首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Apoptosis of macrophage foam cells loaded with modified/oxidized lipids is implicated in destabilization of advanced atherosclerotic plaques in humans. Concentration of HNE, main aldehydic product of plasma LDL peroxidation, elevates in atherosclerotic lesions as well as in cultured cells under oxidative stress. Although this reactive aldehyde has been shown to promote apoptosis with the involvement of p38 MAPK and JNK in various mammalian cell lines, roles of B-cell lymphoma 2 (Bcl-2) family proteins remain to be deciphered. We demonstrated that HNE-induced apoptosis was accompanied by concurrent downregulations of antiapoptotic Bcl-x(L) and Mcl-1 as well as upregulation of proapoptotic Bak. Furthermore, phoshorylation of Bcl-2 at Thr56, Ser70, and probably more phosphorylation sites located on N-terminal loop domain associated with HNE-induced apoptosis in both U937 and HeLa cells while ectopic expression of a phospho-defective Bcl-2 mutant significantly attenuated apoptosis. In parallel to this, HNE treatment caused release of proapoptotic Bax from Bcl-2. Pharmacological inhbition of IKK inhibited HNE-induced Bcl-2 phosphorylation. Similarly, silencing IKKα and -β both ended up with abrogation of Bcl-2 phosphorylation along with attenuation of apoptosis. Moreover, both IKKα and -β coimmunoprecipitated with Bcl-2 and in vitro kinase assay proved the ability of IKK to phosphorylate Bcl-2. In view of these findings and considering HNE inhibits DNA-binding activity of nuclear factor-κB (NF-κB) through prevention of IκB phosphorylation/ubiquitination/proteolysis, IKK appears to directly interfere with Bcl-2 activity through phosphorylation in HNE-mediated apoptosis independent of NF-κB signaling.  相似文献   

2.
The aim of the present study was to characterize the effects of chronic nitric oxide synthase (NOS) inhibition on the alterations of regulatory myocardial proteins of intracellular signaling pathways (mitogen-activated protein kinase (MAPK) and Akt kinase cascades) and matrix metalloproteinases (MMP). Chronic NO deficiency (NOD) was induced by NG-nitro-L-arginine methyl ester (L-NAME, 40mg/kg/day, 4 weeks). Protein levels and activation of protein kinases were determined using specific antibodies, activities of MMP were analyzed by zymography in gels containing gelatin as a substrate. The development of NOD was associated with decreased activation of endothelial NOS (eNOS) and down-regulation of protein level of inducible NOS (iNOS). Investigation of kinase pathways revealed that the activation of extracellular signal-regulated kinases (ERK) and the levels of upstream activators of ERK (aFGF, H-Ras) were decreased after L-NAME treatment. Western blot analysis revealed that chronic application of L-NAME also decreased the activation of Akt kinase as compared with control hearts. Study of MMPs showed that in L-NAME-treated rat hearts activities of tissue MMP-2 were decreased. It is concluded that development of NOD resulted in inhibition of ERK and Akt kinase pathways and these changes suggest the involvement of these cascades in responses of myocardium to NOD. The results also point to the possible relationship between ERK and Akt kinase pathways and activation of eNOS and/or MMP-2. Anna Špániková and Petra Šimončíková have contributed equally to the study.  相似文献   

3.
Despite their homology, IκB kinase α (IKKα) and IKKβ have divergent roles in NF-κB signaling. IKKβ strongly activates NF-κB while IKKα can downregulate NF-κB under certain circumstances. Given this, identifying independent substrates for these kinases could help delineate their divergent roles. Peptide substrate array technology followed by bioinformatic screening identified TRAF4 as a substrate for IKKα. Like IKKα, TRAF4 is atypical within its family because it is the only TRAF family member to negatively regulate innate immune signaling. IKKα's phosphorylation of serine-426 on TRAF4 was required for this negative regulation. Binding to the Crohn's disease susceptibility protein, NOD2, is required for TRAF4 phosphorylation and subsequent inhibition of NOD2 signaling. Structurally, serine-426 resides within an exaggerated β-bulge in TRAF4 that is not present in the other TRAF proteins, and phosphorylation of this site provides a structural basis for the atypical function of TRAF4 and its atypical role in NOD2 signaling.  相似文献   

4.
Selective degradation of the IκB kinase (IKK) by autophagy   总被引:1,自引:0,他引:1  
Li D 《Cell research》2006,16(11):855-856
Proteasome-mediated degradation and autophagy are the two major pathways mediating the turnover of cellular proteins. The proteasomal pathway is known to be a highly specific and regulated process mediating the degradation of short-lived proteins such as many important factors involved in cellular signaling. In contrast, it is generally thought that autophagy is rather nonselective as it is responsible for the bulk degradation of long-lived proteins and organelles. Challenging this general view, in this issue of Cell Research, Qing et al. report that selective degradation of the IκB kinase (IKK) triggered by the loss of Hsp90 function is mediated by autophagy [1].  相似文献   

