首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitogen-activated protein kinases (MAP kinases) play a central role in signaling pathways initiated by extracellular stimuli such as growth factors, cytokines, and various forms of environmental stress. Full activation of the MAP kinases requires dual phosphorylation of the Thr and Tyr residues in the TXY motif of the activation loop by MAP kinase kinases. Interestingly, down-regulation of MAP kinase activity can be initiated by multiple Ser/Thr phosphatases, Tyr-specific phosphatases, and dual-specificity phosphatases. This would inevitable lead to the formation of monophosphorylated MAP kinases. However, in much of the literature investigating MAP kinase signaling, there has been the implicit assumption that the monophosphorylated forms are inactive. Thus, the significance for the need of multiple phosphatases in regulating MAP kinase activity is not clear, and the biological functions of these monophosphorylated MAP kinases are currently unknown. We have prepared extracellular signal-regulated protein kinase 2 (ERK2) in all phosphorylated forms and kinetically characterized them using two proteins (the myelin basic protein and Elk-1) and ATP as substrates. Our results revealed that a single phosphorylation in the activation loop of ERK2 produces an intermediate activity state. Thus, the catalytic efficiencies of the monophosphorylated ERK2/pY and ERK2/pT (ERK2 phosphorylated on Tyr-185 and Thr-183, respectively) are approximately 2-3 orders of magnitude higher than that of the unphosphorylated ERK2 and are only 1-2 orders of magnitude lower than that of the fully active bisphosphorylated ERK2/pTpY. This raises the possibility that the monophosphorylated ERK2s may have distinct biological roles in vivo. Different phosphorylation states in the activation loop could be linked to graded effects on a single ERK2 function. Alternatively, they could be linked to distinct ERK2 functions. Although less active than the bisphosphorylated species, the monophosphorylated ERK2s may differentially phosphorylate pathway components.  相似文献   

2.
Huang Y  Li H  Gupta R  Morris PC  Luan S  Kieber JJ 《Plant physiology》2000,122(4):1301-1310
The modulation of mitogen-activated protein kinase (MAPK) activity regulates many intracellular signaling processes. In animal and yeast cells, MAP kinases are activated via phosphorylation by the dual-specificity kinase MEK (MAP kinase kinase). Several plant homologs of MEK and MAPK have been identified, but the biochemical events underlying the activation of plant MAPKs remain unknown. We describe the in vitro activation of an Arabidopsis homolog of MAP kinase, ATMPK4. ATMPK4 was phosphorylated in vitro by an Arabidopsis MEK homolog, AtMEK1. This phosphorylation occurred principally on threonine (Thr) residues and resulted in elevated ATMPK4 kinase activity. A second Arabidopsis MEK isoform, ATMAP2Kalpha, failed to phosphorylate ATMPK4 in vitro. Tyr dephosphorylation by the Arabidopsis Tyr-specific phosphatase AtPTP1 resulted in an almost complete loss of ATMPK4 activity. Immunoprecipitates of Arabidopsis extracts with anti-ATMPK4 antibodies displayed myelin basic protein kinase activity that was sensitive to treatment with AtPTP1. These results demonstrate that a plant MEK can phosphorylate and activate MAPK, and that Tyr phosphorylation is critical for the catalytic activity of MAPK in plants. Surprisingly, in contrast to the animal enzymes, AtMEK1 may not be a dual-specificity kinase but, rather, the required Tyr phosphorylation on ATMPK4 may result from autophosphorylation.  相似文献   

