首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The origins of South America's exceptional plant diversity are poorly known from the fossil record. We report on unbiased quantitative collections of fossil floras from Laguna del Hunco (LH) and Río Pichileufú (RP) in Patagonia, Argentina. These sites represent a frost-free humid biome in South American middle latitudes of the globally warm Eocene. At LH, from 4,303 identified specimens, we recognize 186 species of plant organs and 152 species of leaves. Adjusted for sample size, the LH flora is more diverse than comparable Eocene floras known from other continents. The RP flora shares several taxa with LH and appears to be as rich, although sampling is preliminary. The two floras were previously considered coeval. However, (40)Ar/(39)Ar dating of three ash-fall tuff beds in close stratigraphic association with the RP flora indicates an age of 47.46+/-0.05 Ma, 4.5 million years younger than LH, for which one tuff is reanalyzed here as 51.91+/-0.22 Ma. Thus, diverse floral associations in Patagonia evolved by the Eocene, possibly in response to global warming, and were persistent and areally extensive. This suggests extraordinary richness at low latitudes via the latitudinal diversity gradient, corroborated by published palynological data from the Eocene of Colombia.  相似文献   

2.
Early Eocene land bridges allowed numerous plant and animal species to cross between Europe and North America via the Arctic. While many species suited to prevailing cool Arctic climates would have been able to cross throughout much of this period, others would have found dispersal opportunities only during limited intervals when their requirements for higher temperatures were met. Here, we present Titanomyrma lubei gen. et sp. nov. from Wyoming, USA, a new giant (greater than 5 cm long) formiciine ant from the early Eocene (approx. 49.5 Ma) Green River Formation. We show that the extinct ant subfamily Formiciinae is only known from localities with an estimated mean annual temperature of about 20°C or greater, consistent with the tropical ranges of almost all of the largest living ant species. This is, to our knowledge, the first known formiciine of gigantic size in the Western Hemisphere and the first reported cross-Arctic dispersal by a thermophilic insect group. This implies intercontinental migration during one or more brief high-temperature episodes (hyperthermals) sometime between the latest Palaeocene establishment of intercontinental land connections and the presence of giant formiciines in Europe and North America by the early middle Eocene.  相似文献   

3.
Galling arthropods create plant structures inside which they find shelter. Factors acting on galler diversity are still being discussed, with this fauna considered more diverse in xeric than mesic environments (higrothermic stress hypothesis, HSH), and also in more plant diverse sites. Here we compare galler abundance (N), equitability (E), species richness (S) and composition between adjacent restinga (xeric) and swamp forests (mesic) in Parque Estadual de Itapeva (29°21' S, 49°45' W), Rio Grande do Sul, southern Brazil. Five trails, two in swamp forest and three in restingas, were sampled four times each (January/December 2005). After an effort of 60h/person, 621 galled plant individuals belonging to 104 gall morphotypes were recorded. This suggests a high galler diversity for the Park, comparable to the richest places known. No differences were found for N, E or S between restingas and swamp forests. However, faunal composition differs significantly between the vegetation types. The dominant (most abundant) species are different in either vegetation type, and are rare or absent on the other vegetation type. Such species composition analysis is still largely ignored for gallers, and stresses the fact that the HSH cannot explain this pattern, since the latter is based on preferences by the ovipositing galler for xeric sites instead of mesic ones. The two habitats differ in microclimate, but species richness, as would be predicted by the HSH, does not differ. This small scale pattern can perhaps be attributed to biogeographic processes on larger scales, as suggested by the resource synchronisation hypothesis.  相似文献   

4.

Background

Discovery of Eocene non-marine vertebrates, including crocodylians, turtles, bony fishes, and mammals in Canada’s High Arctic was a critical paleontological contribution of the last century because it indicated that this region of the Arctic had been mild, temperate, and ice-free during the early – middle Eocene (∼53–50 Ma), despite being well above the Arctic Circle. To date, these discoveries have been restricted to Canada’s easternmost Arctic – Ellesmere and Axel Heiberg Islands (Nunavut). Although temporally correlative strata crop out over 1,000 km west, on Canada’s westernmost Arctic Island – Banks Island, Northwest Territories – they have been interpreted as predominantly marine. We document the first Eocene bony fish and crocodyliform fossils from Banks Island.

