首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure to chronic hypoxia (CH) induces elevated pulmonary artery pressure/resistance, leading to an eventual maladaptive right ventricular hypertrophy (RVH). Muscle RING finger-1 (MuRF1) is a muscle-specific ubiquitin ligase that mediates myocyte atrophy and has been shown to play a role in left ventricular hypertrophy and altered cardiac bioenergetics in pressure overloaded hearts. However, little is known about the contribution of MuRF1 impacting RVH in the setting of CH. Therefore, we hypothesized that MuRF1 deletion would enhance RVH compared to their wild-type littermates, while cardiac-specific overexpression would reduce hypertrophy following CH-induced pulmonary hypertension. We assessed right ventricular systolic pressure (RVSP), right ventricle to left ventricle plus septal weight ratio (RV/LV+S) and hematocrit (Hct) following a 3-wk isobaric CH exposure. Additionally, we conducted dual-isotope SPECT/CT imaging with cardiac function agent 201Tl-chloride and cell death agent 99mTc-annexin V. Predictably, CH induced pulmonary hypertension, measured by increased RVSP, RV/LV+S and Hct in WT mice compared to normoxic WT mice. Normoxic WT and MuRF1-null mice exhibited no significant differences in RVSP, RV/LV+S or Hct. CH-induced increases in RVSP were also similar between WT and MuRF1-null mice; however, RV/LV+S and Hct were significantly elevated in CH-exposed MuRF1-null mice compared to WT. In cardiac-specific MuRF1 overexpressing mice, RV/LV+S increased significantly due to CH exposure, even greater than in WT mice. This remodeling appeared eccentric, maladaptive and led to reduced systemic perfusion. In conclusion, these results are consistent with an atrophic role for MuRF1 regulating the magnitude of right ventricular hypertrophy following CH-induction of pulmonary hypertension.  相似文献   

2.
目的:观察低氧性肺动脉高压小鼠肺组织中载脂蛋白E(apoE)蛋白表达的变化,以探讨低氧性肺动脉高压形成过程中apoE蛋白表达的变化及可能的意义。方法:SPF级雄性野生型(WT)C57BL/6小鼠和雄性apoE基因敲除(apoE-KO)小鼠各20只,各随机再分为2组(n=10):常氧组和低氧组,共4组。常压连续低氧3周(9%~11% O2,23 h/d)复制慢性低氧性肺动脉高压模型,采用右心导管法测定小鼠右心室压(RVSP),计算右心室与左心室加室间隔重量比RV/(LV+S),ELISA法检测血浆中高密度脂蛋白(HDL)、低密度脂蛋白(LDL)和总胆固醇(TC)的含量;Western blot法检测肺组织中apoE和过氧化物酶体增殖物激活受体γ(PPARγ)蛋白的表达。结果:①低氧组WT小鼠RVSP、RV/(LV+S)分别较常氧组高68%和59%(P均<0.05),血浆中HDL含量及HDL/LDL比值分别较常氧组低17%和40%(P均<0.05),同时肺、肝组织中apoE及肺组织中PPARγ的蛋白表达分别较常氧组下调48%、52%和37%(P均<0.05),RVSP与apoE及PPARγ蛋白表达均呈显著负相关(P均<0.01);②低氧组apoE-KO小鼠RVSP、RV/(LV+S)较常氧组分别高96%和86%(P均<0.05),低氧组apoE-KO小鼠RVSP和RV/(LV+S)较低氧组WT小鼠分别高29%和24%(P均<0.05)。结论:小鼠低氧性肺动脉高压的形成与肺组织中apoE蛋白表达下调有关。  相似文献   

