首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Competition for floral resources is a key force shaping pollinator communities, particularly among social bees. The ability of social bees to recruit nestmates for group foraging is hypothesized to be a major factor in their ability to dominate rich resources such as mass-flowering trees. We tested the role of group foraging in attaining dominance by stingless bees, eusocial tropical pollinators that exhibit high diversity in foraging strategies. We provide the first experimental evidence that meliponine group foraging strategies, large colony sizes and aggressive behavior form a suite of traits that enable colonies to improve dominance of rich resources. Using a diverse assemblage of Brazilian stingless bee species and an array of artificial “flowers” that provided a sucrose reward, we compared species’ dominance and visitation under unrestricted foraging conditions and with experimental removal of group-foraging species. Dominance does not vary with individual body size, but rather with foraging group size. Species that recruit larger numbers of nestmates (Scaptotrigona aff. depilis, Trigona hyalinata, Trigona spinipes) dominated both numerically (high local abundance) and behaviorally (controlling feeders). Removal of group-foraging species increased feeding opportunities for solitary foragers (Frieseomelitta varia, Melipona quadrifasciata and Nannotrigona testaceicornis). Trigona hyalinata always dominated under unrestricted conditions. When this species was removed, T. spinipes or S. aff. depilis controlled feeders and limited visitation by solitary-foraging species. Because bee foraging patterns determine plant pollination success, understanding the forces that shape these patterns is crucial to ensuring pollination of both crops and natural areas in the face of current pollinator declines.  相似文献   

2.
Social information is widely used in the animal kingdom and can be highly adaptive. In social insects, foragers can use social information to find food, avoid danger, or choose a new nest site. Copying others allows individuals to obtain information without having to sample the environment. When foragers communicate information they will often only advertise high-quality food sources, thereby filtering out less adaptive information. Stingless bees, a large pantropical group of highly eusocial bees, face intense inter- and intra-specific competition for limited resources, yet display disparate foraging strategies. Within the same environment there are species that communicate the location of food resources to nest-mates and species that do not. Our current understanding of why some species communicate foraging sites while others do not is limited. Studying freely foraging colonies of several co-existing stingless bee species in Brazil, we investigated if recruitment to specific food locations is linked to 1) the sugar content of forage, 2) the duration of foraging trips, and 3) the variation in activity of a colony from 1 day to another and the variation in activity in a species over a day. We found that, contrary to our expectations, species with recruitment communication did not return with higher quality forage than species that do not recruit nestmates. Furthermore, foragers from recruiting species did not have shorter foraging trip durations than those from weakly recruiting species. Given the intense inter- and intraspecific competition for resources in these environments, it may be that recruiting species favor food resources that can be monopolized by the colony rather than food sources that offer high-quality rewards.  相似文献   

3.
Data on pollen load capacity and flower constancy are discussed for nine stingless bee species. The foragers present high levels of flower constancy and often visit only one flower type (on average 97% of bee foragers), rarely a few flower types (on average 3% of bee foragers), during the same foraging trip. The latter foragers exhibit no tendencies for choosing similar sources, related either to flower type or to pollen type. Pollen load capacity (the ratio between pollen load weight/worker weight) decreases as forager body weight increases, so it is larger in smaller stingless bees species and smaller in larger ones. Nevertheless, it seems that specific load capacity also depends on pollen types.  相似文献   

4.
The allocation of foragers in red wood ants   总被引:1,自引:0,他引:1  
Abstract. 1. We studied how colonies of the red wood ant, Formica polyctena , adjust the numbers of foragers allocated to different foraging trails. In a series of field experiments, foragers were marked and transferred from one nest to another, related nest, where they joined the foraging force. Transferred workers acted as a reserve of uncommitted, available foragers.
2. Previous work shows that each individual forager habitually uses one trail. We found that for an uncommitted forager, the influence of recruitment initially is stronger than that of directional fidelity. Transferred workers were likely to use trails leading to new food sources. When transferred to a new nest, foragers were not likely to use a trail in the same direction as their original trail in the donor nest.
3. After a week, transferred foragers tended to develop route fidelity. Even after bait was no longer present, they continued to use the trail that had formerly led to a bait source.
4. We examined how colonies adjust numbers on a trail by experimentally depleting some trails. Colonies usually did not compensate for depletion: foragers were not recruited to depleted trails.
5. In general, the dynamics of foraging in this species facilitate a consistent foraging effort rather than rapid adjustments of forager allocation.  相似文献   

