首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Virion uncoating is a critical step in the life cycle of mammalian orthoreoviruses. In cell culture, and probably in extraintestinal tissues in vivo, reovirus virions undergo partial proteolysis within endosomal or/or lysosomal compartments. This process converts the virion into a form referred to as an intermediate subvirion particle (ISVP). In natural enteric reovirus infections, proteolytic uncoating takes place extracellularly within the intestinal lumen. The resultant proteolyzed particles, unlike intact virions, have the capacity to penetrate cell membranes and thereby gain access to cytoplasmic components required for viral gene expression. We hypothesized that the capacity of reovirus outer capsid proteins to be proteolyzed is a determinant of cellular host range. To investigate this hypothesis, we asked if the addition of protease to cell culture medium would expand the range of cultured mammalian cell lines that can be productively infected by reoviruses. We identified many transformed and nontransformed cell lines, as well as primary cells, that restrict viral infection. In several of these restrictive cells, virion uncoating is inefficient or blocked. Addition of proteases to the cell culture medium generates ISVP-like particles and promotes viral growth in nearly all cell lines tested. Interestingly, we found that some cell lines that restrict reovirus uncoating still express mature cathepsin L, a lysosomal protease required for virion disassembly in murine L929 cells. This finding suggests that factors in addition to cathepsin L are required for efficient intracellular proteolysis of reovirus virions. Our results demonstrate that virion uncoating is a critical determinant of reovirus cellular host range and that many cells which otherwise support productive reovirus infection cannot efficiently mediate this essential early step in the virus life cycle.  相似文献   

2.
A main feature of the common mucosal immune system is that lymphocytes primed in one mucosal inductive site may home to distant mucosal effector sites. However, the mechanisms responsible for such cross-protection remain elusive. To address these we have used a model of local mucosal infection of mice with reovirus. In immunocompetent mice local duodenal priming protected against subsequent respiratory challenge. In the upper respiratory tract this protection appeared to be mainly mediated by specific IgA- and IgG2a-producing B cells, whereas ex vivo active effector memory CTL were found in the lower respiratory tract. In accordance with these findings, clearance of reovirus from the lower respiratory tract, but not from the upper respiratory tract, of infected SCID mice upon transfer of gut-primed lymphocytes depended on the presence of T cells. Taken together this study reveals that intestinal priming leads to protection of both the upper and lower respiratory tracts, however through distinct mechanisms. We suggest that cross-protection in the common mucosal immune system is mediated by trafficking of B cells and effector memory CTL.  相似文献   

3.
H W Virgin  th  M A Mann    K L Tyler 《Journal of virology》1994,68(10):6719-6729
We identified in vitro correlates of in vivo protection mediated by nonneutralizing antibodies specific for reovirus capsid proteins. We defined mechanisms of antibody action by analyzing monoclonal antibody (MAb) effects at sequential steps in reovirus serotype 3 strain Dearing (T3D) infection of L cells. Two types of experiments showed that protective MAbs specific for the outer capsid proteins sigma 3 or mu 1 inhibited T3D infection independent of effects on binding. First, MAbs which had no effect on T3D binding inhibited T3D growth. Second, MAb-coated T3D attached to L cells did not replicate as efficiently as T3D without bound antibody. We therefore defined sigma 3-specific MAb effects on postbinding steps in T3D infection. T3D coated with MAb sigma 3-10G10 exhibited prolonged sensitivity to growth inhibition by ammonium chloride. Since ammonium chloride inhibits endosomal acidification and proteolytic processing of the T3D capsid, this suggested that MAbs inhibit early steps in T3D infection. This was confirmed by direct demonstration that several sigma 3-specific MAbs inhibited proteolytic uncoating of virions by fibroblasts. We identified two mechanisms for antibody-mediated inhibition of virion uncoating: (i) inhibition of internalization of T3D-MAb complexes bound to the cell surface, and (ii) inhibition of intracellular proteolysis of the T3D capsid. Studies using a cell-free system confirmed that sigma 3-specific MAbs directly block proteolytic uncoating of the T3D virion. In addition, we found that sigma 3-specific MAbs block (and therefore define) two distinct steps in proteolytic uncoating of the reovirion. We conclude that antibodies which are protective in vivo inhibit postbinding events in reovirus infection of permissive cells. Protective antibodies act by inhibiting internalization and intracellular proteolytic uncoating of the virion. Analysis of postbinding mechanisms of MAb action may identify targets for vaccine development and antiviral therapy.  相似文献   