3.
目的:探讨外源性apelin对小鼠慢性低氧性肺动脉高压的作用及其机制。方法:SPF级雄性apoE基因敲除(apoE-KO)小鼠30只,随机均分为3组(n=10),即常氧组、低氧组和低氧+apelin组,apelin组小鼠每天于低氧前经腹腔注射apelin-13(10 nmol/(kg·d)),其他组腹腔注射相同体积的生理盐水。采用常压连续低氧方法(9%~11% O2,23 h/d)复制慢性低氧性肺动脉高压模型。低氧3周后,采用右心导管法测定小鼠右心室压(RVSP)和右心室与左心室加室间隔重量比,Elisa法检测血浆中高密度脂蛋白(HDL)、低密度脂蛋白(LDL)和总胆固醇(TC)的含量;real-time PCR法检测肝组织中三磷酸腺苷结合盒转运体A1(ABCA1)、清道夫受体B1(SR-B1)、低密度脂蛋白受体(LDLR)和3-羟基-3-甲基戊二酸单酰辅酶A还原酶(HMGCR)等基因的表达。Western blot法检测小鼠肺组织中过氧化物酶体增殖物激活受体γ(PPARγ)蛋白的表达。结果:①低氧组小鼠RVSP、RV/(LV+S)较常氧组分别高87%、85%(P均<0.05),apelin组小鼠RVSP、RV/(LV+S)较低氧组分别低39%、33%(P均<0.05)。②apelin组小鼠血浆中HDL-C含量、HDL/LDL比值分别较hypoxia组高21%、20%(P均<0.05),而血浆中TC、LDL-C含量两组间无显著差异(P均>0.05)。③apelin组小鼠肝组织中LDLR、SR-B1、ABCA1基因表达分别较低氧组上调241%、112%、69%(P均<0.05),而HMGCR基因表达下调45%(P<0.05)。④apelin组小鼠肺组织中PPARγ蛋白表达较低氧组上调47%。结论:Apelin可降低小鼠低氧性肺动脉高压,其机制与调节脂质代谢有关。  相似文献   

4.
5.
Caveolin-1 (Cav-1)-/- mice develop mild pulmonary hypertension as they age. In this study, we sought to determine the effect of chronic hypoxia, an established model of pulmonary hypertension, on young Cav-1-/- mice with no measurable signs of pulmonary hypertension. Exposure of Cav-1-/- mice to chronic hypoxia resulted in an initial rise in right ventricular (RV) systolic pressure (RVSP) similar to wild-type (WT) mice. By three weeks RVSP decreased in the Cav-1-/- mice, whereas it was maintained in WT mice. The drop in RVSP in Cav-1-/- mice was accompanied by decreased cardiac output, increased RV hypertrophy, RV interstitial fibrosis, decreased RV sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a mRNA and decreased RV function compared with WT mice. Importantly, minimal differences were noted in pulmonary vascular remodeling between WT and Cav-1-/- mice, and left ventricular function was normal in hypoxic Cav-1-/- mice. Mechanistically, increased endothelial nitric oxide synthase uncoupling and increased tyrosine nitration of protein kinase G were detected in the RV of Cav-1-/- mice. These hemodynamic, histological, and molecular changes were prevented in Cav-1-/- mice expressing an endothelial-specific Cav-1 transgene or by nitric oxide synthase inhibition. These data suggest that, in Cav-1-/- mice, increased oxidative/nitrosative stress due to endothelial nitric oxide synthase uncoupling modifies the response of the RV to pressure overload, accelerating the deterioration of RV function.  相似文献   

6.
目的:观察低氧性肺动脉高压小鼠体内脂质代谢的变化,探讨脂质代谢异常在低氧性肺动脉高压发生发展中的意义。方法:SPF级雄性C57BL/6小鼠20只,随机分为2组(n=10):常氧组和低氧组。常压连续低氧3周(9%~11% O2,23 h/d)复制慢性低氧性肺动脉高压模型,测定小鼠右心室压(RVSP)和右心室与左心室加室间隔重量比,Elisa法检测血浆中总胆固醇(TC)、低密度脂蛋白(LDL)、高密度脂蛋白(HDL)的含量;real-time PCR法检测肝组织中3-羟基-3-甲基戊二酸单酰辅酶A还原酶(HMGCR)、低密度脂蛋白受体(LDLR)、清道夫受体B1(SR-B1)、固醇调节元件结合因子2(SREBF2)等基因的表达。结果:低氧组小鼠RVSP、RV/(LV+S)显著高于常氧组(P<0.05),血浆中HDL含量及HDL/LDL比值较常氧组显著降低(P<0.05),肝组织中LDLR、SR-B1基因表达较常氧组显著下调(P<0.05);RVSP与HDL/LDL比值及LDLR、SR-B1基因表达呈显著负相关(P<0.05)。结论:脂质代谢异常参与小鼠低氧性肺动脉高压的形成。  相似文献   