Principal Findings

We describe fossils of bony fishes, including lepisosteid (Atractosteus), esocid (pike), and amiid, and a crocodyliform, from lower – middle Eocene strata of the Cyclic Member, Eureka Sound Formation within Aulavik National Park (∼76°N. paleolat.). Palynology suggests the sediments are late early to middle Eocene in age, and likely spanned the Early Eocene Climatic Optimum (EECO).

Conclusions/Significance

These fossils extend the geographic range of Eocene Arctic lepisosteids, esocids, amiids, and crocodyliforms west by approximately 40° of longitude or ∼1100 km. The low diversity bony fish fauna, at least at the family level, is essentially identical on Ellesmere and Banks Islands, suggesting a pan-High Arctic bony fish fauna of relatively basal groups around the margin of the Eocene Arctic Ocean. From a paleoclimatic perspective, presence of a crocodyliform, gar and amiid fishes on northern Banks provides further evidence that mild, year-round temperatures extended across the Canadian Arctic during early – middle Eocene time. Additionally, the Banks Island crocodyliform is consistent with the phylogenetic hypothesis of a Paleogene divergence time between the two extant alligatorid lineages Alligator mississippiensis and A. sinensis, and high-latitude dispersal across Beringia.  相似文献   

5.
The fossil record demonstrates that past climate changes and extinctions significantly affected the diversity of insect leaf-feeding damage, implying that the richness of damage types reflects that of the unsampled damage makers, and that the two are correlated through time. However, this relationship has not been quantified for living leaf-chewing insects, whose richness and mouthpart convergence have obscured their value for understanding past and present herbivore diversity. We hypothesized that the correlation of leaf-chewing damage types (DTs) and damage maker richness is directly observable in living forests. Using canopy access cranes at two lowland tropical rainforest sites in Panamá to survey 24 host-plant species, we found significant correlations between the numbers of leaf chewing insect species collected and the numbers of DTs observed to be made by the same species in feeding experiments, strongly supporting our hypothesis. Damage type richness was largely driven by insect species that make multiple DTs. Also, the rank-order abundances of DTs recorded at the Panamá sites and across a set of latest Cretaceous to middle Eocene fossil floras were highly correlated, indicating remarkable consistency of feeding-mode distributions through time. Most fossil and modern host-plant pairs displayed high similarity indices for their leaf-chewing DTs, but informative differences and trends in fossil damage composition became apparent when endophytic damage was included. Our results greatly expand the potential of insect-mediated leaf damage for interpreting insect herbivore richness and compositional heterogeneity from fossil floras and, equally promisingly, in living forests.  相似文献   

6.
According to the global latitudinal diversity gradient, a decrease in animal and plant species richness exists from the tropics towards higher latitudes. The aim of this study was to describe the latitudinal distribution patterns of Chilean continental flora and delineate biogeographic regions along a 4270‐km north–south gradient. We reviewed plant lists for each of the 39 parallels of continental Chile to build a database of the geographical distribution of vascular plant species comprising 184 families, 957 genera and 3787 species, which corresponded to 100%, 94.9% and 74.2% of the richness previously defined for Chile, respectively. Using this latitudinal presence–absence species matrix, we identified areas with high plant richness and endemism and performed a Cluster analysis using Jaccard index to delineate biogeographic regions. This study found that richness at family, genus and species levels follow a unimodal 4270‐km latitudinal distribution curve, with a concentration of richness in central Chile (31–42°S). The 37th parallel south (central Chile) presented the highest richness for all taxonomic levels and in specific zones the endemism (22–37°S) was especially high. This unimodal pattern contrasts the global latitudinal diversity gradient shown by other studies in the Northern hemisphere. Seven floristic regions were identified in this latitudinal gradient: tropical (18–22°S), north Mediterranean (23–28°S), central Mediterranean (29–32°S), south Mediterranean (33–37°S), north temperate (38–42°S), south temperate (43–52°S) and Austral (53–56°S). This regionalization coincides with previous bioclimatic classifications and illustrates the high heterogeneity of the biodiversity in Chile and the need for a reconsideration of governmental conservation strategies to protect this diversity throughout Chile.  相似文献   

