus vector has been proven in many animal models of infectious diseases, but its immunogenicity can be negatively influenced by preexisting immunity against the vector itself. To evaluate the less prevalent adenovirus serotype 6 (Ad6) as an alternative vector for and HCV vaccine development, we have generated serotype 5 and 6 adenoviral vectors directing expression of the nonstructural region of HCV (MRKAd5-NSmut and MRKAd6-NSmut). Immunogenicity studies in mice showed that the two vectors induced comparable T-cell responses but that only MRKAd6-NSmut was not suppressed in the presence of anti-Ad5 immunity. In contrast, preexisting anti-Ad5 immunity dramatically blunted the immunogenicity of the serotype 5-based HCV vector. Furthermore, MRKAd6-NSmut showed equivalent potency, breadth, and longevity of HCV-specific T-cell responses in rhesus macaques as the corresponding Ad5-based vector over a wide range of doses and was capable of boosting DNA-primed animals even if administered at low doses. These data support the use of the MRKAd6-NSmut for anti-HCV immunotherapy and, more generally, for the Ad6 serotype as a better genetic vaccine vehicle than Ad5.  相似文献   

10.
The failure of the adenovirus serotype 5 (Ad5) vector-based human immunodeficiency virus type 1 (HIV-1) vaccine in the STEP study has led to the development of adenovirus vectors derived from alternative serotypes, such as Ad26, Ad35, and Ad48. We have recently demonstrated that vaccines using alternative-serotype Ad vectors confer partial protection against stringent simian immunodeficiency virus (SIV) challenges in rhesus monkeys. However, phenotypic differences between the T cell responses elicited by Ad5 and those of alternative-serotype Ad vectors remain unexplored. Here, we report the magnitude, phenotype, functionality, and recall capacity of memory T cell responses elicited in mice by Ad5, Ad26, Ad35, and Ad48 vectors expressing lymphocytic choriomeningitis virus (LCMV) glycoprotein (GP). Our data demonstrate that memory T cells elicited by Ad5 vectors were high in magnitude but exhibited functional exhaustion and decreased anamnestic potential following secondary antigen challenge compared to Ad26, Ad35, and Ad48 vectors. These data suggest that vaccination with alternative-serotype Ad vectors offers substantial immunological advantages over Ad5 vectors, in addition to circumventing high baseline Ad5-specific neutralizing antibody titers.  相似文献   

11.
Preexisting immunity to adenovirus serotype 5 (Ad5) has been shown to suppress the immunogenicity of recombinant Ad5 (rAd5) vector-based vaccines for human immunodeficiency virus type 1 (HIV-1) in both preclinical studies and clinical trials. A potential solution to this problem is to utilize rAd vectors derived from rare Ad serotypes, such as Ad35. However, rAd35 vectors have appeared less immunogenic than rAd5 vectors in preclinical studies to date. In this study, we explore the hypothesis that the differences in immunogenicity between rAd5 and rAd35 vectors may be due in part to differences between the fiber proteins of these viruses. We constructed capsid chimeric rAd35 vectors containing the Ad5 fiber knob (rAd35k5) and compared the immunogenicities of rAd5, rAd35k5, and rAd35 vectors expressing simian immunodeficiency virus Gag and HIV-1 Env in mice and rhesus monkeys. In vitro studies demonstrated that rAd35k5 vectors utilized the Ad5 receptor CAR rather than the Ad35 receptor CD46. In vivo studies showed that rAd35k5 vectors were more immunogenic than rAd35 vectors in both mice and rhesus monkeys. These data suggest that the Ad5 fiber knob contributes substantially to the immunogenicity of rAd vectors. Moreover, these studies demonstrate that capsid chimeric rAd vectors can be constructed to combine beneficial immunologic and serologic properties of different Ad serotypes.  相似文献   

12.
The deployment of adenovirus serotype 5 (Ad5)-based vectors is hampered by preexisting immunity. When such vectors are delivered intravenously, hepatocyte transduction is mediated by the hexon-coagulation factor X (FX) interaction. Here, we demonstrate that human sera efficiently block FX-mediated cellular binding and transduction of Ad5-based vectors in vitro. Neutralizing activity correlated well with the ability to inhibit Ad5-mediated liver transduction, suggesting that prescreening patient sera in this manner accurately predicts the efficacy of Ad5-based gene therapies. Neutralization in vitro can be partially bypassed by pseudotyping with Ad45 fiber protein, indicating that a proportion of neutralizing antibodies are directed against the Ad5 fiber.  相似文献   

13.
传统腺病毒载体的局限性使得外源抗原以衣壳融合的方式在腺病毒载体上的应用越来越广泛,但是在3型腺病毒(Adenovirus serotype 3, Ad3)载体六邻体高变区(Hypervariable region,HVR)改造过程中经常出现无法成功拯救病毒的情况,本研究主要根据对生物信息学预测的HVR1,HVR2,HVR5,HVR7中某些氨基酸进行删减或保留,通过构建重组Ad3载体pBRAdΔE3GFP-mHexon,转染AD293细胞,验证Ad3载体在六邻体高变区的这些氨基酸有所改动时对病毒拯救的影响。由此获得高变区HVR1、HVR2、HVR5和HVR7在基因工程改造中应该保留的氨基酸的数据,这一研究结果为人3型腺病毒六邻体融合表达策略提供了操作依据,也为人3型腺病毒六邻体表达外源抗原表位,作为多价疫苗载体展示平台的应用奠定了基础。  相似文献   