7.
Hypoxia-induced oxidative stress and excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) play important roles in the pathological process of hypoxic pulmonary hypertension (HPH). Grape seed procyanidin extract (GSPE) possesses antioxidant properties and has beneficial effects on the cardiovascular system. However, the effect of GSPE on HPH remains unclear. In this study, adult Sprague–Dawley rats were exposed to intermittent chronic hypoxia for 4 weeks to mimic a severe HPH condition. Hemodynamic and pulmonary pathomorphology data showed that chronic hypoxia significantly increased right ventricular systolic pressures (RVSP), weight of the right ventricle/left ventricle plus septum (RV/LV+S) ratio and median width of pulmonary arteries. GSPE attenuated the elevation of RVSP, RV/LV+S, and reduced the pulmonary vascular structure remodeling. GSPE also increased the levels of SOD and reduced the levels of MDA in hypoxia-induced HPH model. In addition, GSPE suppressed Nox4 mRNA levels, ROS production and PASMCs proliferation. Meanwhile, increased expression of phospho-STAT3, cyclin D1, cyclin D3 and Ki67 in PASMCs caused by hypoxia was down-regulated by GSPE. These results suggested that GSPE might potentially prevent HPH via antioxidant and antiproliferative mechanisms.  相似文献   

8.
Hypoxia-induced excessive pulmonary artery smooth muscle cell (PASMC) proliferation plays an important role in the pathology of pulmonary arterial hypertension (PAH). Berberine (BBR) is reported as an effective antiproliferative properties applied in clinical. However, the effect of BBR on PAH remains unclear. In the present study, we elucidated the protective effects of BBR against abnormal PASMC proliferation and vascular remodeling in chronic hypoxia-induced hearts. Furthermore, the potential mechanisms of BBR were investigated. For this purpose, C57/BL6 mice were exposed to chronic hypoxia for 4 weeks to mimic severe PAH. Hemodynamic and pulmonary pathomorphology data showed that chronic hypoxia significantly increased the right ventricular systolic pressure (RVSP), the right ventricle/left ventricle plus septum RV/(LV + S) weight ratio, and the median width of pulmonary arterioles. BBR attenuated the elevations in RVSP and RV/(LV + S) and mitigated pulmonary vascular structure remodeling. BBR also suppressed the hypoxia-induced increases in the expression of proliferating cell nuclear antigen (PCNA) and of α-smooth muscle actin. Furthermore, administration of BBR significantly increased the expression of bone morphogenetic protein type II receptor (BMPR-II) and its downstream molecules P-smad1/5 and decreased the expression of transforming growth factor-β (TGF-β) and its downstream molecules P-smad2/3. Moreover, peroxisome proliferator-activated receptor γ expression was significantly decreased in the hypoxia group, and this decrease was reversed by BBR treatment. Our study demonstrated that the protective effect of BBR against hypoxia-induced PAH in a mouse model may be achieved through altered BMPR-II and TGF-β signaling.  相似文献   

9.

Background

Chronic hypoxia induces pulmonary arterial hypertension (PAH). Smooth muscle cell (SMC) proliferation and hypertrophy are important contributors to the remodeling that occurs in chronic hypoxic pulmonary vasculature. We hypothesized that rapamycin (RAPA), a potent cell cycle inhibitor, prevents pulmonary hypertension in chronic hypoxic mice.

