共查询到20条相似文献,搜索用时 0 毫秒
1.
In Petunia inflata, a species with gametophytic self-incompatibility, pollination triggers two phases of ethylene production by the pistil, the first of which peaks 3 hours after pollination with compatible or incompatible pollen. To investigate the physiological significance of the first phase of ethylene production, pollinated flowers were treated with 2,5-norbornadiene (NBD), an inhibitor of ethylene action. Treatment with NBD reduced pollen tube growth in a dose-dependent manner during the first six hours after pollination; however, pollen tube growth was insensitive to NBD if the treatment was applied 6 hours or more after pollination. Simultaneous application of exogenous ethylene substantially offset the inhibitory effects of NBD in flowers pollinated for 4 hours. Another inhibitor of ethylene action, 1-methylcyclopropene (1-MCP), also produced a strong inhibition of pollen tube growth during the first six hours of pollination. The experiments with 1-MCP pretreatment indicate that pistil tissues are the primary target of the pollination-induced ethylene. 相似文献
2.
Gibberellins are required for seed development and pollen tube growth in Arabidopsis 总被引:20,自引:0,他引:20 下载免费PDF全文
Gibberellins (GAs) are tetracyclic diterpenoids that are essential endogenous regulators of plant growth and development. GA levels within the plant are regulated by a homeostatic mechanism that includes changes in the expression of a family of GA-inactivating enzymes known as GA 2-oxidases. Ectopic expression of a pea GA 2-oxidase2 cDNA caused seed abortion in Arabidopsis, extending and confirming previous observations obtained with GA-deficient mutants of pea, suggesting that GAs have an essential role in seed development. A new physiological role for GAs in pollen tube growth in vivo also has been identified. The growth of pollen tubes carrying the 35S:2ox2 transgene was reduced relative to that of nontransgenic pollen, and this phenotype could be reversed partially by GA application in vitro or by combining with spy-5, a mutation that increases GA response. Treatment of wild-type pollen tubes with an inhibitor of GA biosynthesis in vitro also suggested that GAs are required for normal pollen tube growth. These results extend the known physiological roles of GAs in Arabidopsis development and suggest that GAs are required for normal pollen tube growth, a physiological role for GAs that has not been established previously. 相似文献
3.
Invasive plants may threaten the reproductive success of native sympatric plants by modifying the pollination process. One potential mechanism takes place through the deposition of invasive pollen onto native stigmas when pollinators are shared among species. We explore how pollen from the invasive plant Brassica nigra influences pre- and post-fertilization stages in the native plant Phacelia parryi, through a series of hand pollination experiments. These two species share pollinators to a high degree. P. parryi flowers were hand-pollinated with either pure conspecific pollen (the control) or with B. nigra pollen applied prior to, simultaneously with, or following conspecific pollen. Application of B. nigra pollen lowered seed set, with the simultaneous application resulting in the highest reduction. Pollen tube growth was also influenced by the presence of invasive pollen, with fewer conspecific pollen tubes reaching the base of P. parryi styles in treatments where B. nigra pollen was applied prior to or simultaneously with conspecific pollen. The deleterious effects of invasive pollen on native seed set in this study are likely not due to loss of stigmatic receptivity since seed set was less affected when heterospecific pollen was applied prior to conspecific pollen, but may instead involve interactions between interspecific pollen grains on the stigma or within the style. Our study highlights the importance of timing of foreign pollen deposition on native stigmas and suggests that interspecific pollen transfer between native and exotic plants may be an important mechanism of competition for pollination in invaded plant communities. 相似文献
4.
Five gametophytic mutations affecting pollen development and pollen tube growth in Arabidopsis thaliana 总被引:9,自引:0,他引:9
Procissi A de Laissardière S Férault M Vezon D Pelletier G Bonhomme S 《Genetics》2001,158(4):1773-1783
Mutant analysis represents one of the most reliable approaches to identifying genes involved in plant development. The screening of the Versailles collection of Arabidopsis thaliana T-DNA insertion transformants has allowed us to isolate different mutations affecting male gametophytic functions and viability. Among several mutated lines, five have been extensively studied at the genetic, molecular, and cytological levels. For each mutant, several generations of selfing and outcrossing have been carried out, leading to the conclusion that all these mutations are tagged and affect only the male gametophyte. However, only one out of the five mutations is completely penetrant. A variable number of T-DNA copies has integrated in the mutant lines, although all segregate at one mutated locus. Two mutants could be defined as "early mutants": the mutated genes are presumably expressed during pollen grain maturation and their alteration leads to the production of nonfunctional pollen grains. Two other mutants could be defined as "late mutant" since their pollen is able to germinate but pollen tube growth is highly disturbed. Screening for segregation ratio distortions followed by thorough genetic analysis proved to be a powerful tool for identifying gametophytic mutations of all phases of pollen development. 相似文献
5.