3.
Protein (de)phosphorylation plays an important role in plants. To provide a robust foundation for subcellular phosphorylation signaling network analysis and kinase-substrate relationships, we performed a meta-analysis of 27 published and unpublished in-house mass spectrometry–based phospho-proteome data sets for Arabidopsis thaliana covering a range of processes, (non)photosynthetic tissue types, and cell cultures. This resulted in an assembly of 60,366 phospho-peptides matching to 8141 nonredundant proteins. Filtering the data for quality and consistency generated a set of medium and a set of high confidence phospho-proteins and their assigned phospho-sites. The relation between single and multiphosphorylated peptides is discussed. The distribution of p-proteins across cellular functions and subcellular compartments was determined and showed overrepresentation of protein kinases. Extensive differences in frequency of pY were found between individual studies due to proteomics and mass spectrometry workflows. Interestingly, pY was underrepresented in peroxisomes but overrepresented in mitochondria. Using motif-finding algorithms motif-x and MMFPh at high stringency, we identified compartmentalization of phosphorylation motifs likely reflecting localized kinase activity. The filtering of the data assembly improved signal/noise ratio for such motifs. Identified motifs were linked to kinases through (bioinformatic) enrichment analysis. This study also provides insight into the challenges/pitfalls of using large-scale phospho-proteomic data sets to nonexperts.  相似文献   

4.
5.
The plant plasma membrane is a crucial mediator of the interaction between plants and microbes. Understanding how the plasma membrane proteome responds to diverse immune signaling events will lead to a greater understanding of plant immunity and uncover novel targets for crop improvement. Here we report the results from a large scale quantitative proteomics study of plasma membrane-enriched fractions upon activation of the Arabidopsis thaliana immune receptor RPS2. More than 2300 proteins were identified in total, with 1353 proteins reproducibly identified across multiple replications. Label-free spectral counting was employed to quantify the relative protein abundance between different treatment samples. Over 20% of up-regulated proteins have known roles in plant immune responses. Significantly changing proteins include those involved in calcium and lipid signaling, membrane transport, primary and secondary metabolism, protein phosphorylation, redox homeostasis, and vesicle trafficking. A subset of differentially regulated proteins was independently validated during bacterial infection. This study presents the largest quantitative proteomics data set of plant immunity to date and provides a framework for understanding global plasma membrane proteome dynamics during plant immune responses.  相似文献   

6.
Protein phosphorylation is a reversible post-translational modification controlling many biological processes. Most phosphorylation occurs on serine and threonine, and to a less extend on tyrosine (Tyr). In animals, Tyr phosphorylation is crucial for the regulation of many responses such as growth or differentiation. Only recently with the development of mass spectrometry, it has been reported that Tyr phosphorylation is as important in plants as in animals. The genes encoding protein Tyr kinases and protein Tyr phosphatases have been identified in the Arabidopsis thaliana genome. Putative substrates of these enzymes, and thus Tyr-phosphorylated proteins have been reported by proteomic studies based on accurate mass spectrometry analysis of the phosphopeptides and phosphoproteins. Biochemical approaches, pharmacology and genetic manipulations have indicated that responses to stress and developmental processes involve changes in protein Tyr phosphorylation. The aim of this review is to present an update on Tyr phosphorylation in plants in order to better assess the role of this post-translational modification in plant physiology.Key words: protein tyrosine phosphorylation, kinases, phosphatases, proteomics, mass spectrometry, signaling  相似文献   

7.
We performed here MS-based phosphoproteomics using both metal oxide affinity chromatography (pSTY proteomics) and anti-phosphotyrosine antibody (pY proteomics). The former method identified mainly phospho-serine and -threonine of nuclear or cytoplasmic proteins, whereas the latter did phosphotyrosine including more plasma membrane proteins and kinases. The overlap between these two methods was limited (24 tyrosine phosphorylation sites out of 325) and, by combining the two, coverage of the signaling molecules was enhanced as exemplified by Erk signaling. We also performed whole cell proteomics using an off-gel fractionator, and found 68.9% of the proteins identified by phosphoproteomics. Thus, the expression levels of phosphoproteins were roughly estimated. In addition to many uncharacterized phosphorylation sites, the dataset includes 136 sites that were experimentally verified elsewhere to be phosphorylated by a total of 83 kinases and kinase groups out of the 256 registered in the Phospho.ELM database. With the integration of various proteomic analyses and information from database, the responsible kinases of the identified phosphorylation sites and possibly their activity status were predicted by phosphorylation status and expression levels of their substrates, and thus our method may be able to monitor the activity status of phosphorylation signaling.  相似文献   

