首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W A Scott  D J Wigmore 《Cell》1978,15(4):1511-1518
Simian virus 40 (SV40) chromatin isolated from infected BSC-1 cell nuclei was incubated with deoxyribonuclease I, staphylococcal nuclease or an endonuclease endogenous to BSC-1 cells under conditions selected to introduce one doublestrand break into the viral DNA. Full-length linear DNA was isolated, and the distribution of sites of initial cleavage by each endonuclease was determined by restriction enzyme mapping. Initial cleavage of SV40 chromatin by deoxyribonuclease I or by endogenous nuclease reduced the recovery of Hind III fragment C by comparison with the other Hind III fragments. Similarly, Hpa I fragment B recovery was reduced by comparison with the other Hpa I fragments. When isolated SV40 DNA rather than SV40 chromatin was the substrate for an initial cut by deoxyribonuclease I or endogenous nuclease, the recovery of all Hind III or Hpa I fragments was approximately that expected for random cleavage. Initial cleavage by staphylococcal nuclease of either SV40 DNA or SV40 chromatin occurred randomly as judged by recovery of Hind III or Hpa I fragments. These results suggest that, in at least a portion of the SV40 chromatin population, a region located in Hind III fragment C and Hpa I fragment B is preferentially cleaved by deoxyribonuclease I or by endogenous nuclease but not by staphylococcal nuclease.Complementary information about this nuclease-sensitive region was provided by the appearance of clusters of new DNA fragments after restriction enzyme digestion of DNA from viral chromatin initially cleaved by endogenous nuclease. From the sizes of new fragments produced by different restriction enzymes, preferential endonucleolytic cleavage of SV40 chromatin has been located between map positions 0.67 and 0.73 on the viral genome.  相似文献   

2.
3.
Isolated SV40 minichromosomes [1-3] were treated with different single-cut restriction endonucleases to probe the arrangement of nucleosomes in relation to the SV70 DNA sequence. While Eco RI and Bam HI each cut 22-27% of the SV40 minichromosomes under limit-digest conditions, Bgl I, which cuts SV40 DNA at or very near the origin of replication [4,5], cleaves 90-95% of the minichromosomes in a preparation. Similar results were obtained with minichromosomes which had been fixed with formaldehyde before endonuclease treatment. One possible interpretation of these findings is that the arrangement of nucleosomes in the compact SV40 minichromosomes is nonrandom at least with regard to sequences near the origin of DNA replication.  相似文献   

4.
Simian virus 40 tumor antigen (SV40 T antigen) was bound to both replicating and fully replicated SV40 chromatin extracted with a low-salt buffer from the nuclei of infected cells, and at least a part of the association was tight specific. T antigen cosedimented on sucrose gradients with SV40 chromatin, and T antigen-chromatin complexes could be precipitated from the nuclear extract specifically with anti-T serum. From 10 to 20% of viral DNA labeled to steady state with [3H]thymidine for 12 h late in infection or 40 to 50% of replicating viral DNA pulse-labeled for 5 min was associated with T antigen in such immunoprecipitates. After reaction with antibody, most of the T antigen-chromatin complex was stable to washing with 0.5 M NaCl, but only about 20% of the DNA label remained in the precipitate after washing with 0.5 M NaCl-0.4% Sarkosyl. This tightly bound class of T antigen was associated preferentially with a subfraction of pulse-labeled replicating DNA which comigrated with an SV40 form I marker. A tight binding site for T antigen was identified tentatively by removing the histones with dextran sulfate and heparin from immunoprecipitated chromatin labeled with [32P]phosphate to steady state and then digesting the DNA with restriction endonucleases HinfI and HpaII. The site was within the fragment spanning the origin of replication, 0.641 to 0.725 on the SV40 map.  相似文献   