4.
Reoviruses are double-stranded RNA viruses that infect the mammalian respiratory and gastrointestinal tract. Reovirus infection elicits production of type I interferons (IFNs), which trigger antiviral pathways through the induction of interferon-stimulated genes (ISGs). Although hundreds of ISGs have been identified, the functions of many of these genes are unknown. The interferon-inducible transmembrane (IFITM) proteins are one class of ISGs that restrict the cell entry of some enveloped viruses, including influenza A virus. One family member, IFITM3, localizes to late endosomes, where reoviruses undergo proteolytic disassembly; therefore, we sought to determine whether IFITM3 also restricts reovirus entry. IFITM3-expressing cell lines were less susceptible to infection by reovirus, as they exhibited significantly lower percentages of infected cells in comparison to control cells. Reovirus replication was also significantly reduced in IFITM3-expressing cells. Additionally, cells expressing an shRNA targeting IFITM3 exhibited a smaller decrease in infection after IFN treatment than the control cells, indicating that endogenous IFITM3 restricts reovirus infection. However, IFITM3 did not restrict entry of reovirus infectious subvirion particles (ISVPs), which do not require endosomal proteolysis, indicating that restriction occurs in the endocytic pathway. Proteolysis of outer capsid protein μ1 was delayed in IFITM3-expressing cells in comparison to control cells, suggesting that IFITM3 modulates the function of late endosomal compartments either by reducing the activity of endosomal proteases or delaying the proteolytic processing of virions. These data provide the first evidence that IFITM3 restricts infection by a nonenveloped virus and suggest that IFITM3 targets an increasing number of viruses through a shared requirement for endosomes during cell entry.  相似文献   

5.
After attachment to receptors, reovirus virions are internalized by endocytosis and exposed to acid-dependent proteases that catalyze viral disassembly. Previous studies using the cysteine protease inhibitor E64 and a mutant cell line that does not support reovirus disassembly suggest a requirement for specific endocytic proteases in reovirus entry. This study identifies the endocytic proteases that mediate reovirus disassembly in murine fibroblast cells. Infection of both L929 cells treated with the cathepsin L inhibitor Z-Phe-Tyr(t-Bu)-diazomethyl ketone and cathepsin L-deficient mouse embryo fibroblasts resulted in inefficient proteolytic disassembly of viral outer-capsid proteins and decreased viral yields. In contrast, both L929 cells treated with the cathepsin B inhibitor CA-074Me and cathepsin B-deficient mouse embryo fibroblasts support reovirus disassembly and growth. However, removal of both cathepsin B and cathepsin L activity completely abrogates disassembly and growth of reovirus. Concordantly, cathepsin L mediates reovirus disassembly more efficiently than cathepsin B in vitro. These results demonstrate that either cathepsin L or cathepsin B is required for reovirus entry into murine fibroblasts and indicate that cathepsin L is the primary mediator of reovirus disassembly. Moreover, these findings suggest that specific endocytic proteases can determine host cell susceptibility to infection by intracellular pathogens.  相似文献   

6.
Peyer's patches are known as mucosal inductive sites for humoral and cellular immune responses in the gastrointestinal tract. In contrast, functionally equivalent structures in the respiratory tract remain elusive. It has been suggested that nasal-associated lymphoid tissue (NALT) might serve as a mucosal inductive site in the upper respiratory tract. However, typical signs of mucosal inductive sites like development of germinal center reactions after Ag stimulation and isotype switching of naive B cells to IgA production have not been directly demonstrated. Moreover, it is not known whether CTL can be generated in NALT. To address these issues, NALT was structurally and functionally analyzed using a model of intranasal infection of C3H mice with reovirus. FACS and histological analyses revealed development of germinal centers in NALT in parallel with generation and expansion of IgA(+) and IgG2a(+) B cells after intranasal reovirus infection. Reovirus-specific IgA was produced in both the upper respiratory and the gastrointestinal tract, whereas production of reovirus-specific IgG2a was restricted to NALT, submandibular, and mesenteric lymph nodes. Moreover, virus-specific CTL were detected in NALT. Limiting dilution analysis showed a 5- to 6-fold higher precursor CTL frequency in NALT compared with a cervical lymph node. Together these data provide direct evidence that NALT is a mucosal inductive site for humoral and cellular immune responses in the upper respiratory tract.  相似文献   