5.
Novice foragers of social bees have to decide what food commodity to collect when they start foraging for the first time. In this decision making process two types of factors are involved: internal factors (the response threshold) and external factors (environmental and colony conditions). In this study we will focus on the importance of two external factors, pollen storage level and information from experienced foragers about food availability in the field, on the initial commodity choice of foragers of the stingless bee species Plebeia tobagoensis. We also studied the effect of the initial choice of individuals on their subsequent foraging career. This study was performed in a closed greenhouse compartment, where food availability and colony condition could be controlled. Information on food availability in the field from experienced foragers and pollen storage level both greatly influenced the initial commodity choice of individuals, with more choices for the commodity communicated by experienced foragers or lacking in storage. The initial choice of foragers is of importance for their future foraging career, although a substantial proportion of foragers did switch between food commodities. Because of the ability of novice foragers to become flexibly distributed over foraging tasks, social bees are able to react to changes in their environment without directly having to decrease foraging effort devoted to other foraging tasks. This, in combination with individual flexibility during foraging careers makes it possible for colonies of P. tobagoensis to forage efficiently in an ever-changing environment. Received 7 November 2005; revised 12 January 2006; accepted 16 February 2006.  相似文献   

6.
Nestmate foraging activation and interspecific variation in foraging activation is poorly understood in bumble bees, as compared to honey bees and stingless bees. We therefore investigated olfactory information flow and foraging activation in the New World bumble bee species, Bombus impatiens. We (1) tested the ability of foragers to associate forager-deposited odor marks with rewarding food, (2) determined whether potential foragers will seek out the food odor brought back by a successful forager, and (3) examined the role of intranidal tactile contacts in foraging activation. Bees learned to associate forager-deposited odor marks with rewarding food. They were significantly more attracted to an empty previously rewarding feeder presented at a random position within an array of eight previously non-rewarding feeders. However, foragers did not exhibit overall odor specificity for short-term, daily floral shifts. For two out of three tested scents, activated foragers did not significantly prefer the feeder providing the same scent as that brought back by a successful forager. Finally, bees contacted by the successful forager inside the nest were significantly more likely to leave the nest to forage (38.6% increase in attempts to feed from empty feeders) than were non-contacted bees. This is the first demonstration that tactile contact, a hypothesized evolutionary basal communication mechanism in the social corbiculate bees, is involved in bumble bee foraging activation. Received 4 September 2007; revised 30 May 2008; accepted 15 July 2008.  相似文献   

7.
Summary A numerical model of an eusocial colony foraging for food showed that, for each set of values of resource density, resource size and recruitment system employed, a given optimal proportion of scouts in the colony maximize the amount of resources retrieved by a colony during a fixed period. The model predicts that ants using mass recruitment systems should have larger colonies with small foragers, and should forage on large food sources. Retrieval of small food sources by small colonies is best achieved with large workers using individual foraging strategies. For mass foragers, several food sources are best retrieved using democratic decision-making systems in recruitment, whereas for very large food sources at very low mean food patch density, autocratic decision-making systems are optimal. Some of the experimental evidence available is discussed in the light of these findings, as they confirm the prediction that large colonies with small workers have mass recruitment systems, whereas workers of small colonies with large workers are generally lone foragers.  相似文献   

8.
We investigated field-based recruitment via visual, chemical and acoustic cues provided by conspecific wasps on carbohydrate feeders in Vespula koreensis. A wild colony nest was excavated and artificially installed in a field site. Naïve foragers were individually marked and trained to an experimental feeder. We conducted three separate experiments in which foragers were presented with feeder dishes with different cue intensities. For the first, a different number of decoys were posed as if feeding (visual cue). In the second, dishes had been previously visited by different numbers of individuals, thus presenting different concentrations of a possible food site marking substance (chemical cue). In the third, each dish was placed in front of a covered flask with a different number of nestmates inside (acoustic cue combined with body-odor cue). We observed no social facilitation or social inhibition due to any of the experimental cues. Previous studies in Vespula species have shown a variety of foraging strategies ranging from local enhancement to local inhibition. Field-based recruitment mechanisms in yellowjackets may have evolved independently in different lineages.  相似文献   