7.
Fossil pollen as a record of past biodiversity   总被引:7,自引:0,他引:7  
Quaternary pollen records may contribute uniquely to the understanding of present plant diversity. Pollen assemblages can reflect diversity at community and landscape scales but the time resolution of most studies does not match that of modern ecological studies. Because of the complicating effects of differential pollen productivity and dispersal, pollen records do not directly reflect equitability aspects of vegetation diversity. Vegetation diversity indices other than S (the total number of taxa) are therefore not appropriate for pollen assemblages. As a measure of the species richness palynological richness is biased by the lack of taxonomic precision, by a possible interference on pollen dispersal from vegetation structure and by pollen representation. The nonlinear relationship between species richness and pollen-taxa richness may be used in attempts to estimate past floristic richness from fossil pollen assemblages. Using a hypothetical example the strong effect of cover shifts in the vegetation affecting taxa with different representation (Rrel) values on observed palynological richness is demonstrated. It is suggested that estimates of relative pollen productivity should be used to guide the pollen sum on which pollen-type richness is estimated by rarefaction techniques and this approach is illustrated using a paired site study of late Holocene diversity dynamics. The need for a modern training set relating pollen-type richness to species richness, pollen productivity and vegetation structure is emphasized.  相似文献   

8.
Aim To (1) describe termite functional diversity patterns across five tropical regions using local species richness sampling of standardized areas of habitat; (2) assess the relative importance of environmental factors operating at different spatial and temporal scales in influencing variation in species representation within feeding groups and functional taxonomic groups across the tropics; (3) achieve a synthesis to explain the observed patterns of convergence and divergence in termite functional diversity that draws on termite ecological and biogeographical evidence to‐date, as well as the latest evidence for the evolutionary and distributional history of tropical rain forests. Location Pantropical. Methods A pantropical termite species richness data set was obtained through sampling of eighty‐seven standardized local termite diversity transects from twenty‐nine locations across five tropical regions. Local‐scale, intermediate‐scale and large‐scale environmental data were collected for each transect. Standardized termite assemblage and environmental data were analysed at the levels of whole assemblages and feeding groups (using components of variance analysis) and at the level of functional taxonomic groups (using correspondence analysis and canonical correspondence analysis). Results Overall species richness of local assemblages showed a greater component of variation attributable to local habitat disturbance level than to region. However, an analysis accounting for species richness across termite feeding groups indicated a much larger component of variation attributable to region. Mean local assemblage body size also showed the greater overall significance of region compared with habitat type in influencing variation. Ordination of functional taxonomic group data revealed a primary gradient of variation corresponding to rank order of species richness within sites and to mean local species richness within regions. The latter was in the order: Africa > south America > south‐east Asia > Madagascar > Australia. This primary gradient of species richness decrease can be explained by a decrease in species richness of less dispersive functional taxonomic groups feeding on more humified food substrates such as soil. Hence, the transects from more depauperate sites/regions were dominated by more dispersive functional taxonomic groups feeding on less humified food substrates such as dead wood. Direct gradient analysis indicated that ‘region’ and other large‐scale factors were the most important in explaining patterns of local termite functional diversity followed by intermediate‐scale geographical and site variables and, finally, local‐scale ecological variables. Synthesis and main conclusions Within regions, centres of termite functional diversity lie in lowland equatorial closed canopy tropical forests. Soil feeding termite evolution further down food substrate humification gradients is therefore more likely to have depended on the long‐term presence of this habitat. Known ecological and energetic constraints upon contemporary soil feeders lend support for this hypothesis. We propose further that the anomalous distribution of termite soil feeder species richness is partly explained by their generally very poor dispersal abilities across oceans. Evolution, radiation and dispersal of soil feeder diversity appears to have been largely restricted to what are now the African and south American regions. The inter‐regional differences in contemporary local patterns of termite species richness revealed by the global data set point to the possibility of large differences in consequent ecosystem processes in apparently similar habitats on different continents.  相似文献   