Actin and pollen tube growth 总被引:24,自引:0,他引:24
Summary Actin microfilaments (MFs) are essential for the growth of the pollen tube. Although it is well known that MFs, together with myosin, deliver the vesicles required for cell elongation, it is becoming evident that the polymerization of new actin MFs, in a process that is independent of actomyosin-dependent vesicle translocation, is also necessary for cell elongation. Herein we review the recent literature that focuses on this subject, including brief discussions of the actin-binding proteins in pollen, and their possible role in regulating actin MF activity. We promote the view that polymerization of new actin MFs polarizes the cytoplasm at the apex of the tube. This process is regulated in part by the apical calcium gradient and by different actin-binding proteins. For example, profilin binds actin monomers and gives the cell control over the initiation of polymerization. A more recently discovered actin-binding protein, villin, stimulates the formation of unipolar bundles of MFs. Villin may also respond to the apical calcium gradient, fragmenting MFs, and thus locally facilitating actin remodeling. While much remains to be discovered, it is nevertheless apparent that actin MFs play a fundamental role in controlling apical cell growth in pollen tubes.Dedicated to Professor Brian E. S. Gunning on the occasion of his 65th birthday 相似文献
6.
7.
Phosphoinositides play important roles in eukaryotic cells, although they constitute a minor fraction of total cellular lipids. Specific kinases and phosphatases function on the regulation of phosphoinositide levels. Phosphatidylinositol 3-phosphate (PtdIns3P), a molecule of phosphoinositides regulates multiple aspects of plant growth and development. In this article, we introduce and discuss the kinases and phosphatases involved in PtdIns3P metabolism and their roles in pollen development and pollen tube growth in Arabidopsis. 相似文献
8.
The growth of pollen tubes is characterized by an intense cytoplasmic streaming, during which the movements of smaller organelles (like secretory vesicles) and larger ones (including the generative cell and vegetative nucleus) are precisely coordinated. A well-characterized cytoskeletal apparatus is likely responsible for these intracellular movements. In recent years both microfilament and microtubule-based motor proteins have been identified and assumed to be the translocators of the several organelle categories. Their precise function during pollen tube growth is not yet clear, but apparently an actomyosin-based system is mainly responsible for pollen tube elongation. On the other hand, microtubules and microtubule-based motors have been thought to play a role in the maintenance of cell polarity. Both cytoskeletal systems (and their respective motor activities) could cooperate to ensure a precise regulation of pollen tube growth. 相似文献
9.
Ylstra B Touraev A Moreno RM Stöger E van Tunen AJ Vicente O Mol JN Heberle-Bors E 《Plant physiology》1992,100(2):902-907
The effect of anther-derived substances on pollen function was studied using pollen produced by in vitro culture of immature pollen of tobacco (Nicotiana tabacum L.) and petunia (Petunia hybrida). Addition of conditioned medium consisting of diffusates from in situ matured pollen strongly increased pollen germination frequency and pollen tube growth, as well as seed set after in situ pollination. Thin-layer chromatography and depletion of phenolic substances by Dowex treatment indicated that flavonols are present in the diffusate and may be the active compounds. When added to the germination medium, flavonols (quercetin, kaempferol, myricetin) but not other flavonoids strongly promoted pollen germination frequency and pollen tube growth in vitro. The best results were obtained at very low concentrations of the flavonols (0.15-1.5 μm), indicating a signaling function. The same compounds were also effective when added during pollen development in vitro. 相似文献
10.
Chhun T Aya K Asano K Yamamoto E Morinaka Y Watanabe M Kitano H Ashikari M Matsuoka M Ueguchi-Tanaka M 《The Plant cell》2007,19(12):3876-3888
11.
Carolina Carrizo García Massimo Guarnieri Ettore Pacini 《Acta Physiologiae Plantarum》2012,34(6):2341-2347
Ripe pollen has different soluble and insoluble carbohydrates in variable amounts. Pollen germination and pollen tube growth were studied in a tomato cultivar (Solanum lycopersicum L. cv. Platense) with atypical pollen among tomatoes due to its very low amount or absence of sucrose. In vitro assays were performed using a culture medium without carbohydrates to explore whether there is an autotrophic phase of pollen tube growth, and if there is, describe it, and to analyze the fluctuations of endogenous carbohydrates (soluble carbohydrates, starch, pectins, and callose). Pollen germination was fast (ca. 10 min) and a definite autotrophic phase was observed. Soluble carbohydrates and pectins showed the most substantial changes during this period, even after 10 min. A small amount of callose was observed in the ripe pollen and pollen tubes. Pectins were the most abundant pollen tube wall component. Pollen can be considered starchless; starch was not involved in the autotrophic phase of growth. Other types of substances must be connected with the carbohydrate metabolism, because the fluctuations of the different substances did not follow balanced stoichiometric relationships. Pollen germination and pollen tube elongation was sustained autotrophically, even though sucrose was absent and starch was negligible in pollen grains. The type of pollen reserves and the fast pollen tube formation could be selective advantages in this cultivar. 相似文献
12.
