首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Larvae of the nudibranch Phestilla sibogae are induced to metamorphose by a factor from their adult prey, the coral Porites compressa. Levels of endogenous catecholamines increase 6 to 9 days after fertilization, when larvae become competent for metamorphosis. Six- to nine-day larvae, treated with the catecholamine precursor L-DOPA (0.01 mM for 0.5 h), were assayed for metamorphosis in response to coral inducer and for catecholamine content by high-performance liquid chromatography. L-DOPA treatment caused 20- to 50-fold increases in dopamine, with proportionally greater increases in younger larvae, so that L-DOPA-treated larvae of all ages contained similar levels of dopamine. A much smaller (about twofold) increase in norepinephrine occurred in all larvae. The treatment significantly potentiated the frequency of metamorphosis of 7- to 9-d larvae at low concentrations of inducer. In addition, L-DOPA treatment at 9 d increased aldehyde-induced fluorescence in cells that were also labeled in the controls, and revealed additional cells. However, all labeled cells were consistent with the locations of cells showing tyrosine-hydroxylase-like immunoreactivity. Catecholamines are likely to modulate metamorphosis in P. sibogae, but rising levels of catecholamines around the time of competence are insufficient alone to account for sensitivity to inducer in competent larvae.  相似文献   

4.
Summary Complete neurones were impregnated in the brain of the pulmonate gastropod pond snail, Lymnaea stagnalis L. using the Golgi-Cox method. Mapping of small to medium sized neurones identified in living preparations by the position of the perikarya was possible. Simple monopolar and bifurcating monopolar neurones with varying lateral patterns of short fine fibres were common in the pond snail brain. Larger neurones have more complex and numerous branches originating from axons close to the perikarya than smaller ones. Stem processes originating on the cell body were observed on neurones above 30 in somal diameter. Possible sites for the location of chemical synapses were suggested. Functional types of neurones were difficult to separate on morphological grounds. Giant or very large neurones are small in number in pond snail ganglia, compared with medium or small neurones.The authors wish to thank Mr. Colin Atherton for photographic assistance and the U.K. Science Research Council for a grant to P. R. B.  相似文献   

5.
The pedal ganglia of the terrestrial gastropod Ariolimax contain junctions between nerve fibers which are shown to be preferential points of fatigue and which exhibit facilitation (summation) of preganglionic impulses to produce a postganglionic spike. These characteristics in conjunction with others previously reported (reversible susceptibility to nicotine, convergence of preganglionic impulses, and inhibition of transmission through setting up a refractory state in the postganglionic fiber) are considered sufficient to indicate synaptic transmission in the pedal ganglia. The mean conduction velocity of the fastest fibers in the pedal nerves is 0.52 meter per second for preganglionic and 0.50 meter per second for postganglionic fibers at 7.56°C. The conduction rates at 21.76°C. are respectively 0.80 meter per second and 0.83 meter per second. The mean ganglionic delay is 0.033 second at 7.56°C. and 0.019 second at 21.76°C. The mean Q10's for conduction velocity are thus 1.37 for preganglionic and 1.42 for postganglionic fibers. The mean Q10 for ganglionic delay is 1.49. If the assumption is made that the Q10 for ganglionic delay is that of a limiting reaction, this figure then represents a value below which the Q10 for synaptic delay is statistically improbable.  相似文献   