Methods

Mice were held either at normoxia (N; 21% O2) or at hypobaric hypoxia (H; 0.5 atm; ~10% O2). RAPA-treated animals (3 mg/kg*d, i.p.) were compared to animals injected with vehicle alone. Proliferative activity within the pulmonary arteries was quantified by staining for Ki67 (positive nuclei/vessel) and media area was quantified by computer-aided planimetry after immune-labeling for α-smooth muscle actin (pixel/vessel). The ratio of right ventricle to left ventricle plus septum (RV/[LV+S]) was used to determine right ventricular hypertrophy.

Results

Proliferative activity increased by 34% at day 4 in mice held under H (median: 0.38) compared to N (median: 0.28, p = 0.028) which was completely blocked by RAPA (median HO+RAPA: 0.23, p = 0.003). H-induced proliferation had leveled off within 3 weeks. At this time point media area had, however, increased by 53% from 91 (N) to 139 (H, p < 0.001) which was prevented by RAPA (H+RAPA: 102; p < 0.001). RV/[LV+S] ratio which had risen from 0.17 (N) to 0.26 (H, p < 0.001) was attenuated in the H+RAPA group (0.22, p = 0.041). For a therapeutic approach animals were exposed to H for 21 days followed by 21 days in H ± RAPA. Forty two days of H resulted in a media area of 129 (N: 83) which was significantly attenuated in RAPA-treated mice (H+RAPA: 92). RV/[LV+S] ratios supported prevention of PH (N 0.13; H 0.27; H+RAPA 0.17). RAPA treatment of N mice did not influence any parameter examined.

Conclusion

Therapy with rapamycin may represent a new strategy for the treatment of pulmonary hypertension.  相似文献   

10.
目的通过观察慢性低氧所致肺动脉高压对大鼠肺血管平滑肌细胞及成纤维细胞中蛋白激酶CBI(PKCβI)的膜转位和蛋白表达量的影响,初步探讨PKCpI在慢性低氧诱导大鼠肺动脉高压的发生、发展过程中所起的作用。方法建立慢性常压低氧肺动脉高压大鼠模型,将雄性SD大鼠随机分为正常对照组、低氧1d、3d、7d、14d和21d组,应用蛋白免疫印迹和免疫组化技术检测肺动脉高压形成过程中大鼠肺血管平滑肌细胞及成纤维细胞中PKCβI的膜转位和蛋白表达水平。结果(1)RVSP和RV/(LV+S)比值较正常对照组明显增加(P〈0.05),低氧后3d、7d、14d和21d后大鼠肺血管明显增厚;(2)大鼠肺血管平滑肌细胞和成纤维细胞均有PKCβI的表达,且低氧14d后PKCβI的蛋白表达量较正常对照组相比降低(P〈0.05)。结论PKCβI蛋白表达量的下调可能参与了慢性低氧诱导的大鼠肺动脉高压肺血管重塑的发生、发展过程。  相似文献   

11.
Prolonged hypoxia leads to the development of pulmonary hypertension. Recent reports have suggested enhancement of heme oxygenase (HO), the major source of intracellular carbon monoxide (CO), prevents hypoxia-induced pulmonary hypertension and vascular remodeling in rats. Therefore, we hypothesized that inhibition of HO activity by tin protoporphyrin (SnPP) would exacerbate the development of pulmonary hypertension. Rats were injected weekly with either saline or SnPP (50 micromol/kg) and exposed to hypobaric hypoxia or room air for 5 wk. Pulmonary and carotid arteries were catheterized, and animals were allowed to recover for 48 h. Pulmonary and systemic pressures, along with cardiac output, were recorded during room air and acute 10% O2 breathing in conscious rats. No difference was detected in pulmonary artery pressure between saline- and SnPP-treated animals in either normoxic or hypoxic groups. However, blockade of HO activity altered both systemic and pulmonary vasoreactivity to acute hypoxic challenge. Despite no change in baseline pulmonary artery pressure, all rats treated with SnPP had decreased ratio of right ventricular (RV) weight to left ventricular (LV) plus septal (S) weight (RV/LV + S) compared with saline-treated animals. Echocardiograms suggested dilatation of the RV and decreased RV function in hypoxic SnPP-treated rats. Together these data suggest that inhibition of HO activity and CO production does not exacerbate pulmonary hypertension, but rather that HO and CO may be involved in mediating pulmonary and systemic vasoreactivity to acute hypoxia and hypoxia-induced RV function.  相似文献   