8.
We identified the major autophosphorylation sites in the insulin receptor and correlated their phosphorylation with the phosphotransferase activity of the receptor on synthetic peptides. The receptor, purified from Fao hepatoma cells on immobilized wheat germ agglutinin, undergoes autophosphorylation at several tyrosine residues in its beta-subunit; however, anti-phosphotyrosine antibody (alpha-PY) inhibited most of the phosphorylation by trapping the initial sites in an inactive complex. Exhaustive trypsin digestion of the inhibited beta-subunit yielded two peptides derived from the Tyr-1150 domain (Ullrich, A, Bell, J. R., Chen, E. Y., Herrera, R., Petruzzelli, L. M., Dull, T. J., Gray, A., Coussens, L., Liao, Y.-C., Tsubokawa, M., Mason, A., Seeburg, P. H., Grunfeld, C., Rosen, O. M., and Ramachandran, J. (1985) Nature 313, 756-761) called pY4 and pY5. Both peptides contained 2 phosphotyrosyl residues (2Tyr(P], one corresponding to Tyr-1146 and the other to Tyr-1150 or Tyr-1151. In the absence of the alpha-PY additional sites were phosphorylated. The C-terminal domain of the beta-subunit contained phosphotyrosine at Tyr-1316 and Tyr-1322. Removal of the C-terminal domain by mild trypsinolysis did not affect the phosphotransferase activity of the beta-subunit suggesting that these sites did not play a regulatory role. Full activation of the insulin receptor during in vitro assay correlated with the appearance of two phosphopeptides in the tryptic digest of the beta-subunit, pY1 and pY1a, that were inhibited by the alpha-PY. Structural analysis suggested that pY1 and pY1a were derived from the Tyr-1150 domain and contained 3 phosphotyrosyl residues (3Tyr(P] corresponding to Tyr-1146, Tyr-1150, and Tyr-1151. The phosphotransferase of the receptor that was phosphorylated in the presence of alpha-PY at 2 tyrosyl residues in the Tyr-1150 domain was not fully activated during kinase assays carried out with saturating substrate concentrations which inhibited further autophosphorylation. During insulin stimulation of the intact cell, the 3Tyr(P) form of the Tyr-1150 domain was barely detected, whereas the 2Tyr(P) form predominated. We conclude that 1) autophosphorylation of the insulin receptor begins by phosphorylation of Tyr-1146 and either Tyr-1150 or Tyr-1151; 2) progression of the cascade to phosphorylation of the third tyrosyl residue fully activates the phosphotransferase during in vitro assay; 3) in vivo, the 2Tyr(P) form predominates, suggesting that progression of the autophosphorylation cascade to the 3Tyr(P) form is regulated during insulin stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Signaling through MAP kinase networks in plants   总被引:13,自引:0,他引:13  
Protein phosphorylation is the most important mechanism for controlling many fundamental cellular processes in all living organisms including plants. A specific class of serine/threonine protein kinases, the mitogen-activated protein kinases (MAP kinases) play a central role in the transduction of various extra- and intracellular signals and are conserved throughout eukaryotes. These generally function via a cascade of networks, where MAP kinase (MAPK) is phosphorylated and activated by MAPK kinase (MAPKK), which itself is activated by MAPKK kinase (MAPKKK). Signaling through MAP kinase cascade can lead to cellular responses including cell division, differentiation as well as response to various stresses. In plants, MAP kinases are represented by multigene families and are organized into a complex network for efficient transmission of specific stimuli. Putative plant MAP kinase cascades have been postulated based on experimental analysis of in vitro interactions between specific MAP kinase components. These cascades have been tested in planta following expression of epitope-tagged kinases in protoplasts. It is known that signaling for cell division and stress responses in plants are mediated through MAP kinases and even auxin, ABA and possibly ethylene and cytokinin also utilize a MAP kinase pathway. Most of the biotic (pathogens and pathogen-derived elicitors) including wounding and abiotic stresses (salinity, cold, drought, and oxidative) can induce defense responses in plants through MAP kinase pathways. In this article we have covered the historical background, biochemical assay, activation/inactivation, and targets of MAP kinases with emphasis on plant MAP kinases and the responses regulated by them. The cross-talk between plant MAP kinases is also discussed to bring out the complexity within this three-component module.  相似文献   