6.
Acetylcholine (ACh) is one of the main signals regulating nitric oxide synthase (NOS) expression and nitric oxide (NO) biosynthesis in mammals. However, few comparative studies have been performed on the role of ACh on NOS activity in non-mammalian animals. We have therefore studied the cholinergic control of NOS in the snail Helix pomatia and compared the effects of ACh on NO synthesis in the enteric nervous system of the snail and rat. Analyses by the NADPH-diaphorase reaction, immunocytochemistry, purification with ion-exchange chromatography, Western-blot, and quantitative polymerase chain reaction have revealed the expression of neuronal NOS in the rat intestine and of a 60-kDa subunit of NOS in the enteric nerve plexus of H. pomatia. In H. pomatia, quantification of the NO-derived nitrite ions has established that NO formation is confined to the NOS-containing midintestine. Nitrite production can be elevated by L-arginine but inhibited by Nω-nitro-L-arginine. In rats, ACh moderately elevates nitrite production, whereas ACh, the nicotinic receptor agonists (nicotine, acetyl thiocholine iodide, metacholine) and the cholinesterase inhibitor eserine reduce enteric nitrite formation in snails. The nicotinic receptor antagonist tubocurarine also provokes nitrite liberation, whereas the muscarinic receptor agonists or antagonists have no significant effect in snails. In the presence of EDTA or tetrodotoxin, ACh fails to inhibit nitrite production. In pharmacological studies, we have found that ACh contracts the midintestinal muscles and, in snails, simultaneously reduces the antagonistic muscle relaxant effect of L-arginine. Our experiments provide the first evidence for an inhibitory regulation of neuronal NO synthesis by ACh in an invertebrate species. This article is dedicated to Dr. Gábor Hollósi on the 50th anniversary of his graduation and being a teacher at the University of Debrecen.  相似文献   

7.
Summarized literature and experimental author's data are presented concerning the structure of the nervous system and identification of individual neurons in the snail Helix lucorum. Information about especially well-known neurons is given in a table, maps of the ganglia are presented altogether with the results of retrograde staining of different cerebral and suboesophageal nerves. Are given the references concerning morphology of the central nervous system of the snail and identifiable neurons.  相似文献   

8.
9.
Abstract. Laser scanning confocal microscopy is used to reveal the changes that occur in the RFamide-positive nerve net as a free-swimming, solid hydrozoan planula larva is transformed into a sessile, hollow, young polyp. Seven stages of development in Pennaria tiarella are described: planula competent to metamorphose, attaching planula, disc, pawn, crown, developing polyp, and developed primary polyp. The RFamide-positive nervous system undergoes dramatic reorganization during metamorphosis: (1) larval neurons degenerate; (2) new neurons differentiate and reform a nerve net; and (3) the overall distribution pattern of the nervous system changes. This study confirms earlier observations on RFamide-positive neurons of Hydractinia which also show the loss of these cells after the onset of metamorphosis.  相似文献   

10.
Larvae of the nudibranch mollusc Phestilla sibogae metamorphose in response to a small organic compound released into seawater by their adult prey, the scleractinian coral Porites compressa. The transformations that occur during metamorphosis, including loss of the ciliated velum (swimming organ), evacuation of the shell, and bodily elongation, are thought to be controlled by a combination of neuronal and neuroendocrine activities. Activation of peripheral chemosensory neurons by the metamorphosis-inducing compound should therefore elicit changes within the central nervous system. We used extracellular recording techniques in an attempt to detect responses of neurons within the larval central ganglia to seawater conditioned by P. compressa, to seawater conditioned by the weakly inductive coral Pocillopora damicornis, and to non-inductive seawater controls. The activity patterns within the nervous systems of semi-intact larvae changed in response to both types of coral exudates. Changes took place in two size classes of action potentials, one of which is known to be associated with velar ciliary arrests.  相似文献   

11.
Xenopus laevis tadpoles undergoing metamorphosis were used to study the turnover of cerebrosides and sulfatides in the nervous system of the frog. Tadpoles at the beginning of metamorphosis were treated by intraperitoneal injection with [U-14C]glucose and radioactivity incorporated into galactosphingolipids of brain and tail was measured after various times. The specific activity of brain cerebrosides increased rapidly for the first 24 hr after injection, reached a plateau after 48hr, and then declined 40% by 7 days. The specific activity of sulfatides changed somewhat more slowly. Hydroxy fatty acid-containing galactosphingolipids had nearly twice the specific activity compared with their nonhydroxy counterparts in brain. Despite the complete regression of tail nerve cord, metabolism of glycosphingolipids in this tissue also indicated active synthesis as well as degradation during this period. The specific activities of these lipids were similar and all reached a peak 24 hr after injection. Examination of the components of these galactosphingolipids disclosed that only a small fraction (7–25%) of the radioactivity was in the galactose moiety in both brain and tail. The ratios of the radioactivity in fatty acid to that in the sphingoid base were much higher for hydroxycerebroside and hydroxysulfatide than for the nonhydroxy isomers.Abbreviations used: Cerebroside is N-acyl, 1-0--galactosyl derivative of sphingoid base (D-erythro-2-amino-alkyl-1,3-diol) Sulfatide is the galactose-3-sulfated derivative of cerebroside. The prefixes hydroxy and nonhydroxy indicate cerebroside or sulfatide containing -hydroxy and nonhydroxy fatty acids, respectively  相似文献   