12.
Chronic obstructive pulmonary disease (COPD) may lead to pulmonary hypertension (PH) and reduced function of the right ventricle (RV). However, COPD patients may also develop left ventricular (LV) diastolic dysfunction. We hypothesized that alveolar hypoxia induces LV diastolic dysfunction and changes in proteins governing Ca(2+) removal from cytosol during diastole. Mice exposed to 10% oxygen for 1, 2, or 4 wk were compared with controls. Cardiac hemodynamics were assessed with Doppler echocardiography and a microtransducer catheter under general anesthesia. The pulmonary artery blood flow acceleration time was shorter and RV pressure was higher after 4 wk of hypoxia compared with controls (both P < 0.05). In the RV and LV, 4 wk of hypoxia induced a prolongation of the time constant of isovolumic pressure decay (51% RV, 43% LV) and a reduction in the maximum rate of decline in pressure compared with control (42% RV, 42% LV, all P < 0.05), indicating impaired relaxation and diastolic dysfunction. Alveolar hypoxia induced a 38%, 47%, and 27% reduction in Ser16-phosphorylated phospholamban (PLB) in the RV after 1, 2, and 4 wk of hypoxia, respectively, and at the same time points, Ser16-phosphorylated PLB in the LV was downregulated by 32%, 34%, and 25% (all P < 0.05). The amounts of PLB and sarco(endo)plasmic reticulum Ca(2+) ATPase (SERCA2a) were not changed. In conclusion, chronic alveolar hypoxia induces hypophosphorylation of PLB at Ser16, which might be a mechanism for impaired relaxation and diastolic dysfunction in both the RV and LV.  相似文献   

13.
目的:观察吴茱萸次碱(Rut)对野百合碱(MCT)诱导的肺动脉高压(PH)大鼠右心室重构的作用及机制。方法:SD大鼠48只适应性喂养一周,随机分为正常对照组、Mcr组、MCT+Rut(20mg/kg)及Mcr+Rut(40mg/kg)剂量组(n=12)。MCT(60mg/kg)皮下注射诱导PH大鼠模型。连续给药4周后,右颈外静脉插管测定大鼠右心室收缩压(RVSP)、平均肺动脉压(MPAP)。分离大鼠右心室(RV)、左心室+室间隔(LV+s)并称重,剥离大鼠胫骨并测量其长度,计算av/(LV+s)gRV/胫骨长度的比值。HE染色观察右心室病理学变化,Masson染色观察右心室胶原沉积的变化。比色法测定右心室总抗氧化能力(T-AOC)、丙二醛(MDA)含量。Real time PCR、Western blot及免疫组化检测右心室NADPH氧化酶4(NOX4)mRNA和蛋白表达。结果:Rut连续给药4周后能明显降低MCT诱导的PH大鼠RVSP及mPAP,减轻RV/(Lv+s)及RV重量/胫骨长度的比值,改善右心室病理变化,降低右心室胶原的沉积及collagenI、collagenHI的表达,提高右心室T-AOC水平,降低右心室NOX4的表达及MDA含量。结论:Rut能够缓解野百合碱诱导的PH大鼠右心室重构,其机制可能与抑制NOX4的表达,进而降低氧化应激损伤有关。  相似文献   

