首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Retrograde transport links early/recycling endosomes to the trans-Golgi network (TGN), thereby connecting the endocytic and the biosynthetic/secretory pathways. To determine how internalized molecules are targeted to the retrograde route, we have interfered with the function of clathrin and that of two proteins that interact with it, AP1 and epsinR. We found that the glycosphingolipid binding bacterial Shiga toxin entered cells efficiently when clathrin expression was inhibited. However, retrograde transport of Shiga toxin to the TGN was strongly inhibited. This allowed us to show that for Shiga toxin, retrograde sorting on early/recycling endosomes depends on clathrin and epsinR, but not AP1. EpsinR was also involved in retrograde transport of two endogenous proteins, TGN38/46 and mannose 6-phosphate receptor. In conclusion, our work reveals the existence of clathrin-independent and -dependent transport steps in the retrograde route, and establishes a function for clathrin and epsinR at the endosome-TGN interface.  相似文献   

2.
Despite numerous advances in the identification of the molecular machinery for clathrin-mediated budding at the plasma membrane, the mechanistic details of this process remain incomplete. Moreover, relatively little is known regarding the regulation of clathrin-mediated budding at other membrane systems. To address these issues, we have utilized the powerful new approach of subcellular proteomics to identify novel proteins present on highly enriched clathrin-coated vesicles (CCVs). Among the ten novel proteins identified is the rat homologue of a predicted gene product from human, mouse, and Drosophila genomics projects, which we named enthoprotin. Enthoprotin is highly enriched on CCVs isolated from rat brain and liver extracts. In cells, enthoprotin demonstrates a punctate staining pattern that is concentrated in a perinuclear compartment where it colocalizes with clathrin and the clathrin adaptor protein (AP)1. Enthoprotin interacts with the clathrin adaptors AP1 and with Golgi-localized, gamma-ear-containing, Arf-binding protein 2. Through its COOH-terminal domain, enthoprotin binds to the terminal domain of the clathrin heavy chain and stimulates clathrin assembly. These data suggest a role for enthoprotin in clathrin-mediated budding on internal membranes. Our study reveals the utility of proteomics in the identification of novel vesicle trafficking proteins.  相似文献   

3.
Peptide motifs     
Clathrin-coated vesicles (CCVs) form at the plasma membrane, where they select cargo for endocytic entry into cells, and at the trans-Golgi network (TGN) and the endosomal system, where they generate carrier vesicles that transport proteins between these compartments. We have used subcellular fractionation and tandem mass spectrometry to identify proteins associated with brain CCVs. The resulting proteome contained a near complete inventory of the major functional proteins of synaptic vesicles (SVs), suggesting that clathrin-mediated endocytosis provides a major mechanism to recycle SV membrane proteins following neurotransmitter release. Additionally, we identified several new components of the machineries for clathrin-mediated membrane budding, including enthoprotin/epsinR and NECAP 1/2. These proteins bind with high specificity to the ear domains of the clathrin adaptor proteins (APs)-1 and-2, and, intriguingly, they each utilize novel peptide motifs based around the core sequence ØXXØ. Detailed mutational analysis of these motifs, coupled with structural studies of the ear domains, has revealed the basis of their specificity for clathrin adaptors. Moreover, the motifs have now been recognized in multiple proteins functioning in clathrin-mediated membrane trafficking, revealing new mechanisms in the formation and function of CCVs. Thus, proteomics analysis of isolated organelles can provide insights ranging from peptide motifs to global organelle function.  相似文献   

4.
In diverse species, actin assembly facilitates clathrin-coated vesicle (CCV) formation during endocytosis. This role might be an adaptation specific to the unique environment at the cell cortex, or it might be fundamental, facilitating CCV formation on different membranes. Proteins of the Sla2p/Hip1R family bind to actin and clathrin at endocytic sites in yeast and mammals. We hypothesized that Hip1R might also coordinate actin assembly with clathrin budding at the trans-Golgi network (TGN). Using deconvolution and time-lapse microscopy, we showed that Hip1R is present on CCVs emerging from the TGN. These vesicles contain the mannose 6-phosphate receptor involved in targeting proteins to the lysosome, and the actin nucleating Arp2/3 complex. Silencing of Hip1R expression by RNAi resulted in disruption of Golgi organization and accumulation of F-actin structures associated with CCVs on the TGN. Hip1R silencing and actin poisons slowed cathepsin D exit from the TGN. These studies establish roles for Hip1R and actin in CCV budding from the TGN for lysosome biogenesis.  相似文献   