9.
Two major events were invoked to understand recent biodiversity patterns in Mediterranean floras: northern hemisphere glaciations and historical human impacts. These two events were considered in this work, where we investigated general patterns in plant species richness and rarity attributes in two different Mediterranean regions: California and Iberia. Our goal was to assess whether comparisons of this sort provided evidence of different extinctions rates, making an effort to decouple anthropogenic from ice age‐related effects in both regions. We employed a taxonomically revised database for eight Mediterranean floras containing information on species richness for 298 families and rarity attributes for 11,834 taxa. We used summary statistics (Gini coefficient) and randomly generated models to test for general patterns of the distribution of diversity within and among taxonomic groups. We then used this general pattern among Mediterranean floras to provide a context in which to evaluate our two focal areas. Results indicated that floras of California and Iberia share the closest taxonomic structure among Mediterranean regions. Differences emerged in rarity attributes and the taxonomic identities of rarity rich groups. These findings were interpreted in the light of Pleistocene changes. In addition, a closer focus on rarity attributes allowed us to pinpoint some segments of these floras where anthropogenic activities may drive variation from general patterns, specifically for rare species in ecologically sensitive habitats.  相似文献   

10.
Birds play an important role in studies addressing the diversity and species richness of tropical ecosystems, but because of the poor avian fossil record in all extant tropical regions, a temporal perspective is mainly provided by divergence dates derived from calibrated molecular analyses. Tropical ecosystems were, however, widespread in the Northern Hemisphere during the early Cenozoic, and the early Eocene German fossil site Messel in particular has yielded a rich avian fossil record. The Messel avifauna is characterized by a considerable number of flightless birds, as well as a high diversity of aerial insectivores and the absence of large arboreal birds. With about 70 currently known species in 42 named genus‐level and at least 39 family‐level taxa, it approaches extant tropical biotas in terms of species richness and taxonomic diversity. With regard to its taxonomic composition and presumed ecological characteristics, the Messel avifauna is more similar to the Neotropics, Madagascar, and New Guinea than to tropical forests in continental Africa and Asia. Because the former regions were geographically isolated during most of the Cenozoic, their characteristics may be due to the absence of biotic factors, especially those related to the diversification of placental mammals, which impacted tropical avifaunas in Africa and Asia. The crown groups of most avian taxa that already existed in early Eocene forests are species‐poor. This does not support the hypothesis that the antiquity of tropical ecosystems is key to the diversity of tropical avifaunas, and suggests that high diversification rates may be of greater significance.  相似文献   

11.
The species pool hypothesis claims that the large‐scale regional species pool is the chief parameter in determining small‐scale species richness through filtering of species that can persist within a community on the basis of their tolerance of the abiotic environment. Accordingly, different environmental conditions give rise to different species assemblages. From a taxonomic perspective, under the assumption of trait conservatism, co‐occurring species that experience similar environmental conditions are likely to be more taxonomically similar than ecologically distant species. The next step consists in understanding how commonness and rarity of individual species produce the observed taxonomic diversity. In this paper, the importance of environmental filtering in regulating the taxonomic structure of rare and common plant species in the urban floras of Brussels (Belgium) and Rome (Italy) is tested. First, we computed the taxonomic diversity of the rare and common species of Brussels and Rome based on the branching topology of the Linnaean taxonomic trees. Next, using a randomization procedure, we determined whether the taxonomic diversity of the rare species was significantly higher than the diversity of the common species. Results show that, for both urban floras, common species that shape the community matrix and experience similar environmental conditions have a taxonomic diversity that is significantly lower than that of the rare species that represent a relatively incidental set of species of more ‘disperse’ origin. Finally, from a conservation/management perspective our results imply that, given their high taxonomic heterogeneity, the protection of rare species is a central issue for preserving high levels of diversity in urban areas.  相似文献   

