首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of the inducible haem oxygenase (HO-1) gene was examined in different skeletal muscles. Rats were treated with haemin and a time course of HO-1 mRNA expression was determined in soleus and extensor digitorum longus (EDL) muscles. Fibre type composition and tissue myoglobin content were also measured. We found that HO-1 mRNA expression markedly increased in soleus (type I fibres) muscle but was only slightly affected in EDL (type II fibres). HO-1 expression directly correlated with both percentage of red fibres and tissue myoglobin. These data demonstrate that HO-1 gene expression follows a fibre type-specific pattern which might indicate an important role for this protein in the maintenance of skeletal muscle function.  相似文献   

2.
Heme oxygenase-1 (HO-1) is a stress protein, which has been suggested to participate in defense mechanisms against agents that may induce oxidative injury, such as angiotensin II (Ang II). The purpose of the present study was to examine the role of human HO-1 in cell-cycle progression. We investigated the effect of Ang II on HO-1 gene expression in serum-deprived media to drive human endothelial cells into G(0)/G(1) (1% FBS) compared to exponentially grown cells (10% FBS). The addition of Ang II (100 ng/ml) to endothelial cells increased HO-1 protein and activity in G(0)/G(1) in a time-dependent manner, reaching a maximum HO-1 level at 16 h. Real-time RT-PCR demonstrated that Ang II increased the levels of HO-1 mRNA in G(0)/G(1) as early as 1 h. The rate of HO-1 induction in response to Ang II was several-fold higher in serum-starved cells compared to cells cultured in continuous 10% FBS. The addition of Ang II increased the generation of 8-epi-isoprostane PGF(2 alpha). Inhibition of HO-1, by Stannis mesoporphyrin (SnMP), potentiated Ang II-mediated DNA damage and generation of 8-epi-isoprostane PGF(2 alpha). These results imply that expression of HO-1 in G(0)/G(1), in the presence of Ang II, may be a key player in attenuating DNA damage during cell-cycle progression. Thus, exposure of endothelial cells to Ang II causes a complex response involving generation of superoxide anion, which may be involved in DNA damage. Upregulation of HO-1 ensures the generation of bilirubin and carbon monoxide (CO) in G(0)/G(1) phase to counteract Ang II-mediated oxidative DNA damage. Inducibility of HO-1 in G(0)/G(1) phase is essential and probably regulated by a complex system involving oxygen species to assure controlled cell growth.  相似文献   

3.
André M  Felley-Bosco E 《FEBS letters》2003,546(2-3):223-227
To investigate the influence of glutathione (GSH) on cellular effects of nitric oxide (NO) formation, human colon adenocarcinoma cells were transfected with a vector allowing controlled expression of inducible nitric oxide synthase (iNOS). Protein levels of oxidative stress-sensitive heme oxygenase-1 (HO-1) were analyzed in the presence or absence of GSH depletion using L-buthionine-[S,R]-sulfoximine and iNOS induction. While no effect was observed in the presence of iNOS activity alone, a synergistic effect on HO-1 expression was observed in the presence of iNOS expression and GSH depletion. This effect was prevented by addition of N-methyl-L-arginine. Therefore, targeting of endogenous NO may be modulated by intracellular GSH.  相似文献   

4.
Heme oxygenase-1 induction may explain the antioxidant profile of aspirin   总被引:10,自引:0,他引:10  
Aspirin is known to exert antioxidant effects by as yet unidentified mechanisms. In cultured endothelial cells derived from human umbilical vein, aspirin (30-300 microM) increased heme oxygenase-1 (HO-1) protein levels in a concentration-dependent fashion up to fivefold over basal levels. HO-1 induction was accompanied by a marked increase in catalytic activity of the enzyme as reflected by enhanced formation of both carbon monoxide and bilirubin. Pretreatment with aspirin or bilirubin at low micromolar concentrations protected endothelial cells from hydrogen peroxide-mediated toxicity. HO-1 induction and endothelial protection by aspirin were not mimicked by indomethacin, another inhibitor of cyclooxygenase. The nitric oxide (NO) synthase blocker L-NAME prevented aspirin-dependent HO-1 induction. These findings demonstrate that aspirin targets HO-1, presumably via NO-dependent pathways. Induction of HO-1 expression and activity may be a novel mechanism by which aspirin prevents cellular injury under inflammatory conditions and in cardiovascular disease.  相似文献   