5.
The heterotetrameric AP-1 adaptor complex is involved in the assembly of clathrin-coated vesicles originating from the trans-Golgi network (TGN). The beta 1 subunit of AP-1 is known to contain a consensus clathrin binding sequence, LLNLD (the so-called clathrin box motif), in its hinge segment through which the beta chain interacts with the N-terminal domains of clathrin trimers. Here, we report that the hinge region of the gamma subunit of human and mouse AP-1 contains two copies of a new variant, LLDLL, of the clathrin box motif that also bind to the terminal domain of the clathrin heavy chain. High-affinity binding of the gamma hinge to clathrin trimers requires both LLDLL sequences to be present and the spacing between them to be maintained. We also identify an independent clathrin-binding site within the appendage domain of the gamma subunit that interacts with a region of clathrin other than the N-terminal domain. Clathrin polymerization is promoted by glutathione S-transferase (GST)-gamma hinge, but not by GST-gamma appendage. However, the hinge and appendage domains of gamma function in a cooperative manner to recruit and polymerize clathrin, suggesting that clathrin lattice assembly at the TGN involves multivalent binding of clathrin by the gamma and beta1 subunits of AP-1.  相似文献   

6.
Clathrin-coated vesicles (CCVs) sort proteins at the plasma membrane, endosomes and trans Golgi network for multiple membrane traffic pathways. Clathrin recruitment to membranes and its self-assembly into a polyhedral coat depends on adaptor molecules, which interact with membrane-associated vesicle cargo. To determine how adaptors induce clathrin recruitment and assembly, we mapped novel interaction sites between these coat components. A site in the ankle domain of the clathrin triskelion leg was identified that binds a common site on the appendages of tetrameric [AP1 and AP2] and monomeric (GGA1) adaptors. Mutagenesis and modeling studies suggested that the clathrin-GGA1 appendage interface is nonlinear, unlike other peptide-appendage interactions, but overlaps with a sandwich domain binding site for accessory protein peptides, allowing for competitive regulation of coated vesicle formation. A novel clathrin box in the GGA1 hinge region was also identified and shown to mediate membrane recruitment of clathrin, while disruption of the clathrin-GGA1 appendage interaction did not affect recruitment. Thus, the distinct sites for clathrin-adaptor interactions perform distinct functions, revealing new aspects to regulation of CCV formation.  相似文献   

7.
Clathrin-coated vesicles (CCVs) mediate transport between the plasma membrane, endosomes and the trans Golgi network. Using comparative proteomics, we have identified coated-vesicle-associated kinase of 104 kDa (CVAK104) as a candidate accessory protein for CCV-mediated trafficking. Here, we demonstrate that the protein colocalizes with clathrin and adaptor protein-1 (AP-1), and that it is associated with a transferrin-positive endosomal compartment. Consistent with these observations, clathrin as well as the cargo adaptors AP-1 and epsinR can be coimmunoprecipitated with CVAK104. Small interfering RNA (siRNA) knockdown of CVAK104 in HeLa cells results in selective loss of the SNARE proteins syntaxin 8 and vti1b from CCVs. Morpholino-mediated knockdown of CVAK104 in Xenopus tropicalis causes severe developmental defects, including a bent body axis and ventral oedema. Thus, CVAK104 is an evolutionarily conserved protein involved in SNARE sorting that is essential for normal embryonic development.  相似文献   