10.
Eph-related receptor tyrosine kinases (RTK) have been implicated in several biological functions including synaptic plasticity, axon guidance, and morphogenesis, yet the details of the signal transduction pathways that produce these specific biological functions after ligand-receptor interaction remain unclear. We used Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) in combination with LC-MS/MS to characterize cellular signaling following stimulation by ephrinB1-Fc of NG-108 cells that overexpress EphB2 receptors. Because tyrosine phosphorylation functions as a key regulatory event in RTK signaling, we used anti-phosphotyrosine immunoprecipitation (pY IP) of cell lysates to isolate potential participants in the EphB2 pathway. Our SILAC experiments identified 127 unique proteins, 40 of which demonstrated increased abundance in pY IPs from ephrinB1-Fc stimulated cells as compared with unstimulated cells. Six proteins demonstrated decreased abundance, and 81 did not change significantly in relative abundance. Western blotting analysis of five proteins after pY IP verified their SILAC results. On the basis of previously published work and use of PathwayAssist software, we proposed an interaction network downstream of EphB2 for the proteins with changed ratios.  相似文献   

11.
Protein tyrosine phosphatases dephosphorylate tyrosine residues of proteins, whereas, dual specificity phosphatases (DUSPs) are a subgroup of protein tyrosine phosphatases that dephosphorylate not only Tyr(P) residue, but also the Ser(P) and Thr(P) residues of proteins. The DUSPs are linked to the regulation of many cellular functions and signaling pathways. Though many cellular targets of DUSPs are known, the relationship between catalytic activity and substrate specificity is poorly defined. We investigated the interactions of peptide substrates with select DUSPs of four types: MAP kinases (DUSP1 and DUSP7), atypical (DUSP3, DUSP14, DUSP22 and DUSP27), viral (variola VH1), and Cdc25 (A-C). Phosphatase recognition sites were experimentally determined by measuring dephosphorylation of 6,218 microarrayed Tyr(P) peptides representing confirmed and theoretical phosphorylation motifs from the cellular proteome. A broad continuum of dephosphorylation was observed across the microarrayed peptide substrates for all phosphatases, suggesting a complex relationship between substrate sequence recognition and optimal activity. Further analysis of peptide dephosphorylation by hierarchical clustering indicated that DUSPs could be organized by substrate sequence motifs, and peptide-specificities by phylogenetic relationships among the catalytic domains. The most highly dephosphorylated peptides represented proteins from 29 cell-signaling pathways, greatly expanding the list of potential targets of DUSPs. These newly identified DUSP substrates will be important for examining structure-activity relationships with physiologically relevant targets.  相似文献   

12.
Plants have evolved with complex signaling circuits that operate under multiple conditions and govern numerous cellular functions. Stress signaling in plant cells is a sophisticated network composed of interacting proteins organized into tiered cascades where the function of a molecule is dependent on the interaction and the activation of another. In a linear scheme, the receptors of cell surface sense the stimuli and convey stress signals through specific pathways and downstream phosphorylation events controlled by mitogen-activated protein (MAP) kinases and second messengers, leading to appropriate adaptive responses. The specificity of the pathway is guided by scaffolding proteins and docking domains inside the interacting partners with distinctive structures and functions. The flexibility and the fine-tuned organization of the signaling molecules drive the activated MAP kinases into the appropriate location and connection to control and integrate the information flow. Here, we overview recent findings of the involvement of MAP kinases in major abiotic stresses (drought, cold and temperature fluctuations) and we shed light on the complexity and the specificity of MAP kinase signaling modules.  相似文献   