7.
The cytopathic effect evidenced by cells infected with avian reovirus S1133 suggests that this virus may induce apoptosis in primary cultures of chicken embryo fibroblasts. In this report we present evidence that avian reovirus infection of cultured cells causes activation of the intracellular apoptotic program and that this activation takes place during an early stage of the viral life cycle. The ability of avian reoviruses to induce apoptosis is not restricted to a particular virus strain or to a specific cell type, since different avian reovirus isolates were able to induce apoptosis in several avian and mammalian cell lines. Apoptosis was also provoked in ribavirin-treated avian reovirus-infected cells and in cells infected with UV-irradiated reovirions, indicating that viral mRNA synthesis and subsequent steps in viral replication are not needed for apoptosis induction in avian reovirus-infected cells and that the number of inoculated virus particles, not their infectivity, is the critical factor for apoptosis induction by avian reovirus. Our finding that apoptosis is no longer induced when intracellular viral uncoating is blocked indicates that intraendosomal virion disassembly is required for apoptosis induction and that attachment and uptake of parental reovirions are not sufficient to cause apoptosis. Taken together, our results suggest that apoptosis is triggered from within the infected cell by viral products generated after intraendosomal uncoating of parental reovirions.  相似文献   

8.
9.
Many viruses invade mucosal surfaces to establish infection in the host. Some viruses are restricted to mucosal surfaces, whereas others disseminate to sites of secondary replication. Studies of strain-specific differences in reovirus mucosal infection and systemic dissemination have enhanced an understanding of viral determinants and molecular mechanisms that regulate viral pathogenesis. After peroral inoculation, reovirus strain type 1 Lang replicates to high titers in the intestine and spreads systemically, whereas strain type 3 Dearing (T3D) does not. These differences segregate with the viral S1 gene segment, which encodes attachment protein σ1 and nonstructural protein σ1s. In this study, we define genetic determinants that regulate reovirus-induced pathology following intranasal inoculation and respiratory infection. We report that two laboratory isolates of T3D, T3DC and T3DF, differ in the capacity to replicate in the respiratory tract and spread systemically; the T3DC isolate replicates to higher titers in the lungs and disseminates, while T3DF does not. Two nucleotide polymorphisms in the S1 gene influence these differences, and both S1 gene products are involved. T3DC amino acid polymorphisms in the tail and head domains of σ1 protein influence the sensitivity of virions to protease-mediated loss of infectivity. The T3DC polymorphism at nucleotide 77, which leads to coding changes in both S1 gene products, promotes systemic dissemination from the respiratory tract. A σ1s-null virus produces lower titers in the lung after intranasal inoculation and disseminates less efficiently to sites of secondary replication. These findings provide new insights into mechanisms underlying reovirus replication in the respiratory tract and systemic spread from the lung.  相似文献   