12.
Wildfire is the dominant disturbance in boreal forests and fire activity is increasing in these regions. Soil fungal communities are important for plant growth and nutrient cycling postfire but there is little understanding of how fires impact fungal communities across landscapes, fire severity gradients, and stand types in boreal forests. Understanding relationships between fungal community composition, particularly mycorrhizas, and understory plant composition is therefore important in predicting how future fire regimes may affect vegetation. We used an extreme wildfire event in boreal forests of Canada's Northwest Territories to test drivers of fungal communities and assess relationships with plant communities. We sampled soils from 39 plots 1 year after fire and 8 unburned plots. High‐throughput sequencing (MiSeq, ITS) revealed 2,034 fungal operational taxonomic units. We found soil pH and fire severity (proportion soil organic layer combusted), and interactions between these drivers were important for fungal community structure (composition, richness, diversity, functional groups). Where fire severity was low, samples with low pH had higher total fungal, mycorrhizal, and saprotroph richness compared to where severity was high. Increased fire severity caused declines in richness of total fungi, mycorrhizas, and saprotrophs, and declines in diversity of total fungi and mycorrhizas. The importance of stand age (a surrogate for fire return interval) for fungal composition suggests we could detect long‐term successional patterns even after fire. Mycorrhizal and plant community composition, richness, and diversity were weakly but significantly correlated. These weak relationships and the distribution of fungi across plots suggest that the underlying driver of fungal community structure is pH, which is modified by fire severity. This study shows the importance of edaphic factors in determining fungal community structure at large scales, but suggests these patterns are mediated by interactions between fire and forest stand composition.  相似文献   

13.
Selincuo (31°34′–31°57′N, 88°31′–89°21′E)is one of the great lakes in northern Xizang surrounded by alpine grassland, composed mainly of Stipa purpurea, S, subssessifolia var. bassipulomosa. A 3.08 m long core has been taken from a water depth of 27 m, 3 km to the north from the lake. Palynological records of the core combined with surface sample results have revealed from the regional as well as local vegetational and environmental history since the last 12 000 a BP, a very low pollen concentration (19–209 grains/g), mainly of airborne pollen, which indicated a treeless alpine sparse vegetation. A great vegetation change took place at Ca. 9 600 a BP when alpine sparse vegetation was replaced by alpine grassland lasting until Ca. 6 000 a BP. Quite a number of tree pollen grains found in this time interval might be explained as a result of expansion of forests somewhere around the Xizang Plateau. These changes must have caused by climatic warming during the Early Holocene. During the last 6 000 years the vegetation had remained as the alpine grassland, although probably more luxurouste than before, but their was an obvious increase of arboreal pollen, such as the increase of Abies during Ca. 6 000–4 000 a BP, Picea 4 000–2 200 a BP, Pinus 2 200–1 000 a BP which indicated continuous expansion of forests growing around the plateaus. During the last 1 000 years both the concentration and proportion of the arboreal pollen decreased and those of Cypraceae pollen increased sharply. This might mean a reduction of the forests around the plateau and an expansion of swamps around the lake.  相似文献   

14.
The Cenozoic planktonic foraminifera (PF) (calcareous zooplankton) have arguably the most detailed fossil record of any group. The quality of this record allows models of environmental controls on macroecology, developed for Recent assemblages, to be tested on intervals with profoundly different climatic conditions. These analyses shed light on the role of long-term global cooling in establishing the modern latitudinal diversity gradient (LDG)—one of the most powerful generalizations in biogeography and macroecology. Here, we test the transferability of environment-diversity models developed for modern PF assemblages to the Eocene epoch (approx. 56–34 Ma), a time of pronounced global warmth. Environmental variables from global climate models are combined with Recent environment–diversity models to predict Eocene richness gradients, which are then compared with observed patterns. The results indicate the modern LDG—lower richness towards the poles—developed through the Eocene. Three possible causes are suggested for the mismatch between statistical model predictions and data in the Early Eocene: the environmental estimates are inaccurate, the statistical model misses a relevant variable, or the intercorrelations among facets of diversity—e.g. richness, evenness, functional diversity—have changed over geological time. By the Late Eocene, environment–diversity relationships were much more similar to those found today.  相似文献   