14.
We hypothesized that the phosphodiesterase 5 inhibitor, sildenafil, and the guanosine cyclase stimulator, atrial natriuretic peptide (ANP), would act synergistically to increase cGMP levels and blunt hypoxic pulmonary hypertension in rats, because these compounds act via different mechanisms to increase the intracellular second messenger. Acute hypoxia: Adult Sprague-Dawley rats were gavaged with sildenafil (1 mg/ kg) or vehicle and exposed to acute hypoxia with and without ANP (10(-8)-10(-5) M ). Sildenafil decreased systemic blood pressure (103 +/- 10 vs. 87 +/- 6 mm Hg, P < 0.001) and blunted the hypoxia-induced increase in right ventricular systolic pressure (RVSP; percent increase 73.7% +/- 9.4% in sildenafil-treated rats vs. 117.2% +/- 21.1% in vehicle-treated rats, P = 0.03). Also, ANP and sildenafil had synergistic effects on blunting the hypoxia-induced increase in RVSP (P < 0.001) and on rising plasma cGMP levels (P < 0.05). Chronic hypoxia: Other rats were exposed to prolonged hypoxia (3 weeks, 0.5 atm) after subcutaneous implantation of a sustained-release pellet containing lower (2.5 mg), or higher (25 mg) doses of sildenafil, or placebo. Higher-dose, but not lower-dose sildenafil blunted the chronic hypoxia-induced increase in RVSP (P = 0.006). RVSP and plasma sildenafil levels were inversely correlated in hypoxic rats (r(2) = 0.68, P = 0.044). Lung cGMP levels were increased by both chronic hypoxia and sildenafil, with the greatest increase achieved by the combination. Plasma and right ventricular (RV) cGMP levels were increased by hypoxia, but sildenafil had no effect. RV hypertrophy and pulmonary artery muscularization were also unaffected by sildenafil. In conclusion, sildenafil and ANP have synergistic effects on the blunting of hypoxia-induced pulmonary vasoconstriction. During chronic hypoxia, sildenafil normalizes RVSP, but in the doses used, sildenafil has no effect on RV hypertrophy or pulmonary vascular remodeling.  相似文献   

15.
There is increasing evidence that hyperoxia, particularly at the time of birth, may result in neurological injury, in particular to the susceptible vasculature of these tissues. This study was aimed at determining whether overexpression of extracellular superoxide dismutase (EC-SOD) is protective against brain injury induced by hyperoxia. Transgenic (TG) mice (with an extra copy of the human extracellular superoxide dismutase gene) and wild-type (WT) neonate mice were exposed to hyperoxia (95% of F(i) o(2) ) for 7 days after birth versus the control group in room air. Brain positron emission tomography (PET) scanning with fludeoxyglucose (FDG) isotope uptake was performed after exposure. To assess apoptosis induced by hyperoxia exposure, caspase 3 ELISA and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were performed. Quantitative western blot for the following inflammatory markers was performed: glial fibrillary acidic protein, ionized calcium-binding adaptor molecule 1, macrophage-inhibiting factor, and phospho-AMP-activated protein kinase. PET scanning with FDG isotope uptake showed significantly higher uptake in the WT hyperoxia neonate brain group (0.14 ± 0.03) than in both the TG group (0.09 ± 0.01) and the control group (0.08 ± 0.02) (P< 0.05). Histopathological investigation showed more apoptosis and dead neurons in hippocampus and cerebellum brain sections of WT neonate mice after exposure to hyperoxia than in TG mice; this finding was also confirmed by TUNEL staining. The caspase 3 assay confirmed the finding of more apoptosis in WT hyperoxia neonates (0.814 ± 0.112) than in the TG hyperoxic group (0.579 ± 0.144) (P < 0.05); this finding was also confirmed by TUNEL staining. Quantitative western blotting for the inflammatory and metabolic markers showed significantly higher expression in the WT group than in the TG and control groups. Thus, overexpression of EC-SOD in the neonate brain offers significant protection against hyperoxia-induced brain damage.  相似文献   