14.
The use of adenoviruses (Ad) as vaccine vectors against a variety of pathogens has demonstrated their capacity to elicit strong antibody and cell-mediated immune responses. Adenovirus serotype C vectors, such as Ad serotype 5 (Ad5), expressing Ebolavirus (EBOV) glycoprotein (GP), protect completely after a single inoculation at a dose of 10(10) viral particles. However, the clinical application of a vaccine based on Ad5 vectors may be hampered, since impairment of Ad5 vaccine efficacy has been demonstrated for humans and nonhuman primates with high levels of preexisting immunity to the vector. Ad26 and Ad35 segregate genetically from Ad5 and exhibit lower seroprevalence in humans, making them attractive vaccine vector alternatives. In the series of studies presented, we show that Ad26 and Ad35 vectors generate robust antigen-specific cell-mediated and humoral immune responses against EBOV GP and that Ad5 immune status does not affect the generation of GP-specific immune responses by these vaccines. We demonstrate partial protection against EBOV by a single-shot Ad26 vaccine and complete protection when this vaccine is boosted by Ad35 1 month later. Increases in efficacy are paralleled by substantial increases in T- and B-cell responses to EBOV GP. These results suggest that Ad26 and Ad35 vectors warrant further development as candidate vaccines for EBOV.  相似文献   

15.
We compared the human immunodeficiency virus type 1 (HIV-1)-specific cellular immune responses elicited in nonhuman primates by HIV-1 gag-expressing replication-defective adenovirus serotype 5 (Ad5) or poxvirus vectors, used either alone or in combination with each other. The responses arising from a heterologous Ad5 priming-poxvirus boosting regimen were significantly greater than those elicited by homologous regimens with the individual vectors or by a heterologous poxvirus priming-Ad5 boosting regimen. The heterologous Ad5 priming-poxvirus boosting approach may have potential utility in humans as a means of inducing high levels of cellular immunity.  相似文献   

16.
Adenovirus type 5 (Ad5) is one of the most promising vectors for gene therapy applications. Genetic engineering of Ad5 capsid proteins has been employed to redirect vector tropism, to enhance infectivity, or to circumvent preexisting host immunity. As the most abundant capsid protein, hexon modification is particularly attractive. However, genetic modification of hexon often results in failure of rescuing viable viruses. Since hypervariable regions (HVRs) are nonconserved among hexons of different serotypes, we investigated whether the HVRs could be used for genetic modification of hexon by incorporating oligonucleotides encoding six histidine residues (His6) into different HVRs in the Ad5 genome. The modified viruses were successfully rescued, and the yields of viral production were similar to that of unmodified Ad5. A thermostability assay suggested the modified viruses were stable. The His6 epitopes were expressed in all modified hexon proteins as assessed by Western blotting assay, although the intensity of the reactive bands varied. In addition, we examined the binding activity of anti-His tag antibody to the intact virions with the enzyme-linked immunosorbent assay and found the His6 epitopes incorporated in HVR2 and HVR5 could bind to anti-His tag antibody. This suggested the His6 epitopes in HVR2 and HVR5 were exposed on virion surfaces. Finally, we examined the infectivities of the modified Ad vectors. The His6 epitopes did not affect the native infectivity of Ad5 vectors. In addition, the His6 epitopes did not appear to mediate His6-dependent viral infection, as assessed in two His6 artificial receptor systems. Our study provided valuable information for studies involving hexon modification.  相似文献   

17.
Adenovirus serotype 5 (Ad5) vectors and specific neutralizing antibodies (NAbs) generate immune complexes (ICs) which are potent inducers of dendritic cell (DC) maturation. Here we show that ICs generated with rare Ad vector serotypes, such as Ad26 and Ad35, which are lead candidates in HIV vaccine development, are poor inducers of DC maturation and that their potency in inducing DC maturation strongly correlated with the number of Toll-like receptor 9 (TLR9)-agonist motifs present in the Ad vector's genome. In addition, we showed that antihexon but not antifiber antibodies are responsible for the induction of Ad IC-mediated DC maturation.  相似文献   