13.
Proline degradation inPetunia pollen germinated in vitro was studied in cultures supplemented with [14C]proline labeled at different positions. Despite its abundance in the cell, this amino acid is only a minor substrate for respiration. Proline is partially converted via the citrate cycle into metabolites which can be traced in the ethanol-insoluble fraction of the cellular constituents. The fact that this conversion is much more extensive than the use of proline in respiration indicates that, in germinating pollen, the citrate cycle serves mainly for synthetic purposes. There are no indications that proline carbon is used for feeding of other amino-acid pools used for protein synthesis. 相似文献
14.
Morphologic changes occurring during pollen grain activation and ultrastructural features of Lycopersicum peruvianum Mill. pollen tube during the first stages of growth in vitro have been studied. The more evident morphologic changes during activation, in comparison to those already described for mature inactive pollen, concern dictyosomes, rough endoplasmic reticulum (RER), and ribosomes. The dictyosomes are very abundant and produce large and small vesicles. Near the germinative pores both types of vesicles are present, while all along the remaining cell wall only the large type is observed. These latter react weakly to Thiéry's test and probably contain a callose precursor necessary for the deposition of a callosic layer lining at first only the inner side of the functioning pore and occasionally the other two pores, and subsequently the entire inner surface of the cell wall. The small vesicles, highly positive to Thiéry's test, are present only near the pores and could be involved in the formation of the pectocellulosic layer of the tube wall. The setting free of RER cisterns, which in the mature inactive pollen were aggregated in stacks, coinciding with polysome formation and resumption of protein synthesis, is in accord with the hypothesized role of RER cistern stacks as a reserve of synthesizing machinery. The pollen tube reaches a definitive spatial arrangement soon after the generative cell and vegetative nucleus have moved into it. At this stage four different zones that reflect a functional specialization are present. In the apical and subapical zone two types of dictysosome-originated vesicles, similar to those found in the activated pollen grain, are present. Their role in the formation of the callosic and pectocellulosic wall layers seems to be the same as in the activated pollen grain.Abbreviations ER
endoplasmic reticulum
- RER
rough endoplasmic reticulum
Research performed under CNR program Biology of Reproduction 相似文献
15.
Toluidine blue is known to induce gynogenic haploids in significant numbersin Populus]. Because the efficacy of a chemical in inducing gynogenesis depends largely on its effeot on pollen germination, on pollen tube growth, and on male gamete formation, the effect of toluidine blue (0, 1, 10 and 100 mgl-1) on these processes was studied in treated pistils ofSolatium nigrum (4 X), as well as on cultured pollen grains ofS. nigrum andTrigonella foenumgraecum. Irrespective of the time of application, toluidine blue (1 and 10 mg I-1) had no effect on pollen germination or pollen tube growth in pistils ofS. nigrum; at 100 mg I-1 it invariably inhibited both the processes. Almost similar responses were elicited by cultured pollen grains. InT. foenum-graecum toluidine blue had no effeot on pollen germination and suppressed tube growth. Gamete formation was inhibited, to various degrees, at all the concentrations tested; at 100 ing I-1 hardly any pollen tube showed gamete formation. Based on our results, and those on other systems, the potentiality of toluidine blue as an inducer of gynogenesis has been analysed. 相似文献
16.
Pistil strategies controlling pollen tube growth 总被引:4,自引:0,他引:4
The progamic phase appears especially well suited for pollen-pistil interaction. During this phase the pistil supports pollen
germination and tube growth, and provides an adequate environment, nutrition and directional cues. However, this support does
not occur indiscriminantly and some mechanisms operating in the pistil constrain pollen tube growth. An active, regulated
constraint is the self-incompatibility reaction, but moderate restrictions of pollen tube growth also occur in compatible
matings. These moderate restrictions involve reduced support by the pistil and they operate through two main strategies; one
is by decreasing the amount of support and the other is by varying the time at which this support is provided. In this minireview,
we examine the evidence that is accumulating for both support and constraint of pollen tube growth by the pistil and discuss
the benefits of this dual system. 相似文献
17.