15.
Wilf P 《The New phytologist》2008,178(3):486-502
Plants and herbivorous insects have dominated terrestrial ecosystems for over 300 million years. Uniquely in the fossil record, foliage with well-preserved insect damage offers abundant and diverse information both about producers and about ecological and sometimes taxonomic groups of consumers. These data are ideally suited to investigate food web response to environmental perturbations, and they represent an invaluable deep-time complement to neoecological studies of global change. Correlations between feeding diversity and temperature, between herbivory and leaf traits that are modulated by climate, and between insect diversity and plant diversity can all be investigated in deep time. To illustrate, I emphasize recent work on the time interval from the latest Cretaceous through the middle Eocene (67-47 million years ago (Ma)), including two significant events that affected life: the end-Cretaceous mass extinction (65.5 Ma) and its ensuing recovery; and globally warming temperatures across the Paleocene-Eocene boundary (55.8 Ma). Climatic effects predicted from neoecology generally hold true in these deep-time settings. Rising temperature is associated with increased herbivory in multiple studies, a result with major predictive importance for current global warming. Diverse floras are usually associated with diverse insect damage; however, recovery from the end-Cretaceous extinction reveals uncorrelated plant and insect diversity as food webs rebuilt chaotically from a drastically simplified state. Calibration studies from living forests are needed to improve interpretation of the fossil data.  相似文献   

16.
Aim Climate is recognized for the significant role it plays in the global distribution of plant species diversity. We test the extent to which two aspects of climate, namely temperature and precipitation, explain the spatial distribution of high taxonomic groupings (plant families) at a regional spatial resolution (the Neotropics). Our goal is to provide a quantitative and comparative framework for identifying the local effects of climate on the familial composition of tropical forests by identifying the influence of climate on the number of individuals and the number of species within a given family. Location One hundred and forty‐four 0.1‐ha forest transect sites from the Neotropics (19.8°N–27.0°S and 40.1°W–105.1°W). Data were originally collected by A.H. Gentry. Methods Spatial variability in the abundance (density) and species richness of 159 tropical plant families across a range of predominately lowland Neotropical landscapes were attributed to eight temperature and precipitation measures using the eigen analysis method of two‐field joint single‐value decomposition. Results Climate significantly affects the within‐clade diversity of several ecologically important Neotropical plant families. Intrafamily abundance and richness covary with temperature in some families (e.g. Fabaceae) and with precipitation in others (e.g. Bignoniaceae, Arecaceae), with differing climatic preferences observed even among co‐occurring families. In addition, the family‐level composition of Neotropical forests, in both abundance and richness, appears to be influenced more by temperature than by precipitation. Among lowland families, only Asteraceae increased in species richness with decreasing temperature, although several families, including Melastomataceae and Rubiaceae, are more abundant at lower temperatures. Main conclusions Although plant diversity is known to vary as a function of climate at the species level, we document clear climatic preferences even at the rank of family. Temperature plays a stronger role in governing the familial composition of tropical forests, particularly in the richness of families, than might be expected given its narrow annual and diurnal range in the tropics. Although other environmental or geographic variables that covary with temperature may be more causally linked to diversity differences than temperature itself, the results nonetheless identify the taxonomic components of tropical forest composition that may be most affected by future climatic changes.  相似文献   