18.
Adenovirus serotype 5 (Ad5) has been widely used in clinical trials because it expresses inserted transgenes robustly and augments the innate immune response. Strategies to improve Ad5 vectors that can circumvent Ad5 immunity have become a critical issue, especially for use as a cancer immunotherapeutic in which repeated immunization is required. In this study, we constructed a novel Ad5 vector with unique deletions of the viral DNA polymerase and the pre-terminal protein region (Ad5 [E1-, E2b-]). This vector contains the carcinoembryonic antigen (CEA) gene insert and is designed to induce cell-mediated immunity (CMI) against the tumor-associated target. The CEA immunogenicity and in vivo anti-tumor effects of repeated immunizations with Ad5 [E1-, E2b-]-CEA compared with those observed with current generation Ad5 [E1-]-CEA were tested in Ad5 pre-immunized mice. We report that Ad5-immune mice immunized multiple times with Ad5 [E1-, E2b-]-CEA induced CEA-specific CMI responses that were significantly increased over those detected in Ad5-immune mice immunized multiple times with a current generation Ad5 [E1-]-CEA. Ad5 immune mice bearing CEA-expressing tumors that were treated with Ad5 [E1-, E2b-]-CEA had increased anti-tumor response as compared with Ad5 [E1-]-CEA treated mice. These results demonstrate that Ad5 [E1-, E2b-]-CEA can induce CMI immune responses which result in tumor growth inhibition despite the presence of pre-existing Ad5 immunity. Multiple re-immunizations using the same vector platform are now possible with the novel Ad5 [E1-, E2b-] platform.  相似文献   

19.
Adenovirus is widely used in gene therapy and vaccination as a viral vector, and its hypervariable regions (HVRs) on hexon are the main antigen recognition sites of adenovirus. The modification of this area by genetic engineering will change the antigenic specificity of the virus. In addition, recent studies have demonstrated the importance of coagulation factor X (FX) in adenovirus serotype 5-mediated liver transduction in vivo. The binding site of adenovirus to FX is the HVRs on hexon. By constructing five proteins containing chimeric HVRs from different adenovirus serotypes, we focused on the antigenic specificity and the affinity for FX of these proteins compared with the corresponding viruses. Our data showed that HVR5 and HVR7 had only a part of hexon activity to neutralizing antibodies (NAbs) compared with the complete activity of HVR1-7. Results also demonstrated a differential high-affinity interaction of the HVRs proteins with FX and indicated that HVRs protein had a similar binding ability with corresponding adenovirus serotype. These results highlighted some properties of chimeric HVRs proteins and revealed the influence on the structure and function of hexon proteins and adenovirus resulting from the HVRs.  相似文献   

20.
Rare serotype and chimeric recombinant adenovirus (rAd) vectors that evade anti-Ad5 immunity are currently being evaluated as potential vaccine vectors for human immunodeficiency virus type 1 and other pathogens. We have recently reported that a heterologous rAd prime-boost regimen expressing simian immunodeficiency virus (SIV) Gag afforded durable partial immune control of an SIV challenge in rhesus monkeys. However, single-shot immunization may ultimately be preferable for global vaccine delivery. We therefore evaluated the immunogenicity and protective efficacy of a single immunization of chimeric rAd5 hexon hypervariable region 48 (rAd5HVR48) vectors expressing SIV Gag, Pol, Nef, and Env against a homologous SIV challenge in rhesus monkeys. Inclusion of Env resulted in improved control of peak and set point SIV RNA levels following challenge. In contrast, DNA vaccine priming did not further improve the protective efficacy of rAd5HVR48 vectors in this system.Heterologous prime-boost vaccine regimens have proven substantially more immunogenic than single vector immunizations in a variety of experimental models, but a single-shot vaccine would presumably be ideal for eventual global delivery. The potential utility of single-shot vaccines against pathogenic simian immunodeficiency virus (SIV) challenges in rhesus monkeys has not been well characterized. We therefore evaluated the protective efficacy of a single immunization of recombinant chimeric adenovirus type 5 (rAd5) hexon hypervariable region 48 (rAd5HVR48) vectors (15) expressing SIV Gag, Pol, Nef, and Env against a pathogenic SIV challenge in rhesus monkeys. These vectors contain the HVRs of the rare Ad48 serotype and have been shown to evade dominant Ad5 hexon-specific neutralizing antibodies (NAbs) (15). We also assessed the potential utility of inclusion of Env as an immunogen (6, 7, 17) and the degree to which DNA vaccine priming would enhance the protective efficacy afforded by a single rAd5HVR48 immunization (2, 7, 18, 21).Thirty adult rhesus monkeys (n = 6/group) lacking the Mamu-A*01, Mamu-B*17, and Mamu-B*08 class I alleles were primed with plasmid DNA vaccines and boosted with rAd5HVR48 vectors as follows: (1) adjuvanted DNA prime, rAd5HVR48 boost; (2) DNA prime, rAd5HVR48 boost; (3) rAd5HVR48 alone; (4) rAd5HVR48 alone (excluding Env); and (5) sham controls. Monkeys in groups 1 to 3 received vectors expressing SIVmac239 Gag, Pol, Nef, and Env, whereas monkeys in group 4 received vectors expressing only Gag, Pol, and Nef. The DNA vaccine adjuvants in group 1 were plasmids expressing the rhesus chemokine MIP-1α and Flt3L, which have been shown to increase recruitment of dendritic cells and to improve DNA vaccine immunogenicity (20). Monkeys were primed intramuscularly with a total dose of 4 mg of DNA vaccines at weeks 0, 4, and 8. All animals then received a single intramuscular immunization of 4 × 1010 viral particles (vp) of rAd5HVR48 at week 24. At week 52, animals were challenged intravenously (i.v.) with 100 monkey infectious doses of SIVmac251 (7, 10).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号