10.
REOviruses (Respiratory Enteric Orphan viruses) are ubiquitous, non-enveloped viruses containing 10 segments of double-stranded RNA (dsRNA) as their genome. They are common isolates of the respiratory and gastrointestinal tract of humans but are not associated with severe disease and are therefore considered relatively benign. An intriguing characteristic of reovirus is its innate oncolytic potential, which is linked to the transformed state of the cell. When immortalized cells are transfected in vitro with activated oncogenes such as Ras, Sos, v-erbB, or c-myc, they became susceptible to reovirus infection and subsequent cellular lysis, indicating that oncogene signaling pathways are exploited by reovirus. This observation has led to the use of the virus in clinical trials as an anti-cancer agent against oncogenic tumors. In addition to the exploitation of oncogene signaling, reovirus may further utilize host immune responses to enhance its antitumor activity in vivo due to its innate interferon induction ability. Reovirus is, however, not entirely benign to immunocompromised animal models. Reovirus causes so-called "black feet syndrome" in immunodeficient mice and can also harm neonatal animals. Because cancer patients often undergo immunosuppression due to heavy chemo/radiation-treatments or advanced tumor progression, this pathogenic response may be a hurdle in virus-based anticancer therapies. However, a genetically attenuated reovirus variant derived from persistent reovirus infection of cells in vitro is able to exert potent anti-tumor activity with significantly reduced viral pathogenesis in immunocompromised animals. Importantly, in this instance the attenuated reovirus maintains its oncolytic potential while significantly reducing viral pathogenesis in vivo.  相似文献   

11.
Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) shows promise as a chemotherapeutic agent. However, many human cancer cells are resistant to killing by TRAIL. We have previously demonstrated that reovirus infection increases the susceptibility of human lung (H157) and breast (ZR75-1) cancer cell lines to TRAIL-induced apoptosis. We now show that reovirus also increases the susceptibility of human ovarian cancer cell lines (OVCAR3, PA-1 and SKOV-3) to TRAIL-induced apoptosis. Reovirus-induced increases in susceptibility of OVCAR3 cells to TRAIL require virus uncoating and involve increased activation of caspases 3 and 8. Reovirus infection results in the down-regulation of cFLIP (cellular FLICE inhibitory protein) in OVCAR3 cells. Down-regulation of cFLIP following treatment of OVCAR3 cells with antisense cFLIP oligonucleotides or PI3 kinase inhibition also increases the susceptibility of OVCAR3 cells to TRAIL-induced apoptosis. Finally, over-expression of cFLIP blocks reovirus-induced sensitization of OVCAR3 cells to TRAIL-induced apoptosis. The combination of reovirus and TRAIL thus represents a promising new therapeutic approach for the treatment of ovarian cancer.  相似文献   

12.
Reovirus preferentially replicates in transformed cells and is being explored as a cancer therapy. Immunological and physical barriers to virotherapy inspired a quest for reovirus variants with enhanced oncolytic potency. Using a classical genetics approach, we isolated two reovirus variants (T3v1 and T3v2) with superior replication relative to wild-type reovirus serotype 3 Dearing (T3wt) on various human and mouse tumorigenic cell lines. Unique mutations in reovirus λ2 vertex protein and σ1 cell attachment protein were associated with the large plaque-forming phenotype of T3v1 and T3v2, respectively. Both T3v1 and T3v2 exhibited higher infectivity (i.e., a higher PFU-to-particle ratio) than T3wt. A detailed analysis of virus replication revealed that virus cell binding and uncoating were equivalent for variant and wild-type reoviruses. However, T3v1 and T3v2 were significantly more efficient than T3wt in initiating productive infection. Thus, when cells were infected with equivalent input virus particles, T3v1 and T3v2 produced significantly higher levels of early viral RNAs relative to T3wt. Subsequent steps of virus replication (viral RNA and protein synthesis, virus assembly, and cell death) were equivalent for all three viruses. In a syngeneic mouse model of melanoma, both T3v1 and T3v2 prolonged mouse survival compared to wild-type reovirus. Our studies reveal that oncolytic potency of reovirus can be improved through distinct mutations that increase the infectivity of reovirus particles.  相似文献   