5.
Location of nucleosomes in simian virus 40 chromatin   总被引:5,自引:0,他引:5  
  相似文献   

6.
7.
During normal maturation and majority of pulse-labeled simian virus 40 DNA progresses from chromatin to previrions and virions within 5 h. UV light inhibits this progression. In heavily irradiated cultures (108 J m-2) most of the simian virus 40 DNA synthesized immediately before irradiation remains as chromatin for at least 5 h. This inhibition of maturation seems to be a result of the inhibition of protein synthesis. The data suggest that the pool of proteins required for maturation is sufficient to convert one-third of the simian virus 40 DNA molecules labeled in a 10-min pulse (at 33 h postinfection) from chromatin to previrions and virions and is exhausted within 1 h.  相似文献   

8.
Structural topography of simian virus 40 DNA replication.   总被引:1,自引:7,他引:1       下载免费PDF全文
Applying an in situ cell fractionation procedure, we analyzed structural systems of the cell nucleus for the presence of mature and replicating simian virus 40 (SV40) DNA. Replicating SV40 DNA intermediates were tightly and quantitatively associated with the nuclear matrix, indicating that elongation processes of SV40 DNA replication proceed at this structure. Isolated nuclei as well as nuclear matrices were able to continue SV40 DNA elongation under replication conditions in situ, arguing for a coordinated and functional association of SV40 DNA and large T molecules at nuclear structures. SV40 DNA replication also was terminated at the nuclear matrix. While the bulk of newly synthesized, mature SV40 DNA molecules then remained at this structure, some left the nuclear matrix and accumulated at the chromatin.  相似文献   

9.
10.
T Vogel  Y Gluzman    N Kohn 《Journal of virology》1979,29(1):153-160
Three different groups of temperature-sensitive mutants of simian virus 40, isolated and characterized by Chou and Martin (J. Virol. 13:1101--1109, 1974), have been analyzed by using restriction endonucleases. Differences between the restriction endonuclease cleavage pattern of these mutants and that of the standard simian virus 40 strain have been mapped. These include the following observations: (i) tsD202 carries a defective HaeIII cleavage site at position 0.9 map units; (ii) tsB204 exhibits a defective HaIII site at position 0.21 and a defective HinIII site at 0.655 map units, and (iii) tsC219 carries a new HinIII site at position 0.15. We have isolated a few wild-type revertants from each of the temperature-sensitive mutant strains; each displays the endonuclease cleavage pattern of its parental temperature-sensitive strain.  相似文献   

11.
12.
Insertion of DNA segments into the nuclease-sensitive region of simian virus 40 alters both replication efficiency and chromatin structure. Mutants containing large insertions between the simian virus 40 origin of replication (ori site) and the 21-base-pair repeated sequences replicated poorly when assayed by transfection into COS-1 cells. Replication of mutants with shorter insertions was moderately reduced. This effect was cis-acting and independent of the nucleotide sequence of the insert. The nuclease-sensitive chromatin structure was retained in these mutants, but the pattern of cleavage sites was displaced in the late direction from the ori site. New cleavage sites appeared within the inserted sequences, suggesting that information specifying the nuclease-sensitive chromatin structure is located on the late side of the inserts. Accessibility to BglI (which cleaves within the ori site) was reduced in the larger insertion mutants. These results support the conclusion that efficient function of the viral origin of replication is correlated with its proximity to an altered chromatin structure.  相似文献   

13.
A short segment of simian virus 40 (SV40) chromatin on the late side of the origin of replication is hypersensitive to nuclease cleavage. The role of DNA sequence information in this nuclease-sensitive feature was examined by constructing deletion mutations in this region. Deletions were introduced into the inserted segment of in(Or)-1411 (a viable, partially duplicated variant of SV40), and nuclease sensitivity of the inserted segment was compared with that of the unaltered sequences in their normal location in the viral genome. Extended deletions (118 to 161 base pairs) essentially abolished nuclease sensitivity within the inserted segment. Shorter deletions (21 to 52 base pairs) at separate locations retained the nuclease-sensitive feature. In some short-deletion mutants nuclease susceptibility was substantially reduced. We conclude that more than one genetic element in this region contributes to the organization of the nuclease-sensitive feature and that the SV40 72-base repeat is not, in itself, sufficient signal for this feature.  相似文献   