9.
Within a rewarding floral patch, eusocial bee foragers frequently switch sites, going from one flower to another. However, site switching between patches tends to occur with low frequency while a given patch is still rewarding, thus reducing pollen dispersal and gene flow between patches. In principle, forager switching and gene flow between patches could be higher when close patches offer similar rewards. We investigated site switching during food recruitment in the stingless bee Scaptotrigona mexicana . Thus, we trained three groups of foragers to three feeders in different locations, one group per location. These groups did not interact each other during the training phase. Next, interaction among trained foragers was allowed. We found that roughly half of the foragers switched sites, the other half remaining faithful to its training feeder. Switching is influenced by the presence of recruitment information. In the absence of recruitment information (bees visiting and recruiting for feeders), employed foragers were site specific. Foragers only switched among feeders that were being visited and recruited to. Switching was not caused by learned aversion to experimental handling. Switching in response to recruitment could provide a fitness benefit to the colony by facilitating rapid switching among exploited patches and provide a benefit of increasing plant gene flow between patches.  相似文献   

10.
Abstract 1. The eusocial corbiculate bee tribes comprise the Apini (honey bees), Bombini (bumble bees), and Meliponini (stingless bees). Honey bee foragers ( Apis ) transfer nectar to receiver bees within the nest. This is an example of task partitioning, in which a task is split into sub-tasks connected by material transfer. Nectar transfer does not occur in Bombini. Although it is reported in some species of Meliponini, it has not been subject to detailed study.
2. Nectar transfer was investigated in five genera of Meliponini from Yucatan, Mexico ( Melipona , Trigona , Scaptotrigona , Nannotrigona , and Plebeia ). Nectar transfer occurred in all species and for > 99% of foragers. Multiple transfer, in which a forager unloads nectar to more than one receiver, occurred but at a lower level than in Apis . In M. beecheii , multiple transfer was associated strongly with putative recruitment dances.
3. The data provide some support for the hypothesis that task partitioning is favoured by large colony size, in that the Meliponini never have small colonies because colonies are swarm founded. This ensures that colonies are always large enough to prevent delays in finding a transfer partner imposing high costs. Further tests of this hypothesis are suggested.
4. Viewed in a phylogenetic context, the most parsimonious interpretation is that nectar transfer evolved once in the clade (Apini + Meliponini).  相似文献   

11.
Signals that are perceived over long distances or leave extended spatial traces are subject to eavesdropping. Eavesdropping has therefore acted as a selective pressure in the evolution of diverse animal communication systems, perhaps even in the evolution of functionally referential communication. Early work suggested that some species of stingless bees (Hymenoptera, Apidae, Meliponini) may use interceptive olfactory eavesdropping to discover food sources being exploited by competitors, but it is not clear if any stingless bee can be attracted to the odour marks deposited by an interspecific competitor. We show that foragers of the aggressive meliponine bee, Trigona spinipes, can detect and orient towards odour marks deposited by a competitor, Melipona rufiventris, and then rapidly take over the food source, driving away or killing their competitors. When searching for food sources at new locations that they are not already exploiting, T. spinipes foragers strongly prefer M. rufiventris odour marks to odour marks deposited by their own nest-mates, whereas they prefer nest-mate odour marks over M. rufiventris odour marks at a location already occupied by T. spinipes nest-mates. Melipona rufiventris foragers flee from T. spinipes odour marks. This olfactory eavesdropping may have played a role in the evolution of potentially cryptic communication mechanisms such as shortened odour trails, point-source only odour marking and functionally referential communication concealed at the nest.  相似文献   

12.
《Journal of Asia》2022,25(2):101882
Honey bees and stingless bees are generalist visitors of several wild and cultivated plants. They forage with a high degree of floral fidelity and thereby help in the pollination services of those plants. We hypothesized that pollination efficiency might be influenced by flowering phenology, floral characteristics, and resource collection modes of the worker bees. In this paper, we surveyed the foraging strategies of honey bees (Apis cerana, Apis dorsata, and Apis florea) and stingless bees (Tetragonula iridipennis) concerning their pollination efficiencies. Bees showed different resource gathering strategies, including legitimate (helping in pollination as mixed foragers and specialized foragers) and illegitimate (serving as nectar robbers and pollen thieves) types of flower visitation patterns. Foraging strategies are influenced by the shape of flowers, the timing of the visitation, floral richness, and bee species. Honey bees and stingless bees mainly acted as legitimate visitors in most plants studied. Sometimes honey bees served as nectar robbers in tubular flowers and stingless bees as pollen thieves in large-sized flowers. Among the legitimate categories, mixed foragers have a comparatively lower flower visitation rate than the specialized nectar and pollen foragers. However, mixed foragers have greater abundance and higher values of the single-visit pollination efficiency index (PEi) than nectar and pollen foragers. The value of the combined parameter ‘importance in pollination (PI)’ was thus higher in mixed foragers than in nectar and pollen foragers.  相似文献   