13.
Persistent reovirus infections of murine L929 cells select cellular mutations that inhibit viral disassembly within the endocytic pathway. Mutant cells support reovirus growth when infection is initiated with infectious subvirion particles (ISVPs), which are intermediates in reovirus disassembly formed following proteolysis of viral outer-capsid proteins. However, mutant cells do not support growth of virions, indicating that these cells have a defect in virion-to-ISVP processing. To better understand mechanisms by which viruses use the endocytic pathway to enter cells, we defined steps in reovirus replication blocked in mutant cells selected during persistent infection. Subcellular localization of reovirus after adsorption to parental and mutant cells was assessed using confocal microscopy and virions conjugated to a fluorescent probe. Parental and mutant cells did not differ in the capacity to internalize virions or distribute them to perinuclear compartments. Using pH-sensitive probes, the intravesicular pH was determined and found to be equivalent in parental and mutant cells. In both cell types, virions localized to acidified intracellular organelles. The capacity of parental and mutant cells to support proteolysis of reovirus virions was assessed by monitoring the appearance of disassembly intermediates following adsorption of radiolabeled viral particles. Within 2 h after adsorption to parental cells, proteolysis of viral outer-capsid proteins was observed, consistent with formation of ISVPs. However, in mutant cells, no proteolysis of viral proteins was detected up to 8 h postadsorption. Since treatment of cells with E64, an inhibitor of cysteine-containing proteases, blocks reovirus disassembly, we used immunoblot analysis to assess the expression of cathepsin L, a lysosomal cysteine protease. In contrast to parental cells, mutant cells did not express the mature, proteolytically active form of the enzyme. The defect in cathepsin L maturation was not associated with mutations in procathepsin L mRNA, was not complemented by procathepsin L overexpression, and did not affect the maturation of cathepsin B, another lysosomal cysteine protease. These findings indicate that persistent reovirus infections select cellular mutations that affect the maturation of cathepsin L and suggest that alterations in the expression of lysosomal proteases can modulate viral cytopathicity.  相似文献   

14.
15.
In murine fibroblasts, efficient proteolysis of reovirus outer capsid protein sigma3 during cell entry by virions requires the acid-dependent lysosomal cysteine protease cathepsin L. The importance of cathepsin L for infection of other cell types is unknown. Here we report that the acid-independent lysosomal cysteine protease cathepsin S mediates outer capsid processing in macrophage-like P388D cells. P388D cells supported infection by virions of strain Lang, but not strain c43. Genetic studies revealed that this difference is determined by S4, the viral gene segment that encodes sigma3. c43-derived subvirion particles that lack sigma3 replicated normally in P388D cells, suggesting that the difference in infectivity of Lang and c43 virions is at the level of sigma3 processing. Infection of P388D cells with Lang virions was inhibited by the broad spectrum cysteine protease inhibitor trans-epoxysuccinyl-l-leucylamido-(4-guanidino)butane but not by NH(4)Cl, which raises the endocytic pH and thereby inhibits acid-dependent proteases such as cathepsins L and B. Outer capsid processing and infection of P388D cells with Lang virions were also inhibited by a cathepsin S-specific inhibitor. Furthermore, in the presence of NH(4)Cl, cell lines engineered to express cathepsin S supported infection by Lang, but not c43, virions. Our results thus indicate that differences in susceptibility to cathepsin S-mediated sigma3 processing are responsible for strain differences in reovirus infection of macrophage-like P388D cells and other cathepsin S-expressing cells. Additionally, our data suggest that the acid dependence of reovirus infections of most other cell types may reflect the low pH requirement for the activities of most other lysosomal proteases rather, than some other acid-dependent aspect of cell entry.  相似文献   

16.
了解、评价社区呼吸道感染患者抗生素运用的合理性,提出相应的干预措施,促进抗生素使用的合理性。自行设计有关问卷,通过对100例门诊呼吸道感染患者的问卷调查及有关实验室检查,根据"3R"原则评价患者抗生素运用的合理性。100例患者来院就诊前已使用抗生素者89例,78例患者存在不同程度的抗生素使用不合理现象,对抗生素知识了解也存在许多误区,抗生素使用随意性大。社区呼吸道感染患者抗生素使用不合理现象比较严重,应加大干预措施,促进抗生素的合理使用,减少抗生素不合理使用带来的危害。  相似文献   

