首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleosome positioning is an important mechanism for the regulation of eukaryotic gene expression. Folding of the chromatin fiber can influence nucleosome positioning, whereas similar electrostatic mechanisms govern the nucleosome repeat length and chromatin fiber folding in vitro. The position of the nucleosomes is directed either by the DNA sequence or by the boundaries created due to the binding of certain trans-acting factors to their target sites in the DNA. Increasing ionic strength results in an increase in nucleosome spacing on the chromatin assembled by the S-190 extract of Drosophila embryos. In this study, a mutant lac repressor protein R3 was used to find the mechanisms of nucleosome positioning on a plasmid with three R3-binding sites. With increasing ionic strength in the presence of R3, the number of positioned nucleosomes in the chromatin decreased, whereas the internucleosomal spacings of the positioned nucleosomes in a single register did not change. The number of the positioned nucleosomes in the chromatin assembled in vitro over different plasmid DNAs with 1-3 lac operators changed with the relative position and number of the R3-binding sites. We found that in the presence of R3, nucleosomes were positioned in the salt gradient method of the chromatin assembly, even in the absence of a nucleosome-positioning sequence. Our results show that nucleosome-positioning mechanisms are dominant, as the nucleosomes can be positioned even in the absence of regular spacing mechanisms. The protein-generated boundaries are more effective when more than one binding site is present with a minimum distance of approximately 165 bp, greater than the nucleosome core DNA length, between them.  相似文献   

2.
在真核生物染色质中,H2A.Z是高度保守的组蛋白变异体,与转录调控、基因组的稳定性密切相关。为了探讨组蛋白修饰、DNA弯曲度与H2A.Z核小体定位三者之间的关联,在得到实验所测的相关数据后,利用MINE算法并结合皮尔逊相关系数在酵母全基因组的转录起始位点周围探讨了三者间的线性与非线性关系。其中MIC算法可以定量的得出数据之间关联度大小的值,用于衡量数据之间是否存在着关联,而皮尔逊相关系数则用于检查是否为线性关联。结果除了发现大部分组蛋白修饰种类和核小体定位之间存在着线性关联外,还探测到有两种组蛋白修饰数据(H4ac修饰与GCN4修饰)和核小体定位数据之间存在着以往未发现的非线性关系(大致呈正余弦函数),并从数据的生物背景(组蛋白修饰与核小体位置)上探讨了出现非线性现象的原因。  相似文献   

3.
4.
Recent mapping of nucleosome positioning on several long gene regions subject to DNA methylation has identified instances of nucleosome repositioning by this base modification. The evidence for an effect of CpG methylation on nucleosome formation and positioning in chromatin is reviewed here in the context of the complex sequence-structure requirements of DNA wrapping around the histone octamer and the role of this epigenetic mark in gene repression.  相似文献   

5.
6.
In a previous report we constructed a synthetic DNA sequence that directed the deposition of histone octamers to a single site, and it was proposed that DNA distortion was involved in the positioning effect. In the present study we utilized the chemical probe potassium permanganate to identify sites of DNA distortion in the synthetic positioning sequence. A permanganate hypersite was identified 15 bp from the nucleosome pseudo-dyad at a site known to display DNA distortion in the mature nucleosome. The sequence of the site contained a TA step flanked by an oligo-pyrimidine tract. A series of substitutions were made in the region of the permanganate hypersite and the resulting constructs tested for affinity for histone octamers and translational positioning in in vitro studies. The results revealed that either a single base substitution at the TA step or in the adjacent homopolymeric tract dramatically affected affinity and positioning activity. The rotational orientation of the permanganate-sensitive sequence was shown to be important for functions, since altering the orientation of the site in a positioning fragment reduced positioning activity and octamer affinity, while altering the rotational orientation of the sequence in a non-positioning fragment had the opposite effects. A reconstituted 5 S rDNA positioning sequence from Lytechinus variegatus was also shown to display a permanganate hypersite 16 bp from its pseudo-dyad.  相似文献   