16.
Pulmonary hypertension (PH) is characterized by sustained vasoconstriction, with subsequent extracellular matrix (ECM) production and smooth muscle cell (SMC) proliferation. Changes in the ECM can modulate vasoreactivity and SMC contraction. Galectin-1 (Gal-1) is a hypoxia-inducible beta-galactoside-binding lectin produced by vascular, interstitial, epithelial, and immune cells. Gal-1 regulates SMC differentiation, proliferation, and apoptosis via interactions with the ECM, as well as immune system function, and, therefore, likely plays a role in the pathogenesis of PH. We investigated the effects of Gal-1 during hypoxic PH by quantifying 1) Gal-1 expression in response to hypoxia in vitro and in vivo and 2) the effect of Gal-1 gene deletion on the magnitude of the PH response to chronic hypoxia in vivo. By constructing and screening a subtractive library, we found that acute hypoxia increases expression of Gal-1 mRNA in isolated pulmonary mesenchymal cells. In wild-type (WT) mice, Gal-1 immunoreactivity increased after 6 wk of hypoxia. Increased expression of Gal-1 protein was confirmed by quantitative Western analysis. Gal-1 knockout (Gal-1(-/-)) mice showed a decreased PH response, as measured by right ventricular pressure and the ratio of right ventricular to left ventricular + septum wet weight compared with their WT counterparts. However, the number and degree of muscularized vessels increased similarly in WT and Gal-1(-/-) mice. In response to chronic hypoxia, the decrease in factor 8-positive microvessel density was similar in both groups. Vasoreactivity of WT and Gal-1(-/-) mice was tested in vivo and with use of isolated perfused lungs exposed to acute hypoxia. Acute hypoxia caused a significant increase in RV pressure in wild-type and Gal-1(-/-) mice; however, the response of the Gal-1(-/-) mice was greater. These results suggest that Gal-1 influences the contractile response to hypoxia and subsequent remodeling during hypoxia-induced PH, which influences disease progression.  相似文献   

17.
Transgenic mice with cardiac-specific overexpression of active Akt (TG) not only exhibit hypertrophy but also show enhanced left ventricular (LV) function. In 3-4-month-old TG, heart/body weight was increased by 60% and LV ejection fraction was elevated (84 +/- 2%, p < 0.01) compared with nontransgenic littermates (wild type (WT)) (73 +/- 1%). An increase in isolated ventricular myocyte contractile function (% contraction) in TG compared with WT (6.1 +/- 0.2 versus 3.5 +/- 0.2%, p < 0.01) was associated with increased Fura-2 Ca2+ transients (396 +/- 50 versus 250 +/- 24 nmol/liter, p < 0.05). The rate of relaxation (+dL/dt) was also enhanced in TG (214 +/- 15 versus 98 +/- 18 microm/s, p < 0.01). L-type Ca2+ current (ICa) density was increased in TG compared with WT (-9.0 +/- 0.3 versus 7.2 +/- 0.3 pA/pF, p < 0.01). Sarcoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) protein levels were increased (p < 0.05) by 6.6-fold in TG, which could be recapitulated in vitro by adenovirus-mediated overexpression of Akt in cultured adult ventricular myocytes. Conversely, inhibiting SERCA with either ryanodine or thapsigargin affected myocyte contraction and relaxation and Ca2+ channel kinetics more in TG than in WT. Thus, myocytes from mice with overexpressed Akt demonstrated enhanced contractility and relaxation, Fura-2 Ca2+ transients, and Ca2+ channel currents. Furthermore, increased protein expression of SERCA2a plays an important role in mediating enhanced LV function by Akt. Up-regulation of SERCA2a expression and enhanced LV myocyte contraction and relaxation in Akt-induced hypertrophy is opposite to the down-regulation of SERCA2a and reduced contractile function observed in many other forms of LV hypertrophy.  相似文献   