12.
The development of new, adult-specific axonal pathways in the central nervous system (CNS) of insects during metamorphosis is still largely uncharacterized. Here we used axonal labeling with DiI to describe the timing and pattern of growth of sensory axons originating in the wing of Drosophila as they establish their adult projection pattern in the CNS during pupal life. The wing of Drosophila carries a small number of readily identifiable sensory organs (sensilla) whose neurons are located in the periphery and whose axons travel along specific routes within the adult CNS. The neurons are born and undergo axonogenesis in a characteristic order. The order of axon arrival in the CNS appears to be the same as that of their development in the periphery. Within the CNS, the formation of four prominent axon bundles leading to distant termination sites is followed by the formation of a compact axon termination site near the point of wing nerve entry into the CNS. This sensillum-specific pattern persists into adulthood without discernible modification. We also find a small number of axons filled with DiI prior to the formation of the four permanent bundles. We have only been able to fill them for a few hours in early pupal life and therefore consider them to be transient. The bundles of wing sensory axons travel within tracts that contain other axons as well. Using immunocytochemistry, the tracts start to be histologically identifiable at around 12 h after pupariation (AP), and grow substantially as metamorphosis proceeds. Wing sensory neurons are found in the tracts by 18–20 h AP and the full adult pattern is established by 48 h AP. When sensory axons first enter the CNS, they fan out in the region where their appropriate tracts are located, but they do not wander extensively. They quickly form bundles that become increasingly compact over time. Calculations show that the rate of axon extension within the CNS varies from bundle to bundle and is equal to or greater than that of the same axons growing through wing tissue. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
The actions of steroid hormones on vertebrate and invertebrate nervous systems include alterations in neuronal architecture, regulation of neuronal differentiation, and programmed cell death. In particular, central nervous system (CNS) metamorphosis in insects requires a precise pattern of exposure to the steroid molting hormone 20-hydroxyecdysone (ecdysterone). To test whether the effects of steroid hormones on the insect nervous system are due to changes in patterns of gene expression, we examined Drosophila mutants of the ecdysterone-regulated locus, the Broad Complex (BR-C). This report documents aspects of CNS reorganization which are dependent on BR-C function. During wild-type metamorphosis, CNS components undergo dramatic morphogenetic movements relative to each other and to the body wall. These movements, in particular, the separation of the subesophageal ganglion from the thoracic ganglion, the positioning of the developing visual system, and the fusion of right and left brain hemispheres, are deranged in BR-C mutants. In addition, a subset of mutants shows disorganization of optic lobe neuropil, both within and among optic lobe ganglia. Optic lobe disorganization is found in mutants of the br and l(1)2Bc complementation groups, but not in those of the rbp complementation group. This suggests that the three complementation groups of this complex locus represent distinct but overlapping functions necessary for normal CNS reorganization. This study demonstrates that ecdysterone-regulated gene expression is essential for CNS metamorphosis, illustrating the utility of Drosophila as a model system for investigating the genetic basis of steroid hormone action on the nervous system.  相似文献   