8.
The heterotetrameric AP2 adaptor (alpha, beta 2, mu 2 and sigma 2 subunits) plays a central role in clathrin-mediated endocytosis. We present the protein recruitment function and 1.7 A resolution structure of its beta 2-appendage domain to complement those previously determined for the mu 2 subunit and alpha appendage. Using structure-directed mutagenesis, we demonstrate the ability of the beta 2 appendage alone to bind directly to clathrin and the accessory proteins AP180, epsin and eps15 at the same site. Clathrin polymerization is promoted by binding of clathrin simultaneously to the beta 2-appendage site and to a second site on the adjacent beta 2 hinge. This results in the displacement of the other ligands from the beta 2 appendage. Thus clathrin binding to an AP2-accessory protein complex would cause the controlled release of accessory proteins at sites of vesicle formation.  相似文献   

9.
EpsinR is an adaptor for the SNARE protein Vti1b   总被引:9,自引:4,他引:5       下载免费PDF全文
EpsinR is a clathrin-coated vesicle (CCV)-associated protein that binds to vti1b, suggesting that it may be a vti1b-selective adaptor. Depletion of epsinR to undetectable levels in HeLa cells using siRNA causes vti1b to redistribute from the perinuclear region to the cell periphery, but vti1a also redistributes in epsinR-depleted cells, and both vti isoforms redistribute in AP-1–depleted cells. As a more direct assay for epsinR function, we isolated CCVs from control and siRNA-treated cells and then looked for differences in cargo content. In clathrin-depleted cells, both coat and cargo proteins are greatly reduced in this preparation. Knocking down epsinR causes a ~50% reduction in the amount of AP-1 copurifying with CCVs and vice versa, indicating that the two proteins are dependent on each other for maximum incorporation into the coat. In addition, vti1b, but not vti1a, is reduced by >70% in CCVs from both epsinR- and AP-1–depleted cells. Because AP-1 knockdown reduces the amount of epsinR in CCVs, it is possible that its effect on vti1b may be indirect. These findings provide in vivo evidence that epsinR is an adaptor for vti1b, and they also show that CCV isolation can be used as an assay for adaptor function.  相似文献   

10.
Polyglutamine expansion in huntingtin is the underlying mutation leading to neurodegeneration in Huntington disease. This mutation influences the interaction of huntingtin with different proteins, including huntingtin-interacting protein 1 (HIP1), in which affinity to bind to mutant huntingtin is profoundly reduced. Here we demonstrate that HIP1 colocalizes with markers of clathrin-mediated endocytosis in neuronal cells and is highly enriched on clathrin-coated vesicles (CCVs) purified from brain homogenates. HIP1 binds to the clathrin adaptor protein 2 (AP2) and the terminal domain of the clathrin heavy chain, predominantly through a small fragment encompassing amino acids 276-335. This region, which contains consensus clathrin- and AP2-binding sites, functions in conjunction with the coiled-coil domain to target HIP1 to CCVs. Expression of various HIP1 fragments leads to a potent block of clathrin-mediated endocytosis. Our findings demonstrate that HIP1 is a novel component of the endocytic machinery.  相似文献   

11.
S Hning  J Griffith  H J Geuze    W Hunziker 《The EMBO journal》1996,15(19):5230-5239
Diversion of membrane proteins from the trans-Golgi network (TGN) or the plasma membrane into the endosomal system occurs via clathrin-coated vesicles (CCVs). These sorting events may require the interaction of cytosolic domain signals with clathrin adaptor proteins (APs) at the TGN (AP-1) or the plasma membrane (AP-2). While tyrosine- and di-leucine-based signals in several proteins mediate endocytosis via cell surface CCVs, segregation into Golgi-derived CCVs has so far only been documented for the mannose 6-phosphate receptors, where it is thought to require a casein kinase II phosphorylation site adjacent to a di-leucine motif. Although recently tyrosine-based signals have also been shown to interact with the mu chain of AP-1 in vitro, it is not clear if these signals also bind intact AP-1 adaptors, nor if they can mediate sorting of proteins into AP-1 CCVs. Here we show that the cytosolic domain of the lysosomal membrane glycoprotein lamp-1 binds AP-1 and AP-2. Furthermore, lamp-1 is present in AP-1-positive vesicles and tubules in the trans-region on the Golgi complex. AP-1 binding as well as localization to AP-1 CCVs require the presence of the functional tyrosine-based lysosomal targeting signal of lamp-1. These results indicate that lamp-1 can exit the TGN in CCVs and that tyrosine signals can mediate these sorting events.  相似文献   