5.
Heme oxygenase (HO)-1 is the inducible isoform of the first and rate-controlling enzyme of heme degradation. HO-1 is up-regulated by a host of oxidative stress stimuli and has potent cytoprotective and anti-inflammatory functions via decreasing tissue levels of the prooxidant heme along with production of bilirubin and the signaling gas carbon monoxide. This review deals with recent findings that highlight the emerging significance of HO-1 in cardiovascular disease. Evidence is presented on how heme and various oxidative stress stimuli may cause endothelial cell dysfunction and how HO-1 may counteract the detrimental effects of oxidative stress in the endothelium. Recent advances in the understanding of the role of endothelial HO-1 for the regulation of the inflammatory response are summarized, including the modulation of leukocyte recruitment and transmigration through the endothelial barrier. Furthermore, experimental evidence from various cell culture and animal models is discussed which suggests an association of HO-1 with the complex sequence of events that cause atherosclerosis. In the second part of the review we present potential strategies that apply HO-1 as a therapeutic target in the treatment of cardiovascular disease. Specific inducers of HO-activity which may ultimately lead to the development of clinically relevant pharmacological applications are introduced.  相似文献   

6.
The present study evaluated the effects of heme oxygenase-1 (HO-1) induction on the changes in renal outer medullary nitric oxide (NO) and peroxynitrite levels during 45-min renal ischemia and 30-min reperfusion in anesthetized rats. Glomerular filtration rate (GFR), outer medullary blood flow (OMBF), HO and nitric oxide synthase (NOS) isoform expression, and renal low-molecular-weight thiols (-SH) were also determined. During ischemia significant increases in NO levels and peroxynitrite signal were observed (from 832.1 +/- 129.3 to 2,928.6 +/- 502.0 nM and from 3.8 +/- 0.7 to 9.0 +/- 1.6 nA before and during ischemia, respectively) that dropped to preischemic levels during reperfusion. OMBF and -SH significantly decreased after 30 min of reperfusion. Twenty-four hours later, an acute renal failure was observed (GFR 923.0 +/- 66.0 and 253.6 +/- 55.3 microl.min(-1).g kidney wt(-1) in sham-operated and ischemic kidneys, respectively; P < 0.05). The induction of HO-1 (CoCl(2) 60 mg/kg sc, 24 h before ischemia) decreased basal NO concentration (99.7 +/- 41.0 nM), although endothelial and neuronal NOS expression were slightly increased. CoCl(2) administration also blunted the ischemic increase in NO and peroxynitrite (maximum values of 1,315.6 +/- 445.6 nM and 6.3 +/- 0.5 nA, respectively; P < 0.05), preserving postischemic OMBF and GFR (686.4 +/- 45.2 microl.min(-1).g kidney wt(-1)). These beneficial effects of CoCl(2) on ischemic acute renal failure seem to be due to HO-1 induction, because they were abolished by stannous mesoporphyrin, a HO inhibitor. In conclusion, HO-1 induction has a protective effect on ischemic renal failure that seems to be partially mediated by decreasing the excessive production of NO with the subsequent reduction in peroxynitrite formation observed during ischemia.  相似文献   

7.
The organic nitrate pentaerythrityl tetranitrate (PETN) is known to exert long-term antioxidant and antiatherogenic effects by as yet unidentified mechanisms. In cultured endothelial cells derived from human umbilical vein, the active PETN metabolite PETriN (0.01-1 mM) increased heme oxygenase (HO)-1 mRNA and protein levels in a concentration-dependent fashion. HO-1 induction was accompanied by a marked increase in catalytic activity of the enzyme as reflected by enhanced formation of carbon monoxide and bilirubin. Pretreatment with PETriN or bilirubin at low micromolar concentrations protected endothelial cells from hydrogen peroxide-mediated toxicity. HO-1 induction and endothelial protection by PETriN were not mimicked by isosorbide dinitrate, another long-acting nitrate. The present study demonstrates that PETriN stimulates mRNA and protein expression as well as enzymatic activity of the antioxidant defense protein HO-1 in endothelial cells. Increased HO-1 expression and ensuing formation of cytoprotective bilirubin may contribute to and explain the specific antioxidant and antiatherogenic actions of PETN.  相似文献   