14.
The possible involvement of the L-arginine-containing Phe-met-arg-phe (FMRF)-amide (FMRFa) in neuronal nitric oxide (NO) biosynthesis was studied in a gastropod species. We found NADPH-diaphorase-positive neurons and FMRFa-containing fibers in close proximity in the enteric nervous system. Administration of L-arginine and FMRFa induced quantitatively similar nitrite production in both intact intestinal tissues and tissue homogenates. These changes could be prevented by the presence of NOARG (an NO synthase inhibitor). Neither chemically modified FMRFa (D-arginine instead of L-arginine) nor amino acid constituents of FMRFa (methionine, phenylalanine) affected basal nitrite production. FMRFa-induced alterations were reduced in the presence of Na+ channel blockers (tetrodotoxin, amiloride, lidocaine), the Na+/K+ATPase inhibitor ouabain, or protease inhibitors (leupeptine, pepstatine-a). FMRFa and its amino acid constituents were analyzed by paper chromatography. When FMRFa was added to tissue homogenates, the peptide was eliminated within 1–2 min, whereas methionine, phenylalanine, arginine, and citrulline levels were elevated simultaneously. We tested the effects of FMRFa, L-arginine, and NOARG on intestinal contractile activity. FMRFa relaxed the intestine for 1–2 min and then induced contractions for 20–40 min. In the presence of NOARG, no relaxant effect of FMRFa was recorded. As administration of L-arginine strongly inhibits the mechanical activity of the intestinal muscle, NO production presumably plays a substantial role in the action of FMRFa, at least in the initial phase. Our biochemical data indicate a direct involvement of FMRFa in NO biosynthesis. FMRFa might be hydrolyzed by extracellular peptidases and then the locally released arginine might be transported into the cells and broken-down to produce NO. Depolarization-induced NO production attributable to the activation of amiloride-sensitive Na+ channels might also be involved.  相似文献   

15.
 Using electron microscopy we demonstrate that degenerating neurons and cellular debris resulting from neuronal reorganization are phagocytosed by glial cells in the brain and nerve cord of the fruitfly Drosophila melanogaster during the first few hours following pupariation. At this stage several classes of glial cells appear to be engaged in intense phagocytosis. In the cell body rind, neuronal cell bodies are engulfed and phagocytosed by the same glial cells that enwrap healthy neurons in this region. In the neuropil, cellular debris in tracts and synaptic centres resulting from metamorphic re-differentiation of larval neurons is phagocytosed by neuropil-associated glial cells. Phagocytic glial cells are hypertrophied, produce large amounts of lysosome-like bodies and contain a large number of mitochondria, condensed chromatin bodies, membranes and other remains from neuronal degeneration in phagosomes. Received: 23 January 1996 / Accepted in revised form: 21 May 1996  相似文献   

16.
Metamorphosis of the sea lamprey, Petromyzon marinus, is a true metamorphosis. The larval lamprey is a filter-feeder who dwells in the silt of freshwater streams and the adult is an active predator found in large lakes or the sea. The transformation usually occurs in the fifth or sixth year of life. Enlargement of the eye has been long accepted as a distinctive indication of metamorphosis in the sea lamprey, but it had been thought that this was because eye development in the larva was arrested after the formation of only the small central region. Recent studies indicate that all of the retina begins its development in the larva and that ganglion, amacrine, and horizontal cells differentiate in the peripheral retina of the larva. Retinal development is arrested during the premetamorphic period, to be resumed during metamorphosis. Metamorphic contributions include the differentiation of photoreceptor and bipolar cells. With the early appearance of ganglion cells, retinal pathways to the thalamus and tectum are established in larvae, as is a centripetal pathway. Tectal development spans the larval period but a spurt in tectal growth and differentiation is correlated with the completion of the retinal circuitry late in metamorphosis. The metamorphic changes in retina and tectum complete the functional development of the visual system and provide for the adult lamprey's predatory and reproductive behavior.  相似文献   

17.
18.
19.
20.
The swimming larvae of the chordate ascidians possess a dorsal hollowed central nervous system (CNS), which is homologous to that of vertebrates. Despite the homology, the ascidian CNS consists of a countable number of cells. The simple nervous system of ascidians provides an excellent experimental system to study the developmental mechanisms of the chordate nervous system. The neural fate of the cells consisting of the ascidian CNS is determined in both autonomous and non-autonomous fashion during the cleavage stage. The ascidian neural plate performs the morphogenetic movement of neural tube closure that resembles that in vertebrate neural tube formation. Following neurulation, the CNS is separated into five distinct regions, whose homology with the regions of vertebrate CNS has been discussed. Following their larval stage, ascidians undergo a metamorphosis and become sessile adults. The metamorphosis is completed quickly, and therefore the metamorphosis of ascidians is a good experimental system to observe the reorganization of the CNS during metamorphosis. A recent study has shown that the major parts of the larval CNS remain after the metamorphosis to form the adult CNS. In contrast to such a conserved manner of CNS reorganization, most larval neurons disappear during metamorphosis. The larval glial cells in the CNS are the major source for the formation of the adult CNS, and some of the glial cells produce adult neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号