7.
8.
9.
H Lowman  M Bina 《Biopolymers》1990,30(9-10):861-876
Previous studies demonstrated 16 well-defined nucleosome locations (A-P) on a tandemly repeated prototype 234 base pair (bp) mouse satellite repeat unit. We have aligned the A-P fragments to search for DNA sequence elements that might contribute to nucleosome placement at these positions. Our results demonstrate a strikingly regular, uninterrupted, periodic pattern for the AA dinucleotide occurrences along the entire length of the aligned fragments. The periodicity of the AA occurrences is about 9.7 bp. The pattern exhibits a local minimum at position 74, near the nucleosome dyad axis of symmetry. Other dinucleotides--including AC: GT, CA: TG, and CC: GG--are also placed periodically, but their patterns of occurrence are less regular and less frequent than AA. The calculated spacings between consecutive preferred nucleosome locations on mouse satellite DNA are nearly identical, corresponding to multiples of 9.7 bp. The correlation between the periodicity of dinucleotide occurrences and the average spacing of nucleosome positions suggests that the preferred nucleosome locations recur at intervals that may correspond to the DNA helical repeat in the mouse satellite nucleosomes, and that the histone octamers sample (or slip along) the duplex in steps of 9.7 bp during nucleosome formation on mouse satellite DNA.  相似文献   

10.
11.
Nucleosomes, the fundamental repeating subunits of all eukaryotic chromatin, are responsible for packaging DNA into chromosomes inside the cell nucleus and controlling gene expression. While it has been well established that nucleosomes exhibit higher affinity for select DNA sequences, until recently it was unclear whether such preferences exerted a significant, genome-wide effect on nucleosome positioning in vivo. This question was seemingly and recently resolved in the affirmative: a wide-ranging series of experimental and computational analyses provided extensive evidence that the instructions for wrapping DNA around nucleosomes are contained in the DNA itself. This subsequently labeled second genetic code was based on data-driven, structural, and biophysical considerations. It was subjected to an extensive suite of validation procedures, with one conclusion being that intrinsic, genome-encoded, nucleosome organization explains approximately 50% of in vivo nucleosome positioning. Here, we revisit both the nature of the underlying sequence preferences, and the performance of the proposed code. A series of new analyses, employing spectral envelope (Fourier transform) methods for assessing key sequence periodicities, classification techniques for evaluating predictive performance, and discriminatory motif finding methods for devising alternate models, are applied. The findings from the respective analyses indicate that signature dinucleotide periodicities are absent from the bulk of the high affinity nucleosome-bound sequences, and that the predictive performance of the code is modest. We conclude that further exploration of the role of sequence-based preferences in genome-wide nucleosome positioning is warranted. This work offers a methodologic counterpart to a recent, high resolution determination of nucleosome positioning that also questions the accuracy of the proposed code and, further, provides illustrations of techniques useful in assessing sequence periodicity and predictive performance.  相似文献   

12.
Evidence is provided that the nucleotide triplet con-sensus non-T(A/T)G (abbreviated to VWG) influences nucleosome positioning and nucleosome alignment into regular arrays. This triplet consensus has been recently found to exhibit a fairly strong 10 bp periodicity in human DNA, implicating it in anisotropic DNA bendability. It is demonstrated that the experimentally determined preferences for nucleosome positioning in native SV40 chromatin can, to a large extent, be pre-dicted simply by counting the occurrences of the period-10 VWG consensus. Nucleosomes tend to form in regions of the SV40 genome that contain high counts of period-10 VWG and/or avoid regions with low counts. In contrast, periodic occurrences of the dinucleotides AA/TT, implicated in the rotational positioning of DNA in nucleosomes, did not correlate with the preferred nucleosome locations in SV40 chromatin. Periodic occurrences of AA did correlate with preferred nucleosome locations in a region of SV40 DNA where VWG occurrences are low. Regular oscillations in period-10 VWG counts with a dinucleosome period were found in vertebrate DNA regions that aligned nucleosomes into regular arrays in vitro in the presence of linker histone. Escherichia coli and plasmid DNA, which fail to align nucleosomes in vitro, lacked these regular VWG oscillations.  相似文献   