Class III pistil-specific extensin-like proteins (PELPIII) are chimeric hydroxyproline-rich glycoproteins with properties of both extensins and arabinogalactan proteins. The abundance and specific localization of PELPIII in the intercellular matrix (IM) of tobacco (Nicotiana tabacum) stylar transmitting tissue, and translocation of PELPIII from the IM into the pollen tube wall after pollination, presume the biological function of these glycoproteins to be related to plant reproduction. Here we show that in in vitro assays the translocation of PELPIII is specifically directed to the callose inner wall of the pollen tubes, indicating that protein transfer is not dependent on the physiological conditions of the transmitting tract. We designed a set of experiments to elucidate the biological function of PELPIII in the stylar IM. To study the function of the specific interaction between PELPIII proteins and the pollen tube wall, one of the PELPIII proteins (MG15) was ectopically expressed in pollen tubes and targeted to the tube wall. We also generated transgenic tobacco plants in which PELPIII proteins were silenced. In vitro bioassays were performed to test the influence of purified PELPIII on pollen tube growth, as compared to tobacco transmitting tissue-specific proteins (TTS) that were previously shown to stimulate pollen tube growth. The various tests described for activity of PELPIII proteins all gave consistent and mutually affirmative results: the biological function of PELPIII proteins is not directly related to pollen tube growth. These data show that similar stylar glycoproteins may act very differently on pollen tubes. 相似文献
18.
During the in vitro germination of pear pollen, several hydrolaseswere released into the medium. They were apparently eluted fromthe pollen grain, since the activity was the same when germinationwas inhibited. These enzymes, once released, had no role intube growth, since resuspension of pollen in fresh medium after1.5 hr of incubation did not result in a change of the subsequenttube growth. Homogenates of the pollen suspension at differentstages of development showed no significant changes in phosphatase,ß-glucosidase, or ß-galactosidase activity.However, patent ß-glucosidase activity measured directlyin suspensions of intact pollen did increase after germinationin proportion to tube wall development. Nojirimycin, a specificinhibitor of glucosidases, reduced this ß-glucosidaseactivity by 75% at 105M and significantly reduced growthrate at 104 M. (Received December 19, 1978; ) 相似文献
19.
An important player in actin remodeling is the actin depolymerizing factor (ADF) which increases actin filament treadmilling rates. Previously, we had prepared fluorescent protein fusions of two Arabidopsis pollen specific ADFs, ADF7 and ADF10. These had enabled us to determine the temporal expression patterns and subcellular localization of these proteins during male gametophyte development. Here we generated stable transformants containing both chimeric genes allowing for simultaneous imaging and direct comparison. One of the striking differences between the two proteins was the localization profile in the growing pollen tube apex. Whereas ADF10 was associated with the filamentous actin array forming the subapical actin fringe, ADF7 was present in the same cytoplasmic region, but in diffuse form. This suggests that ADF7 is involved in the high actin turnover that is likely to occur in the fringe by continuously and efficiently depolymerizing filamentous actin and supplying monomeric actin to the advancing end of the fringe. The possibility to visualize both of these pollen-specific ADFs simultaneously opens avenues for future research into the regulatory function of actin binding proteins in pollen. 相似文献
20.
Phytosulfokine peptide signaling controls pollen tube growth and funicular pollen tube guidance in Arabidopsis thaliana 下载免费PDF全文
Nils Stührwohldt Renate I. Dahlke Anke Kutschmar Xiongbo Peng Meng‐Xiang Sun Margret Sauter 《Physiologia plantarum》2015,153(4):643-653
Phytosulfokine (PSK) is a peptide growth factor that requires tyrosine sulfation carried out by tyrosylprotein sulfotransferase (TPST) for its activity. PSK is processed from precursor proteins encoded by five genes in Arabidopsis thaliana and perceived by receptor kinases encoded by two genes in Arabidopsis. pskr1‐3 pskr2‐1 and tpst‐1 knockout mutants displayed reduced seed production, indicative of a requirement for PSK peptide signaling in sexual plant reproduction. Expression analysis revealed PSK precursor and PSK receptor gene activity in reproductive organs with strong expression of PSK2 in pollen. In support of a role for PSK signaling in pollen, in vitro pollen tube (PT) growth was enhanced by exogenously added PSK while PTs of pskr1‐3 pskr2‐1 and of tpst‐1 were shorter. In planta, growth of wild‐type pollen in pskr1‐3 pskr2‐1 and tpst‐1 flowers appeared slower than growth in wild‐type flowers. But PTs did eventually reach the base of the style, suggesting that PT elongation rate may not be responsible for the reduced fertility. Detailed analysis of anthers, style and ovules did not reveal obvious developmental defects. By contrast, a high percentage of unfertilized ovules in pskr1‐3 pskr2‐1 and in tpst‐1 siliques displayed loss of funicular PT guidance, suggesting that PSK signaling is required to guide the PT from the transmitting tract to the embryo sac. Cross‐pollination experiments with wild‐type, pskr1‐3 pskr2‐1 and tpst‐1 male and female parents revealed that both the PT and the female sporophytic tissue and/or female gametophyte contribute to successful PT guidance via PSK signaling and to fertilization success. 相似文献