13.
Summary We examine how cost and benefit components of resource profitability affect recruitment in the giant tropical ant, Paraponera clavata. To vary resource profitability, we changed the quantity of artificial nectar baits presented to foragers and the distance of nectar baits from the nest. Both distance to and amount of resource affected quantitative aspects of recruitment. At increased distances foragers were less likely to recruit, and fewer workers were recruited to the resource area. The amount of nectar affected the tendency of foragers to recruit, but had no effect on the number of ants recruited. Variation in resource distance was also associated with qualitative changes in recruitment strategy. Foragers at distant sites recruited from the canopy rather than from the nest, and often transferred nectar to other workers for transport to the nest. Nectar transfer and extra-nidal recruitment significantly reduced the time required for resource collection. It may also have increased the ability of workers to specialize in specific foraging tasks. A portion of the colony's foraging force specialized spatially by remaining in distant foraging areas without returning to the nest. The flexible recruitment system of P. clavata increases colonial net energetic gain rates by concentrating foraging effort on resources yielding the highest net energetic rewards, and increases the competitive abilities of individual colonies at resource sites by decreasing collection times.  相似文献   

14.
1. The distribution of consumers among resources (trophic interaction network) may be shaped by asymmetric competition. Dominance hierarchy models predict that asymmetric interference competition leads to a domination of high quality resources by hierarchically superior species. 2. In order to determine the competitive dominance hierarchy and its effect on flower partitioning in a local stingless bee community in Borneo, interspecific aggressions were tested among eight species in arena experiments. 3. All species tested were strongly mutually aggressive in the arena, and the observed interactions were often lethal for one or both opponents. Aggression significantly increased with body size differences between fighting pairs and was asymmetric: larger aggressors were superior over smaller species. Additional aggression tests involved dummies with surface extracts, and results suggest that species‐ and colony‐specific surface profiles are important in triggering the aggressive behaviour. 4. Sixteen stingless bee species were observed foraging on 41 species of flowering plants. The resulting bee–flower interaction network showed a high degree of generalisation (network‐level specialisation H2’ = 0.11), corresponding to a random, opportunistic distribution of bee species among available flower species. 5. Aggressions on flowers were rare and only occurred at a low level. The dominance hierarchy obtained in the arena experiments did not correlate significantly with plant quality, estimated as the number of flowers per plant or as total bee visitation rate. 6. Our findings suggest that asymmetries in interference competition do not necessarily translate into actual resource partitioning in the context of complex interacting communities.  相似文献   

15.
In this study we evaluated the effects of the biorational pesticide, Spinosad (GF-120 formulation), on foraging behavior in the stingless bee Plebeia moureana (Ayala). Several foragers were individually trained to collect an unscented 1.0 M sucrose solution (31% sucrose wt:wt) from a blue plate in one arm of a Y-tube maze. The other arm offered plain water on a yellow plate. After 20-30 visits to the setup, the sucrose solution was exchanged for a sucrose solution mixed with one of five concentrations of GF-120 and 30 consecutive choices of each bee were recorded. Interestingly, the foragers collected the sucrose solution with GF-120 at all concentrations. Our results show that: 1) the GF-120 formulation, when applied at the recommended concentration and mixed with food, does not discourage engaged foragers and, 2) foraging behavior over time is not significantly impaired by the continuous collection of GF-120.  相似文献   

16.
Abstract. 1. The allocation of honey bee foragers among food patches is a result of decisions made by individual bees that are based on internal and external cues.
2. Decision-making processes are often based on internal thresholds. For example, if the quality of the food source is assessed by a forager as exceeding its internal threshold, the bee will continue foraging on that food source.
3. It is often assumed that all individuals have the same threshold and therefore use the same thresholds in decision-making, but because the honey bee queen mates with 12–30 males, the workers within a colony are genetically heterogeneous. Thus, the thresholds used by individual bees may be genetically variable within a colony.
4. Models of colony-level foraging behaviour of honey bees suggest that the rate of abandoning food sources is a critical parameter affecting foraging success. Moreover, these models show that variance among subfamilies in their abandonment rates may increase the colony's foraging efficiency.
5. Experimental data showing the relationship between the probability of abandoning a food source and its profitability are lacking, as is information on any variation in abandonment rates among subfamilies.
6. Abandonment rates were determined experimentally for four honey bee families for seven different sucrose concentrations. The results showed that abandonment rates appear to be invariant among (sub)families. The importance of forager fidelity to declining food sources is discussed with respect to foraging efficiency in a changing environment.  相似文献   