8.
Piceatannol (PIC), a phytochemical, is abundant in passion fruit (Passiflora edulis) seeds. In this study, we investigated the effects of PIC on the expression levels of antioxidant enzymes in C2C12 skeletal muscle cells and compared its effects with those of PIC analogues and polyphenols. We also evaluated its effects on hydrogen peroxide–induced accumulation of reactive oxygen species in C2C12 myotubes. Treatment with PIC led to dose-dependent upregulation of heme oxygenase-1 (Ho-1) and superoxide dismutase 1 (Sod1) mRNA expression in C2C12 myotubes. PIC was the most potent inducer of Ho-1 among the PIC analogues and major polyphenols tested. In addition, treatment with PIC suppressed the hydrogen peroxide–induced increase in intracellular reactive oxygen species levels. Our results suggest that PIC protects skeletal muscles from oxidative stress by activating antioxidant enzymes such as HO-1 and SOD1 and can therefore help prevent oxidative stress–induced muscle dysfunction such as muscle fatigue and sarcopenia.  相似文献   

9.
10.

Key message

By using pharmacological and molecular approaches, we discovered the involvement of HO-1 in NaHS-induced lateral root formation in tomato seedlings.

Abstract

Heme oxygenase-1 (HO-1) and hydrogen sulfide (H2S) regulate various responses to abiotic stress and root development, but their involvement in the simultaneous regulation of plant lateral root (LR) formation is poorly understood. In this report, we observed that the exogenously applied H2S donor sodium hydrosulfide (NaHS) and the HO-1 inducer hemin induce LR formation in tomato seedlings by triggering intracellular signaling events involving the induction of tomato HO-1 (SlHO-1), and the modulation of cell cycle regulatory genes, including the up-regulation of SlCDKA;1 and SlCYCA2;1, and simultaneous down-regulation of SlKRP2. The response of NaHS in the induction of LR formation was impaired by the potent inhibition of HO-1, which was further blocked when 50 % saturation of carbon monoxide (CO) aqueous solution, one of the catalytic by-products of HO-1, was added. Further molecular evidence revealed that the NaHS-modulated gene expression of cell cycle regulatory genes was sensitive to the inhibition of HO-1 and reversed by cotreatment with CO. The impairment of LR density and length as well as lateral root primordia number, the decreased tomato HO-1 gene expression and HO activity caused by an H2S scavenger hypotaurine were partially rescued by the addition of NaHS, hemin and CO (in particular). Together, these results revealed that at least in our experimental conditions, HO-1 might be involved in NaHS-induced tomato LR formation. Additionally, the use of NaHS and hemin compounds in crop root organogenesis should be explored.  相似文献   

11.
Heme oxygenase-1 expression in disease states   总被引:6,自引:0,他引:6  
Heme oxygenase-1 (HO-1) is an enzyme which catalyzes the rate-limiting step in heme degradation resulting in the formation of iron, carbon monoxide and biliverdin, which is subsequently converted to bilirubin by biliverdin reductase. The biological effects exerted by the products of this enzymatic reaction have gained much attention. The anti-oxidant, anti-inflammatory and cytoprotective functions associated with HO-1 are attributable to one or more of its degradation products. Induction of HO-1 occurs as an adaptive and beneficial response to several injurious stimuli including heme and this inducible nature of HO-1 signifies its importance in several pathophysiological disease states. The beneficial role of HO-1 has been implicated in several clinically relevant disease states involving multiple organ systems as well as significant biological processes such as ischemia-reperfusion injury, inflammation/immune dysfunction and transplantation. HO-1 has thus emerged as a key target molecule with therapeutic implications.  相似文献   