13.
Neurotrophins, such as nerve growth factor and brain-derived neurotrophic factor, activate Trk receptor tyrosine kinases through receptor dimerization at the cell surface followed by autophosphorylation and recruitment of intracellular signaling molecules. The intracellular pathways used by neurotrophins share many common protein substrates that are used by other receptor tyrosine kinases (RTK), such as Shc, Grb2, FRS2, and phospholipase C-gamma. Here we describe a novel RTK mechanism that involves a 220-kilodalton membrane tetraspanning protein, ARMS/Kidins220, which is rapidly tyrosine phosphorylated in primary neurons after neurotrophin treatment. ARMS/Kidins220 undergoes multiple tyrosine phosphorylation events and also serine phosphorylation by protein kinase D. We have identified a single tyrosine (Tyr(1096)) phosphorylation event in ARMS/Kidins220 that plays a critical role in neurotrophin signaling. A reassembled complex of ARMS/Kidins220 and CrkL, an upstream component of the C3G-Rap1-MAP kinase cascade, is SH3-dependent. However, Tyr(1096) phosphorylation enables ARMS/Kidins220 to recruit CrkL through its SH2 domain, thereby freeing the CrkL SH3 domain to engage C3G for MAP kinase activation in a neurotrophin dependent manner. Accordingly, mutation of Tyr(1096) abolished CrkL interaction and sustained MAPK kinase activity, a response that is not normally observed in other RTKs. Therefore, Trk receptor signaling involves an inducible switch mechanism through an unconventional substrate that distinguishes neurotrophin action from other growth factor receptors.  相似文献   

14.
15.
We utilized a novel peptide library approach to identify specific inhibitors of ZAP-70, a protein Tyr kinase involved in T cell activation. By screening more than 6 billion peptides oriented by a common Tyr residue for their ability to bind to ZAP-70, we determined a consensus optimal peptide. A Phe-for-Tyr substituted version of the peptide inhibited ZAP-70 protein Tyr kinase activity by competing with protein substrates (K(I) of 2 microM). The related protein Tyr kinases, Lck and Syk, were not significantly inhibited by the peptide. When introduced into intact T cells, the peptide blocked signaling downstream of ZAP-70, including ZAP-70-dependent gene induction, without affecting upstream Tyr phosphorylation. Thus, screening Tyr-oriented peptide libraries can identify selective peptide inhibitors of protein Tyr kinases.  相似文献   

16.
Colorectal cancer (CRC) is the second leading cause of death from cancer. The MET receptor tyrosine kinase and/or its ligand HGF are frequently amplified or overexpressed in CRC. It is known that tyrosine phosphorylated proteins are involved in progression and metastasis of colorectal cancer; however, little is known about the MET phospho-proteome in CRC. High resolution mass spectrometry was used to characterize immunoaffinity-purified, phosphotyrosine (pY)-containing tryptic peptides of the MET-expressing CRC cell model, DLD1. A total of 266 unambiguously identified pY sites spanning 168 proteins were identified. Quantification of mass spectrometry ion currents identified 161 pY sites, including many not previously linked to MET signaling, that were modulated in abundance by HGF stimulation. Overlay of these data with protein-protein interaction data sets suggested that many of the identified HGF-modulated phospho-proteins may be directly or indirectly associated with MET. Analysis of pY sequence motifs indicated a prevalence of Src family kinase consensus sequences, and reciprocal signaling between Src and MET was confirmed by using selective small molecule inhibitors of these kinases. Therefore, using quantitative phospho-proteomics profiling, kinase modulation by ligand and inhibitors, and data integration, an outline of the MET signaling network was generated for the CRC model.  相似文献   

17.
Zhang G  Neubert TA 《Proteomics》2006,6(2):571-578
Identification of tyrosine phosphorylation by MS is challenging due to its low abundance in biological samples. Therefore, specific enrichment of tyrosine phosphorylated peptides prior to their analysis is highly desirable. The application of immunopurification of phosphotyrosine (pY) peptides using pY antibodies has been greatly limited by poor selectivity. In the present study, we have shown that the selectivity of pY peptide immunopurification can be dramatically improved by adding detergents to immunoprecipitation buffers. Optimum selectivity and sensitivity were achieved using an immunoprecipitation buffer containing n-octyl glucoside with a concentration above its critical micelle concentration (0.7%). The optimized method was used to identify in vivo tyrosine phosphorylation on proteins isolated from cell extract by anti-pY protein immunoprecipitation. After immunopurification, non-pY-containing peptides from protein digests were readily removed and pY peptides became the dominant peaks in MALDI quadrupole-TOF mass spectra. In addition, the signal intensities from pY-containing peptides were enhanced significantly after enrichment, allowing characterization of tyrosine phosphorylation sites with greater sensitivity.  相似文献   