5.
To determine the chemical constituents responsible for pharmacological effects of Inula britannica-F., three specific sesquiterpene lactones in Inula britannica were isolated from chloroform extract and identified, including britannilactone (BL), 1-O-acetylbritannilactone (ABLO), and 1,6-O,O-diacetylbritannilactone (ABLOO). Electrophoretic mobility shift assay (EMSA) was performed to detect the nuclear translocation of nuclear factor-κB (NF-κB) p65. The expressions of IκBα, pIκBα, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), IκB kinase α/β (IKKα/β) and NF-κB kinase (NIK) were detected by Western blot and RT-PCR. We found that acetyl side groups enhanced the inhibitory action of the agents on LPS/IFN-γ-induced iNOS and COX-2 expression. Their inhibiting activity was positive correlation with the acetyl side group number. The effects of LPS/IFN-γ were reversed by ABLOO, and BL without acetyl side groups showed only a weak inhibitory action. Further study indicated that ABLOO markedly inhibited the phosphorylation of IKKβ down to based level, but not IKKα, corresponding with decreased in IκBα degradation and phosphorylation induced by LPS/IFN-γ, resulting in the suppression of NF-κB nuclear translocation and activity. These results suggest that the acetyl moieties add to the lipophilicity, and consequently enhance cellular penetration, so that ABLOO possess the most anti-inflammatory effect and may be a potent lead structure for the development of therapeutic and cytokine-suppressing remedies valuable for the treatment of various inflammatory diseases.  相似文献   

6.
Overexpression of cFLIP protein seems to be critical in the antiapoptotic mechanism of immune escape of human COLO 205 colon adenocarcinoma cells. Actually, cFLIP appears to inhibit the death receptor ligand-mediated cell death. Application of the metabolic inhibitor sodium butyrate (NaBt), short-chain volatile fatty acid, sensitized COLO 205 cells to TNF-α-mediated apoptosis. Western-blot analysis revealed that the susceptibility of human COLO 205 cells to apoptogenic stimuli resulted from time-dependent reduction in cFLIP and simultaneous up-regulation of TNF-R1 protein levels. Additionally, the combined TNF-α and NaBt treatment caused cleavage of Bid and caspase-9 activation, as well as cytochrome c release from mitochondria. Thus, the evidence of this study indicates that NaBt facilitates the death receptor signal evoked by TNF-α. Moreover, NaBt alone initiated intrinsic apoptosis, that in turn was abolished by intracellular BCL-2 delivery. It confirms the involvement of mitochondria in the proapoptotic activity of NaBt. The activation of mitochondrial pathway was substantiated by up-regulated expression of BAK with concomitant reduction of antiapoptotic BCL-xL, XIAP and survivin proteins. These findings suggest that NaBt could represent a good candidate for the new therapeutic strategy aimed to improve chemo- and immunotherapy of colon cancer.  相似文献   

7.
Lin PH  Pan Z  Zheng L  Li N  Danielpour D  Ma JJ 《Cell research》2005,15(3):160-166
NRP-154 is a tumorigenic epithelial cell line derived from the preneoplastic dorsal-lateral prostate of rats. These cells are exquisitely sensitive to TGF-β induced apoptosis. In contrast, we find that NRP-154 cells can sustain overexpression of exogenous Bax protein, which is different from non-tumor cells where Bax functions as a ubiquitous stimulator of apoptosis. NRP-154 cells stably overexpressing Bax show increased sensitivity to TGF-β induced apoptosis. The degree of TGF-β induced apoptosis displays high correlation with cleavage of Bax at the amino-terminus. Our data indicate that prostate cancer cells can host high levels of latent Bax which can be activated through post-translational modification.  相似文献   

8.
9.
10.
11.
TRIM32, which belongs to the tripartite motif (TRIM) protein family, has the RING finger, B-box, and coiled-coil domain structures common to this protein family, along with an additional NHL domain at the C terminus. TRIM32 reportedly functions as an E3 ligase for actin, a protein inhibitor of activated STAT y (PIASy), dysbindin, and c-Myc, and it has been associated with diseases such as muscular dystrophy and epithelial carcinogenesis. Here, we identify a new substrate of TRIM32 and propose a mechanism through which TRIM32 might regulate apoptosis. Our overexpression and knockdown experiments demonstrate that TRIM32 sensitizes cells to TNFα-induced apoptosis. The RING domain is necessary for this pro-apoptotic function of TRM32 as well as being responsible for its E3 ligase activity. TRIM32 colocalizes and directly interacts with X-linked inhibitor of apoptosis (XIAP), a well known cancer therapeutic target, through its coiled-coil and NHL domains. TRIM32 overexpression enhances XIAP ubiquitination and subsequent proteasome-mediated degradation, whereas TRIM32 knockdown has the opposite effect, indicating that XIAP is a substrate of TRIM32. In vitro reconstitution assay reveals that XIAP is directly ubiquitinated by TRIM32. Our novel results collectively suggest that TRIM32 sensitizes TNFα-induced apoptosis by antagonizing XIAP, an anti-apoptotic downstream effector of TNFα signaling. This function may be associated with TRIM32-mediated tumor suppressive mechanism.  相似文献   