17.
Aggressive interactions, foraging behavior, habitat use and diet were studied in sympatric populations of white-sported char,Salvelinus leucomaenis, and Dolly Varden,Salvelinus malma, in a Japanese mountain stream. Underwater observations on individuals of both species revealed two distinct behavioral regimes: aggressive drift foragers and non-aggressive benthos foragers. Aggressive drift foragers defended partial territories around focal points from which they made forays to capture invertebrates drifting in the water column. Non-aggressive benthos foragers cruised around and beneath cobble in large foraging ranges that overlapped each other. Intra- and interspecific, size-dependent dominance hierarchies were recognized among aggressive drift foragers, whereas non-aggressive benthos foragers showed no such relationships. Terrestrial invertebrates were the most abundant prey in the diets of drift foragers, whereas a very small proportion of the diet of benthos foragers was made up of these taxa. Benthos foragers showed more complex diet composition than drift foragers. These results suggest that non-aggressive benthos foragers may avoid not only interference but also exploitative competition by using alternative foraging tactics. The proportion of drift foragers to benthos foragers among white-spotted char was more than 35 times that among Dolly Varden. The significant difference in the proportion of each species using the two types of foraging strategy results in interspecific food segregation in sympatric populations.  相似文献   

18.
All members of the solitary bee species Osmia lignaria (the orchard bee) forage upon emergence from their natal nest cell. Conversely, in the honey bee, days-to-weeks of socially regulated behavioral development precede the onset of foraging. The social honey bee's behavioral transition to foraging is accompanied by neuroanatomical changes in the mushroom bodies, a region of the insect brain implicated in learning. If these changes were general adaptations to foraging, they should also occur in the solitary orchard bee. Using unbiased stereological methods, we estimated the volume of the major compartments of the mushroom bodies, the neuropil and Kenyon cell body region, in adult orchard bees. We compared the mushroom bodies of recently emerged bees with mature bees that had extensive foraging experience. To separate effects of general maturation from field foraging, some orchard bees were confined to a cage indoors. The mushroom body neuropil of experienced field foragers was significantly greater than that of both recently emerged and mature caged orchard bees, suggesting that, like the honey bee, this increase is driven by outdoor foraging experience. Unlike the honey bee, where increases in the ratio of neuropil to Kenyon cell region occur in the worker after emerging from the hive cell, the orchard bee emerged from the natal nest cell with a ratio that did not change with maturation and was comparable to honey-bee foragers. These results suggest that a common developmental endpoint may be reached via different development paths in social and solitary species of foraging bees.  相似文献   

19.
  1. The tropical stingless bees have evolved intricate communication systems to recruit nestmates to food locations. Some species are able to accurately communicate the location of food, whereas others simply announce the presence of food in the environment.
  2. Plebeia droryana is a tiny Neotropical stingless bee that, until recently, was thought to use a solitary foraging strategy, that is without the use of a recruitment communication system. However, recent research has indicated that P. droryana might be able to recruit nestmates to specific food source locations.
  3. We tested this by studying whether foragers can guide nestmates in the direction and the distance of artificial feeders placed in the vicinity of the colony. We trained bees to a scented sucrose solution feeder at 10 m and placed different feeders either in different directions (experiment 1) or in different distances (experiment 2). We found that P. droryana directs newcomers in the right direction, but distance information does not seem to be communicated.
  4. Moreover, we then tested whether newcomers use chemical and visual cues originating from nestmates foraging at the food source, but found no evidence for the use of these social cues provided by conspecifics.
  5. The potential mechanism that P. droryana may use to orient recruits toward the food source, however, remains unknown and requires further study.
  相似文献   

20.
Nestmate recognition was studied in the Southeast Asian stingless beeTrigona (Tetragonula) minangkabau, a species in which worker oviposition has not been observed in queenright or queenless colonies. When conspecific non-nestmate foragers from queenright and queenless colonies were introduced to the observed colony, they were all rejected by guards. Foragers of a different species (Trigona (Tetragonisca) angustula) were also completely rejected. However, conspecific non-nestmate callows were accepted as often as were nestmate callows, although guards recognized the difference. Accepted non-nestmate callows exchanged food with guards equally as much as nestmate callows did.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号