17.
Aims: Mixed-species forests are known to be highly productive systems because of their high species diversity, including taxonomic diversity (species richness) and structural diversity. Recent empirical evidence also points to plant maximum height, as a functional trait that potentially drives forest above-ground biomass (AGB). However, the interrelations between these biotic variables are complex, and it is not always predictable if structural diversity attributes or functional metrics of plant maximum height would act as the most important determinant of stand biomass. Here we evaluated the relative importance of structural diversity attributes and functional metrics of plant maximum height (Hmax) in predicting and mediating AGB response to variation in species richness in mixed-species forests, while also accounting for fine-scale environmental variation. Location: Northern Benin. Methods: We used forest inventory data from mixed-species stands of native and exotic species. We quantified structural diversity as coefficient of variation of tree diameter at breast height (CVdbh) and of height (CVHt). For plant Hmax, we computed three metrics: functional range (FRHmax), functional divergence (FDHmax) and community-weighted mean (CWMHmax). We used topographical variables such as elevation and slope to account for possible environmental effects. Simple and multiple mixed-effects models, and structural equation models were performed to assess the direct and indirect links of AGB with species richness through structural diversity attributes and functional metrics of plant Hmax. Results: Species richness and CVdbh were positively related to AGB, while functional metrics of plant Hmax were not. Structural equation models revealed that species richness influenced AGB indirectly via CVdbh, which alone strongly promoted AGB. Elevation only had a positive direct effect on AGB. While increasing species richness enhanced CVdbh and functional measures of plant Hmax, there was no support for the latter mediating the effects of species richness on AGB. Conclusion: Structural diversity has a significant advantage in predicting and mediating the positive effect of species richness on AGB more so than functional measures of plant Hmax. We argue that structural diversity acts as a mechanism for the species richness–AGB relationship, and that maintaining high structural diversity would enhance biomass in mixed-species forests.  相似文献   

18.
Many of the oldest definitive members of the Rosaceae are present in the Eocene upland floras of the Okanogan Highlands of northeastern Washington State and British Columbia, Canada. Over a dozen rosaceous taxa representing extant and extinct genera of all four traditionally recognized subfamilies are known from flowers, fruits, wood, pollen, and especially leaves. The complexity seen in Eocene Rosaceae suggests that hybridization and polyploidy may have played a pivotal role in the early evolution of the family. Increased species diversity and the first appearance of additional modern taxa occur during the Late Paleogene in North America and Europe. The Rosaceae become increasingly important components of fossil floras during the Neogene, with taxa adapted to many habitats.  相似文献   

19.
Abstract. This study analyses the pollen signature of tropical lowland forests (< 1000 m a.s.l.) in the Asian monsoon climate. Its aim is to investigate how well the pollen data can reproduce the vegetation patterns in tropical India, and how the variations in the pollen composition are related to the gradient of decreasing plant moisture availability (measured by the ratio of actual over equilibrium evapotranspiration) that is associated with the strong seasonality of precipitation that characterizes the monsoon climate regime. We used canonical correspondence analysis (CCA) to relate the variations in the pollen composition of 71 surface soil samples from evergreen and semi‐evergreen forests distributed along the western coast of south India (8° 48’ N‐15° 08’ N), with the climate characteristics of the sampling sites. We show that variations in plant moisture availability strongly determine variations in the pollen composition; for example evergreen and semi‐evergreen forests can be distinguished on the basis of their pollen assemblages. Variations in the mean temperature of the coldest month associated with elevation also determine distinct pollen assemblages; for example evergreen forests above 800 m a.s.l. present different pollen signatures than those below this altitude/temperature limit. Variations in the relative abundance of some pollen taxa are strongly related to plant moisture availability and taxa indicators of climate can be identified. Hence, modern pollen assemblages from tropical forests in south India carry considerable information about vegetation patterns and climate. Paleoclimatic changes, notably in the monsoon season, could be quantified.  相似文献   

20.
Geographic distribution of wild potato species   总被引:6,自引:0,他引:6  
The geographic distribution of wild potatoes (Solanaceae sect. Petota) was analyzed using a database of 6073 georeferenced observations. Wild potatoes occur in 16 countries, but 88% of the observations are from Argentina, Bolivia, Mexico, and Peru. Most species are rare and narrowly endemic: for 77 species the largest distance between two observations of the same species is <100 km. Peru has the highest number of species (93), followed by Bolivia (39). A grid of 50 × 50 km cells and a circular neighborhood with a radius of 50 km to assign points to grid cells was used to map species richness. High species richness occurs in northern Argentina, central Bolivia, central Ecuador, central Mexico, and south and north-central Peru. The highest number of species in a grid cell (22) occurs in southern Peru. To include all species at least once, 59 grid cells need to be selected (out of 1317 cells with observations). Wild potatoes occur between 38° N and 41° S, with more species in the southern hemisphere. Species richness is highest between 8° and 20° S and around 20° N. Wild potatoes typically occur between 2000 and 4000 m altitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号