12.
Nitric oxide (NO) has been implicated as an important signaling molecule in the insulin-independent, contraction-mediated glucose uptake pathway and may represent a novel strategy for blood glucose control in patients with type 2 diabetes (T2DM). The current study sought to determine whether the NO donor, sodium nitroprusside (SNP) increases glucose uptake in primary human skeletal muscle cells (HSkMC) derived from both healthy individuals and patients with T2DM. Vastus lateralis muscle cell cultures were derived from seven males with T2DM (aged 54 ± 2 years, BMI 31.7 ± 1.2 kg/m2, fasting plasma glucose 9.52 ± 0.80 mmol/L) and eight healthy individuals (aged 46 ± 2 years, BMI 27.1 ± 1.5 kg/m2, fasting plasma glucose 4.69 ± 0.12 mmol/L). Cultures were treated with both therapeutic (0.2 and 2 μM) and supratherapeutic (3, 10 and 30 mM) concentrations of SNP. An additional NO donor S-nitroso-N-acetyl-d,l-penicillamine (SNAP) was also examined at a concentration of 50 μM. Glucose uptake was significantly increased following both 30 and 60 min incubations with the supratherapeutic SNP treatments (P = 0.03) but not the therapeutic SNP doses (P = 0.60) or SNAP (P = 0.54). There was no difference in the response between the healthy and T2DM cell lines with any treatment or dose. The current study demonstrates that glucose uptake is elevated by supratherapeutic, but not therapeutic doses of SNP in human primary skeletal muscle cells derived from both healthy volunteers and patients with T2D. These data confirm that nitric oxide donors have potential therapeutic utility to increase glucose uptake in humans, but that SNP only achieves this in supratherapeutic doses. Further study to delineate mechanisms and the therapeutic window is warranted.  相似文献   

13.
14.
Hemin and sodium nitroprusside, which strongly activate purified rat brain guanylate cyclase in vitro, were also found to stimulate glioma C6 and neuroblastoma M1 and N1E-115 cells to divide in serum-free medium. Hemin and sodium nitroprusside each stimulate C6 cell growth to a comparable extent. Sodium nitroprusside was less potent than hemin for inducing growth of neuroblastoma cells. Moreover, both agents when added together caused a synergic cell growth enhancement which is comparable to the synergism observed in their guanylate cyclase stimulation in vitro. These results suggest that activation of guanylate cyclase may play a role in the proliferative response to these compounds.  相似文献   

15.
16.
17.
Critical functions of the immune system are maintained by the ability of myeloid progenitors to differentiate and mature into macrophages. We hypothesized that the cytoprotective gas molecule carbon monoxide (CO), generated endogenously by heme oxygenases (HO), promotes differentiation of progenitors into functional macrophages. Deletion of HO-1, specifically in the myeloid lineage (Lyz-Cre:Hmox1flfl), attenuated the ability of myeloid progenitors to differentiate toward macrophages and decreased the expression of macrophage markers, CD14 and macrophage colony-stimulating factor receptor (MCSFR). We showed that HO-1 and CO induced CD14 expression and efficiently increased expansion and differentiation of myeloid cells into macrophages. Further, CO sensitized myeloid cells to treatment with MCSF at low doses by increasing MCSFR expression, mediated partially through a PI3K-Akt-dependent mechanism. Exposure of mice to CO in a model of marginal bone marrow transplantation significantly improved donor myeloid cell engraftment efficiency, expansion and differentiation, which corresponded to increased serum levels of GM-CSF, IL-1α and MCP-1. Collectively, we conclude that HO-1 and CO in part are critical for myeloid cell differentiation. CO may prove to be a novel therapeutic agent to improve functional recovery of bone marrow cells in patients undergoing irradiation, chemotherapy and/or bone marrow transplantation.  相似文献   