12.
The IκB kinase (IKK) complex is the signal integration hub for NF-κB activation. Composed of two serine-threonine kinases (IKKα and IKKβ) and the regulatory subunit NEMO (also known as IKKγ), the IKK complex integrates signals from all NF-κB activating stimuli to catalyze the phosphorylation of various IκB and NF-κB proteins, as well as of other substrates. Since the discovery of the IKK complex components about 15 years ago, tremendous progress has been made in the understanding of the IKK architecture and its integration into signaling networks. In addition to the control of NF-κB, IKK subunits mediate the crosstalk with other pathways, thereby extending the complexity of their biological function. This review summarizes recent advances in IKK biology and focuses on emerging aspects of IKK structure, regulation and function.  相似文献   

13.
Kumar A  Negi G  Sharma SS 《Biochimie》2012,94(5):1158-1165
Inflammation is an emerging patho-mechanism of diabetes and its complications. NF-κB pathway is one of the central machinery initiating and propagating inflammatory responses. The present study envisaged the involvement of NF-κB inflammatory cascade in the pathophysiology of diabetic neuropathy using BAY 11-7082, an IκB phosphorylation inhibitor. Streptozotocin was used to induce diabetes in Sprauge Dawley rats. BAY 11-7082 (1 &; 3 mg/kg) was administered to diabetic rats for 14 days starting from the end of six weeks post diabetic induction. Diabetic rats developed deficits in nerve functions and altered nociceptive parameters and also showed elevated expression of NF-κB (p65), IκB and p-IκB along with increased levels of IL-6 &; TNF-α and inducible enzymes (COX-2 and iNOS). Furthermore, there was an increase in oxidative stress and decrease in Nrf2/HO-1 expression. We observed that BAY 11-7082 alleviated abnormal sensory responses and deficits in nerve functions. BAY 11-7082 also ameliorated the increase in expression of NF-κB, IκB and p-IκB. BAY 11-7082 curbed down the levels of IL-6, TNF-α, COX-2 and iNOS in the sciatic nerve. Lowering of lipid peroxidation and improvement in GSH levels was also seen along with increased expression of Nrf2/HO-1. Thus it can be concluded that NF-κB expression and downstream expression of proinflammatory mediators are prominent features of nerve damage leading to inflammation and oxidative stress and BAY 11-7082 was able to ameliorate experimental diabetic neuropathy by modulating neuroinflammation and improving antioxidant defence.  相似文献   

14.
15.
We recently reported that diacylglycerol kinase (DGK) α enhanced tumor necrosis factor-α (TNF-α)-induced activation of nuclear factor-κB (NF-κB). However, the signaling pathway between DGKα and NF-κB remains unclear. Here, we found that small interfering RNA-mediated knockdown of DGKα strongly attenuated protein kinase C (PKC) ζ-dependent phosphorylation of a large subunit of NF-κB, p65/RelA, at Ser311 but not PKCζ-independent phosphorylation at Ser468 or Ser536. Moreover, knockdown and overexpression of PKCζ suppressed and synergistically enhanced DGKα-mediated NF-κB activation, respectively. These results strongly suggest that DGKα positively regulates TNF-α-dependent NF-κB activation via the PKCζ-mediated Ser311 phosphorylation of p65/RelA.  相似文献   

16.
Qing G  Yan P  Xiao G 《Cell research》2006,16(11):895-901
Autophagic and proteasomal proteolysis are two major pathways for degradation of cellular constituents. Current models suggest that autophagy is responsible for the nonselective bulk degradation of long-lived proteins and organelles while the proteasome specifically degrades short-lived proteins including misfolded proteins caused by the absence of Hsp90 function. Here, we show that the IκB kinase (IKK), an essential activator of NF-κB, is selectively degraded by autophagy when Hsp90 is inhibited by geldanamycin (GA), a specific Hsp90 inhibitor showing highly effective anti-tumor activity. We find that in this case inactivation of ubiquitination or proteasome fails to block IKK degradation. However, inhibition of autophagy by an autophagy inhibitor or knockout of Atg5, a key component of the autophagy pathway, significantly rescues IKK from GA-induced degradation. These findings provide the first evidence that an Hsp90 client may be degraded by a mechanism different from the proteasome pathway and establish a molecular link among Hsp90, NF-κB and autophagy  相似文献   