17.
18.
Influenza A virus (IAV) is one of the most common infectious pathogens in humans. Entry of this virus into cells is primarily determined by host cellular trypsin-type processing proteases, which proteolytically activate viral membrane fusion glycoprotein precursors. Human IAV and murine parainfluenza virus type 1 Sendai virus are exclusively pneumotropic, and the infectious organ tropism of these viruses is determined by the susceptibility of the viral envelope glycoprotein to cleavage by proteases in the airway. Proteases in the upper respiratory tract are suppressed by secretory leukoprotease inhibitor, and those in the lower respiratory tract are suppressed by pulmonary surfactant, which by adsorption inhibits the interaction between the proteases and viral membrane proteins. Although the protease activities are predominant over the activities of inhibitory compounds under normal airway conditions, intranasal administration of inhibitors was able to significantly suppress multi-cycles of viral replication in the airway. In addition, we identified chemical agents that could act as defensive factors by up-regulating the levels of the natural inhibitors and immunoglobulin A (IgA) in airway fluids. One of these compounds, ambroxol, is a mucolytic and anti-oxidant agent that stimulates the release of secretory leukoprotease inhibitor and pulmonary surfactant in the early phase, and IgA in the late phase of infection at an optimal dose, i.e. a dose sufficient to inhibit virus proliferation and increase the survival rate of animals after treatment with a lethal dose of IAV. Another agent, clarithromycin, is a macrolide antibiotic that increases IgA levels through augmentation of interleukin-12 levels and mucosal immunization in the airway. In addition to the sialidase inhibitors, which prevent the release of IAV from infected cells, inhibitors of the processing proteases and chemical agents that augment mucosal immunity and/or levels of the relevant defensive compounds may also ultimately prove to be useful as new anti-influenza agents.  相似文献   

19.
Viral receptors serve both to target viruses to specific cell types and to actively promote the entry of bound virus into cells. Human rhinoviruses (HRVs) can form complexes in vitro with a truncated soluble form of the HRV cell surface receptor, ICAM-1. These complexes appear to be stoichiometric, with approximately 60 ICAM molecules bound per virion or 1 ICAM-1 molecule per icosahedral face of the capsid. The complex can have two fates, either dissociating to yield free virus and free ICAM-1 or uncoating to break down to an 80S empty capsid which has released VP4, viral RNA, and ICAM-1. This uncoating in vitro mimics the uncoating of virus during infection of cells. The stability of the virus-receptor complex is dependent on temperature and the rhinovirus serotype. HRV serotype 14 (HRV14)-ICAM-1 complexes rapidly uncoat, HRV16 forms a stable virus-ICAM complex which does not uncoat detectably at 34 degrees C, and HRV3 has an intermediate phenotype. Rhinovirus can also uncoat after exposure to mildly acidic pH. The sensitivities of individual rhinovirus serotypes to ICAM-1-mediated virus uncoating do not correlate with uncoating promoted by incubation at low pH, suggesting that these two means of virus destabilization occur by different mechanisms. Soluble ICAM-1 and low pH do not act synergistically to promote uncoating. The rate of uncoating does appear to be inversely related to virus affinity for its receptor.  相似文献   

20.
Mutant L cells, designated LR cells, were isolated after “curing” a persistently infected cell line (L/C) with antireovirus serum. The LR cells were shown to be virus-free; no reovirus was detectable by infectious center assays, plaque assays, presence of viral proteins, presence of viral dsRNA and immunofluorescence studies. Persistent infections were readily established in LR cells following infection with either cloned, low passage wild-type reovirus or cloned, low passage reovirus isolated from carrier cultures. Reovirus isolated from carrier cultures, however, grew much better than wild-type reovirus in LR cells and showed complete dominance over wild-type reovirus in coinfection experiments. Infection of LR cells with wild-type reovirus resulted in a low-level persistent infection with inefficient viral replication; these mutant L cells were partially resistant to infection with wild-type reovirus. In contrast, infection of the mutant L cells with virus isolated from the persistently infected cells resulted in a persistent infection accompanied with efficient viral replication. Infection of the original L cells with either wild-type reovirus or reovirus isolated from the persistently infected cells resulted in a lytic infection with no surviving cells. Thus the host cell plays a crucial role in the maintenance of persistent reovirus infection. Our results show that there is a coevolution of both mutant L cells and mutant reovirus during persistent infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号