18.
The heme oxygenases (HOs), responsible for the degradation of heme to biliverdin/bilirubin, free iron and CO, have been heavily implicated in mammalian CNS aging and disease. In normal brain, the expression of HO-2 is constitutive, abundant and fairly ubiquitous, whereas HO-1 mRNA and protein are confined to small populations of scattered neurons and neuroglia. In contradistinction to HO-2, the ho-1 gene ( Hmox1 ) is exquisitely sensitive to induction by a wide range of pro-oxidant and other stressors. In Alzheimer disease and mild cognitive impairment, immunoreactive HO-1 protein is over-expressed in neurons and astrocytes of the cerebral cortex and hippocampus relative to age-matched, cognitively intact controls and co-localizes to senile plaques, neurofibrillary tangles, and corpora amylacea. In Parkinson disease, HO-1 is markedly over-expressed in astrocytes of the substantia nigra and decorates Lewy bodies in affected dopaminergic neurons. HMOX1 is also up-regulated in glial cells surrounding human cerebral infarcts, hemorrhages and contusions, within multiple sclerosis plaques, and in other degenerative and inflammatory human CNS disorders. Heme-derived free ferrous iron, CO, and biliverdin/bilirubin are biologically active substances that have been shown to either ameliorate or exacerbate neural injury contingent upon specific disease models employed, the intensity and duration of HO-1 expression and the nature of the prevailing redox microenvironment. In 'stressed' astroglia, HO-1 hyperactivity promotes mitochondrial sequestration of non-transferrin iron and macroautophagy and may thereby contribute to the pathological iron deposition and bioenergetic failure amply documented in Alzheimer disease, Parkinson disease and other aging-related neurodegenerative disorders. Glial HO-1 expression may also impact cell survival and neuroplasticity in these conditions by modulating brain sterol metabolism and proteosomal degradation of neurotoxic protein aggregates.  相似文献   

19.
Heme oxygenase (HO) catalyzes the breakdown of heme to iron, carbon monoxide (CO), and biliverdin, the latter being further reduced to bilirubin (BR). A protective role of the inducible isoform, HO-1, has been described in pathological conditions associated with reactive oxygen species (ROS) and oxidative damage. The aim of this study was to investigate the role of HO-1 in the neurotoxicity induced by the mitochondrial toxin 3-nitropropionic acid (3-NP) in primary cultures of cerebellar granule neurons (CGNs). Toxicity of 3-NP is associated with ROS production, and this metabolic toxin has been used to mimic pathological conditions such as Huntington's disease. We found that cell death caused by 3-NP exposure was exacerbated by inhibition of HO with tin mesoporphyrin (SnMP). In addition, HO-1 up-regulation induced by the exposure to cobalt protoporphyrin (CoPP) before the incubation with 3-NP, prevented the cell death and the increase in ROS induced by 3-NP. Interestingly, addition of SnMP to CoPP-pretreated CGNs exposed to 3-NP, abolished the protective effect of CoPP suggesting that HO activity was responsible for this protective effect. This was additionally supported by the fact that CORM-2, a CO-releasing molecule, and BR, were able to protect against cell death and the increase in ROS induced by 3-NP. Our data clearly show that HO-1 elicits in CGNs a neuroprotective action against the neurotoxicity of 3-NP and that CO and BR may be involved, at least in part, in this protective effect. The present results increase our knowledge about the role of HO-1 in neuropathological conditions.  相似文献   

20.
Heme oxygenase-1 (HO-1) is a rate-limiting enzyme catalyzing oxidative degradation of cellular heme to liberate free iron, carbon monoxide (CO) and biliverdin in mammalian cells. In addition to its primary role in heme catabolism, HO-1 exhibits anti-oxidative and anti-inflammatory functions via the actions of biliverdin and CO, respectively. HO-1 is highly induced in various disease states, including cancer. Several lines of evidence have supported the implication of HO-1 in carcinogenesis and tumor progression. HO-1 deficiency in normal cells enhances DNA damage and carcinogenesis. Nevertheless, HO-1 overexpression in cancer cells promotes proliferation and survival. Moreover, HO-1 induces angiogenesis through modulating expression of angiogenic factors. Although HO-1 is an endoplasmic reticulum resident protein, HO-1 nuclear localization is evident in tumor cells of cancer tissues. It has been shown that HO-1 is susceptible to proteolytic cleavage and translocates to nucleus to facilitate tumor growth and invasion independent of its enzymatic activity. HO-1 also impacts cancer progression through modulating tumor microenvironment. This review summarizes the current understanding of the protumorigenic role of HO-1 and its potential as a molecular target for cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号