18.
The activation of the mitogen-activated protein(MAP) kinases extracellular signal-regulated kinase(ERK)1/2 was traditionally used as a readout of signaling of G protein-coupled receptors(GPCRs) via arrestins, as opposed to conventional GPCR signaling via G proteins. Several recent studies using HEK293 cells where all G proteins were genetically ablated or inactivated, or both non-visual arrestins were knocked out, demonstrated that ERK1/2 phosphorylation requires G protein activity, but does not necessarily require the presence of non-visual arrestins. This appears to contradict the prevailing paradigm. Here we discuss these results along with the recent data on gene edited cells and arrestinmediated signaling. We suggest that there is no real controversy. G proteins might be involved in the activation of the upstream-most MAP3Ks, although in vivo most MAP3K activation is independent of heterotrimeric G proteins, being initiated by receptor tyrosine kinases and/or integrins. As far as MAP kinases are concerned, the best-established role of arrestins is scaffolding of the three-tiered cascades(MAP3K-MAP2 K-MAPK). Thus, it seems likely that arrestins, GPCRbound and free, facilitate the propagation of signals in these cascades, whereas signal initiation via MAP3K activation may be independent of arrestins. Different MAP3Ks are activated by various inputs, some of which are mediated by G proteins, particularly in cell culture, where we artificially prevent signaling by receptor tyrosine kinases and integrins, thereby favoring GPCR-induced signaling. Thus, there is no reason to change the paradigm: Arrestins and G proteins play distinct non-overlapping roles in cell signaling.  相似文献   

19.
Advances in mass spectrometry-based proteomics have yielded a substantial mapping of the tyrosine phosphoproteome and thus provided an important step toward a systematic analysis of intracellular signaling networks in higher eukaryotes. In this study we decomposed an uncharacterized proteomics data set of 481 unique phosphotyrosine (Tyr(P)) peptides by sequence similarity to known ligands of the Src homology 2 (SH2) and the phosphotyrosine binding (PTB) domains. From 20 clusters we extracted 16 known and four new interaction motifs. Using quantitative mass spectrometry we pulled down Tyr(P)-specific binding partners for peptides corresponding to the extracted motifs. We confirmed numerous previously known interaction motifs and found 15 new interactions mediated by phosphosites not previously known to bind SH2 or PTB. Remarkably, a novel hydrophobic N-terminal motif ((L/V/I)(L/V/I)pY) was identified and validated as a binding motif for the SH2 domain-containing inositol phosphatase SHIP2. Our decomposition of the in vivo Tyr(P) proteome furthermore suggests that two-thirds of the Tyr(P) sites mediate interaction, whereas the remaining third govern processes such as enzyme activation and nucleic acid binding.  相似文献   

20.
Most signaling networks are regulated by reversible protein phosphorylation. The specificity of this regulation depends in part on the capacity of protein kinases to recognize and efficiently phosphorylate particular sequence motifs in their substrates. Sequenced plant genomes potentially encode over than 1000 protein kinases, representing 4% of the proteins, twice the proportion found in humans. This plethora of plant kinases requires the development of high-throughput strategies to identify their substrates. In this study, we have implemented a semi-degenerate peptide array screen to define the phosphorylation preferences of four kinases from Arabidopsis thaliana that are representative of the plant calcium-dependent protein kinase and Snf1-related kinase superfamily. We converted these quantitative data into position-specific scoring matrices to identify putative substrates of these kinases in silico in protein sequence databases. Our data show that these kinases display related but nevertheless distinct phosphorylation motif preferences, suggesting that they might share common targets but are likely to have specific substrates. Our analysis also reveals that a conserved motif found in the stress-related dehydrin protein family may be targeted by the SnRK2-10 kinase. Our results indicate that semi-degenerate peptide array screening is a versatile strategy that can be used on numerous plant kinases to facilitate identification of their substrates, and therefore represents a valuable tool to decipher phosphorylation-regulated signaling networks in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号