17.
Several lines of evidence suggest that the IκB kinase (IKK)/nuclear factor-κB (NFκB) axis is required for viability of leukemic cells and is a predictor of relapse in T-cell acute lymphoblastic leukemia (T-ALL). Moreover, many anticancer agents induce NFκB nuclear translocation and activation of its target genes, which counteract cellular resistance to chemotherapeutic drugs. Therefore, the design and the study of IKK-specific drugs is crucial to inhibit tumor cell proliferation and to prevent cancer drug-resistance. Here, we report the anti-proliferative effects induced by BMS-345541 (a highly selective IKK inhibitor) in three Notch1-mutated T-ALL cell lines and in T-ALL primary cells from pediatric patients. BMS-345541 induced apoptosis and an accumulation of cells in the G2/M phase of the cell cycle via inhibition of IKK/NFκB signaling. We also report that T-ALL cells treated with BMS-345541 displayed nuclear translocation of FOXO3a and restoration of its functions, including control of p21Cip1 expression levels. We demonstrated that FOXO3a subcellular re-distribution is independent of AKT and ERK 1/2 signaling, speculating that in T-ALL the loss of FOXO3a tumor suppressor function could be due to deregulation of IKK, as has been previously demonstrated in other cancer types.

It is well known that, differently from p53, FOXO3a mutations have not yet been found in human tumors, which makes therapeutics activating FOXO3a more appealing than others. For these features, BMS-345541 could be used alone or in combination with traditional therapies in the treatment of T-ALL.  相似文献   

18.
19.
Vascular endothelial growth inhibitor (VEGI) is an endogenous inhibitor of endothelial cell growth and a promising candidate for cancer therapy. VEGI is able to inhibit tumor growth by specifically targeting the tumor neovasculature. Increasing the anti-angiogenic potential of this cytokine is of great interest for its therapeutic potential. NF-κB is known to have an integral role in TNF superfamily signaling, acting as a pro-survival factor. A role of VEGI-induced NF-κB activation in endothelial cells has yet to be described. Here we show that suppression of the NF-κB pathway can increase the apoptotic potential of VEGI. We used siRNA to deplete NF-κB or its activator IKK2 from adult bovine aortic endothelial cells. The siRNA treatments diminished VEGI-induced NF-κB activation, evidenced from a reduced extent of NF-κB nuclear translocation and diminished expression of NF-κB-target genes such as interleukins-6 and -1β. The siRNA-treated endothelial cells when exposed to VEGI exhibited a marked decrease in cell viability and a significant increase in apoptosis. These results confirm that VEGI utilizes NF-κB as a pro-survival role factor in endothelial cells. We then examined whether a combination of VEGI with NF-κB inhibitors would constitute a more potential therapeutic regiment. We found that in the presence of the NF-κB inhibitors curcumin or BMS-345541 there was a marked increase in the apoptotic potential of VEGI on endothelial cells. These findings indicate that a combination therapy using VEGI and NF-κB inhibitors could be a potent approach for cancer treatment.  相似文献   

20.
Enterovirus 71 (EV71), a single, positive-stranded RNA virus, has been regarded as the most important neurotropic enterovirus after the eradication of the poliovirus. EV71 infection can cause hand, foot, and mouth disease or herpangina. Cytokine storm with elevated levels of proinflammatory and inflammatory cytokines, including TNF-α, has been proposed to explain the pathogenesis of EV71-induced disease. TNF-α-mediated NF-κB signaling pathway plays a key role in inflammatory response. We hypothesized that EV71 might also moderate host inflammation by interfering with this pathway. In this study, we tested this hypothesis and identified EV71 2C protein as an antagonist of TNF-α-mediated activation of NF-κB signaling pathway. Expression of 2C protein significantly reduced TNF-α-mediated NF-κB activation in 293T cells as measured by gene reporter and gel mobility shift assays. Furthermore, overexpression of TNFR-associated factor 2-, MEK kinase 1-, IκB kinase (IKK)α-, or IKKβ-induced NF-κB activation, but not constitutively active mutant of IKKβ (IKKβ SS/EE)-induced NF-κB activation, was inhibited by 2C protein. These data together suggested that the activation of IKKβ is most likely targeted by 2C; this notion was further strengthened by immunoblot detection of IKKβ phosphorylation and IκBα phosphorylation and degradation. Coimmunoprecipitation and colocalization of 2C and IKKβ expressed in mammalian cells provided compelling evidence that 2C interacts with IKKβ. Collectively, our data indicate that EV71 2C protein inhibits IKKβ activation and thus blocks NF-κB activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号