13.
DNA sequence is an important determinant of the positioning, stability, and activity of nucleosomes, yet the molecular basis of these effects remains elusive. A "consensus DNA sequence" for nucleosome positioning has not been reported and, while certain DNA sequence preferences or motifs for nucleosome positioning have been discovered, how they function is not known. Here, we report that an unexpected observation concerning the reassembly of nucleosomes during salt gradient dialysis has allowed a breakthrough in our efforts to identify the nucleosomal locations of the DNA sequence motifs that dominate histone-DNA interactions and nucleosome positioning. We conclude that a previous selection experiment for high-affinity, nucleosome-forming DNA sequences exerted selective pressure chiefly on the central stretch of the nucleosomal DNA. This observation implies that algorithms for aligning the selected DNA sequences should seek to optimize the alignment over much less than the full 147 bp of nucleosomal DNA. A new alignment calculation implemented these ideas and successfully aligned 19 of the 41 sequences in a non-redundant database of selected high-affinity, nucleosome-positioning sequences. The resulting alignment reveals strong conservation of several stretches within a central 71 bp of the nucleosomal DNA. The alignment further reveals an inherent palindromic symmetry in the selected DNAs; it makes testable predictions of nucleosome positioning on the aligned sequences and for the creation of new positioning sequences, both of which are upheld experimentally; and it suggests new signals that may be important in translational nucleosome positioning.  相似文献   

14.
15.
16.
A new study takes an evolutionary approach to investigate to what extent nucleosome positioning is determined by underlying sequence or by trans-acting factors.  相似文献   

17.
18.
5-Bromodeoxyuridine (BrdU) modulates expression of particular genes associated with cellular differentiation and senescence. Our previous studies have suggested an involvement of chromatin structure in this phenomenon. Here, we examined the effect of 5-bromouracil on nucleosome positioning in vivo using TALS plasmid in yeast cells. This plasmid can stably and precisely be assembled nucleosomes aided by the α2 repressor complex bound to its α2 operator. Insertion of AT-rich sequences into a site near the operator destabilized nucleosome positioning dependent on their length and sequences. Addition of BrdU almost completely disrupted nucleosome positioning through specific AT-tracts. The effective AT-rich sequences migrated faster on polyacrylamide gel electrophoresis, and their mobility was further accelerated by substitution of thymine with 5-bromouracil. Since this property is indicative of a rigid conformation of DNA, our results suggest that 5-bromouracil disrupts nucleosome positioning by inducing A-form-like DNA.  相似文献   

19.
A-tracts are functionally important DNA sequences which induce helix bending and have peculiar structural properties. While A-tract structure has been qualitatively well characterized, their mechanical properties remain controversial. A-tracts appear structurally rigid and resist nucleosome formation, but seem flexible in DNA looping. In this work, we investigate mechanical properties of symmetric AnTn and asymmetric A2n tracts for n = 3, 4, 5 using two types of coarse-grained models. The first model represents DNA as an ensemble of interacting rigid bases with non-local quadratic deformation energy, the second one treats DNA as an anisotropically bendable and twistable elastic rod. Parameters for both models are inferred from microsecond long, atomic-resolution molecular dynamics simulations. We find that asymmetric A-tracts are more rigid than the control G/C-rich sequence in localized distortions relevant for nucleosome formation, but are more flexible in global bending and twisting relevant for looping. The symmetric tracts, in contrast, are more rigid than asymmetric tracts and the control, both locally and globally. Our results can reconcile the contradictory stiffness data on A-tracts and suggest symmetric A-tracts to be more efficient in nucleosome exclusion than the asymmetric ones. This would open a new possibility of gene expression manipulation using A-tracts.  相似文献   

20.
Our laboratories recently completed SELEX experiments to isolate DNA sequences that most-strongly favor or disfavor nucleosome formation and positioning, from the entire mouse genome or from even more diverse pools of chemically synthetic random sequence DNA. Here we directly compare these selected natural and non-natural sequences. We find that the strongest natural positioning sequences have affinities for histone binding and nucleosome formation that are sixfold or more lower than those possessed by many of the selected non-natural sequences. We conclude that even the highest-affinity sequence regions of eukaryotic genomes are not evolved for the highest affinity or nucleosome positioning power. Fourier transform calculations on the selected natural sequences reveal a special significance for nucleosome positioning of a motif consisting of approximately 10 bp periodic placement of TA dinucleotide steps. Contributions to histone binding and nucleosome formation from periodic TA steps are more significant than those from other periodic steps such as AA (=TT), CC (=GG) and more important than those from the other YR steps (CA (=TG) and CG), which are reported to have greater conformational flexibility in protein-DNA complexes even than TA. We report the development of improved procedures for measuring the free energies of even stronger positioning sequences that may be isolated in the future, and show that when the favorable free energy of histone-DNA interactions becomes sufficiently large, measurements based on the widely used exchange method become unreliable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号