18.
Mechanism responsible for the enlargement of end-expiratory lung volume (EELV) induced by chronic hypoxia remains unclear. The fact that the increase in EELV persists after return to normoxia suggests involvement of morphological changes. Because hypoxia has been also shown to activate lung mast cells, we speculated that they could play in the mechanism increasing EELV similar role as in vessel remodeling in hypoxic pulmonary hypertension (HPH). We, therefore, tested an effect of mast cells degranulation blocker disodium cromoglycate (DSCG) on hypoxia induced EELV enlargement. Ventilatory parameters, EELV and right to left heart weight ratio (RV/LV+S) were measured in male Wistar rats. The experimental group (H+DSCG) was exposed to 3 weeks of normobaric hypoxia and treated with DSCG during the first four days of hypoxia, control group was exposed to hypoxia only (H), two others were kept in normoxia as non-treated (N) and treated (N+DSCG) groups. DSCG treatment significantly attenuated the EELV enlargement (H+DSCG = 6.1+/-0.8; H = 9.2+/-0.9; ml +/-SE) together with the increase in minute ventilation (H + DSCG = 190+/-8; H = 273 +/- 10; ml/min +/- SE) and RV/LV + S (H + DSCG = 0.39 +/- 0.03; H = 0.50 +/- 0.06).  相似文献   

19.
Dexamethasone (Dex) treatment during a critical period of lung development causes lung hypoplasia in infant rats. However, the effects of Dex on the pulmonary circulation are unknown. To determine whether Dex increases the risk for development of pulmonary hypertension, we treated newborn Sprague-Dawley rats with Dex (0.25 microg/day, days 3-13). Litters were divided equally between Dex-treated and vehicle control (ethanol) rats. Rats were raised in either room air until 10 wk of age (normoxic groups) or room air until 7 wk of age and then in a hypoxia chamber (inspired O(2) fraction = 0.10; hypoxic groups) for 3 wk to induce pulmonary hypertension. Compared with vehicle control rats, Dex treatment of neonatal rats reduced alveolarization (by 42%; P < 0.05) and barium-filled pulmonary artery counts (by 37%; P < 0.05) in 10-wk-old adults. Pulmonary arterial pressure and the ratio of right ventricle to left ventricle plus septum weights (RV/LV+S) were higher in 10-wk-old Dex-treated normoxic rats compared with those in normoxic control rats (by 16 and 16% respectively; P < 0.05). Small pulmonary arteries of adult normoxic Dex-treated rats showed increased vessel wall thickness compared with that in control rats (by 15%; P < 0.05). After 3 wk of hypoxia, RV/LV+S values were 36% higher in rats treated with Dex in the neonatal period compared with those in hypoxic control rats (P < 0.05). RV/LV+S was 42% higher in hypoxic control rats compared with those in normoxic control rats (P < 0.05). We conclude that Dex treatment of neonatal rats caused sustained lung hypoplasia and increased pulmonary arterial pressures and augmented the severity of hypoxia-induced pulmonary hypertension in adult rats.  相似文献   

20.
We found previously that KLF4 expression was up-regulated in cultured rat and human pulmonary artery smooth muscle cells (PASMCs) exposed to cigarette smoke (CS) extract and in pulmonary artery from rats with pulmonary hypertension induced by CS. Here, we aim to investigate whether CS-induced pulmonary hypertension (PH) is prevented and ameliorated by targeted pulmonary vascular gene knockdown of KLF4 via adeno-associated virus 1 (AAV1)-KLF4-shRNA in vivo in rat model. The preventive and therapeutic effects were observed according to the different time-point of AAV1-KLF4-shRNA intratracheal administration. We tested haemodynamic measurements of systemic and pulmonary circulations and observed the degree of pulmonary vascular remodelling. In the preventive experiment, KLF4 expression and some pulmonary circulation hemodynamic measurements such as right ventricular systolic pressure (RVSP), mean right ventricular pressure (mRVP), peak RV pressure rate of rise (dP/dt max) and right ventricle (RV) contractility index were increased significantly in the CS-induced PH model. While in the prevention group (AAV1-KLF4-shRNA group), RVSP, mRVP, dP/dt max and RV contractility index which are associated with systolic function of right ventricle decreased and the degree of pulmonary vascular remodelling relieved. In the therapeutic experiment, we observed a similar trend. Our findings emphasize the feasibility of sustained pulmonary vascular KLF4 gene knockdown using intratracheal delivery of AAV1 in an animal model of cigarette smoke-induced PH and determined gene transfer of KLF4-shRNA could prevent and ameliorate the progression of PH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号