14.
15.
G Ruben  P Spielman  C D Tu  E Jay  B Siegel    R Wu 《Nucleic acids research》1977,4(6):1803-1813
We have determined the mode of cleavage of superhelical SV40 DNA (Form I) by restriction endonucleases EcoRI and HpaII at 37 degrees C. By analysis with agarose gel electrophoresis and direct examination with dark field electron microscopy, we found that a large amount of the single-nicked circular DNA (Form II) was produced before the linear SV40 DNA (Form III) appeared. Thus, both restriction enzymes cleave only one strand of the superhelical DNA first. The second cleavage on the complementary strand occurred after a lag period. The first order rate constant for the second cleavage by EcoRI endonuclease was determined and a kinetic reaction scheme for both enzymes is proposed.  相似文献   

16.
The nuclear matrix plays an important role in simian virus 40 (SV40) DNA replication in vivo, since functional replication complexes containing large T and replicating SV40 minichromosomes are anchored to this structure (R. Schirmbeck and W. Deppert, J. Virol. 65:2578-2588, 1991). In the present study, we have analyzed the course of events leading from nuclear matrix-associated replicating SV40 minichromosomes to fully replicated minichromosomes and, further, to their encapsidation into mature SV40 virions. Pulse-chase experiments revealed that newly replicated SV40 minichromosomes accumulated at the nuclear matrix and were directly encapsidated into DNase-resistant SV40 virions at this nuclear structure. Alternatively, a small fraction of newly replicated minichromosomes left the nuclear matrix to associate with the cellular chromatin. During the course of infection, progeny virions continuously were released from the nuclear matrix to the cellular chromatin and into the cytoplasm-nucleoplasm. The bulk of SV40 progeny virions, however, remained at the nuclear matrix until virus-induced cell lysis.  相似文献   

17.
A nuclease-sensitive region forms in chromatin containing a 273-base-pair (bp) segment of simian virus 40 DNA encompassing the viral origin of replication and early and late promoters. We have saturated this region with short deletion mutations and compared the nuclease sensitivity of each mutated segment to that of an unaltered segment elsewhere in the partially duplicated mutant. Although no single DNA segment is required for the formation of a nuclease-sensitive region, a deletion mutation (dl45) which disrupted both exact copies of the 21-bp repeats substantially reduced nuclease sensitivity. Deletion mutations limited to only one copy of the 21-bp repeats had little, if any, effect. A mutant (dl135) lacking all copies of the 21- and 72-bp repeats, while retaining the origin of replication and the TATA box, did not exhibit a nuclease-sensitive region. Mutants which showed reduced nuclease sensitivity had this effect throughout the nuclease-sensitive region, not just at the site of the deletion, indicating that although multiple determinants must be responsible for the nuclease-sensitive chromatin structure they do not function with complete independence. Mutant dl9, which lacks the late portion of the 72-bp segment, showed reduced accessibility to BglI, even though the BglI site is 146 bp away from the site of the deletion.  相似文献   

18.
A single-stranded DNA-dependent ATPase from monkey kidney tissue culture cells (CV-1) has been found associated with SV40 chromatin. This ATPase activity is distinguishable from the ATPase activity of T-antigen by the following properties: the Km for ATP, elution from phosphocellulose, and stimulation of the ATPase activity by single-stranded DNA but not by double-stranded DNA. The ATPase has been isolated and characterized from the nuclei of uninfected cells. ATP hydrolysis is dependent on single-stranded DNA and a divalent cation. The km values for ATP and single-stranded DNA are 0.024 mM and 0.09 microgram/ml, respectively. The affinity of the ATPase for single-stranded DNA is sufficiently high that the enzyme co-sediments with single-stranded DNA in glycerol gradients. The binding of single-stranded DNA is independent of ATP and MgCl2; however, ATP hydrolysis increases the exchange of enzyme between different DNA molecules. Form I (superhelical) SV40 DNA is also a substrate for ATPase binding, but relaxed Form I, Form II (nicked circular), and double-stranded linear SV40 DNAs are not substrates. Because the DNA helix within chromatin is not under the same kind of tortional strain as Form I DNA, we hypothesize that the ATPase is bound to the single-stranded regions of replication forks in the SV40 chromatin.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号