12.
The precise functions of most of the proteins that participate in clathrin-mediated intracellular trafficking are unknown. We investigated two such proteins, epsinR and gadkin, using the knocksideways method, which rapidly depletes proteins from the available pool by trapping them onto mitochondria. Although epsinR is known to be an N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE)-specific adaptor, the epsinR knocksideways blocked the production of the entire population of intracellular clathrin-coated vesicles (CCVs), suggesting a more global function. Using the epsinR knocksideways data, we were able to estimate the copy number of all major intracellular CCV proteins. Both sides of the vesicle are densely covered, indicating that CCVs sort their cargo by molecular crowding. Trapping of gadkin onto mitochondria also blocked the production of intracellular CCVs but by a different mechanism: vesicles became cross-linked to mitochondria and pulled out toward the cell periphery. Both phenotypes provide new insights into the regulation of intracellular CCV formation, which could not have been found using more conventional approaches.  相似文献   

13.
Drs2p-dependent formation of exocytic clathrin-coated vesicles in vivo   总被引:1,自引:0,他引:1  
The small GTP binding protein ARF has been implicated in budding clathrin-coated vesicles (CCVs) from Golgi and endosomal membranes. An arf1 synthetic lethal screen identified DRS2/SWA3 along with a clathrin heavy-chain conditional allele (chc1-5/swa5-1) and SWA2, encoding the yeast auxilin-like protein involved in uncoating CCVs. Drs2p/Swa3p is a P-type ATPase and a potential aminophospholipid translocase that localizes to the trans-Golgi network (TGN) in yeast. Genetic and phenotypic analyses of drs2Delta mutants suggested that Drs2p was required for clathrin function. To address a potential role for Drs2p in CCV formation from the TGN in vivo, we have performed epistasis analyses between drs2 and mutations that cause accumulation of distinct populations of post-Golgi vesicles. We find that Drs2p is required to form a specific class of secretory vesicles that accumulate when the actin cytoskeleton is disrupted. Accumulation of these vesicles also requires clathrin and is perturbed by mutation of AP-1, but not AP-2, AP-3, or GGA adaptins. Most of the accumulated vesicles are uncoated; however, clathrin coats can be partially stabilized on these vesicles by deletion of SWA2. These data provide the first in vivo evidence for an integral membrane protein requirement in forming CCVs.  相似文献   

14.
Clathrin-mediated endocytosis involves the assembly of a network of proteins that select cargo, modify membrane shape and drive invagination, vesicle scission and uncoating. This network is initially assembled around adaptor protein (AP) appendage domains, which are protein interaction hubs. Using crystallography, we show that FxDxF and WVxF peptide motifs from synaptojanin bind to distinct subdomains on alpha-appendages, called 'top' and 'side' sites. Appendages use both these sites to interact with their binding partners in vitro and in vivo. Occupation of both sites simultaneously results in high-affinity reversible interactions with lone appendages (e.g. eps15 and epsin1). Proteins with multiple copies of only one type of motif bind multiple appendages and so will aid adaptor clustering. These clustered alpha(appendage)-hubs have altered properties where they can sample many different binding partners, which in turn can interact with each other and indirectly with clathrin. In the final coated vesicle, most appendage binding partners are absent and thus the functional status of the appendage domain as an interaction hub is temporal and transitory giving directionality to vesicle assembly.  相似文献   

15.
Prosaposin (SGP-1) and GM2 activator protein (GM2AP) are soluble sphingolipid activator proteins (SAPs) that are targeted to the lysosomal compartment of Sertoli cells to aid hydrolases in the breakdown of glycosphingolipids. To reach the lysosome, most soluble proteins must interact with the mannose 6-phosphate receptor (MPR). To be sorted from the Golgi, the MPR must bind to the Golgi associated, gamma-adaptin homologous, ARF binding proteins (GGAs), a group of monomeric adaptor proteins responsible for the recruitment of clathrin. It is well established, however, that the lysosomes of I-cell disease (ICD) patients have near normal levels of several lysosomal proteins, including prosaposin and GM2AP. ICD results from a mutation in the phosphotransferase that adds mannose 6-phosphate to hydrolases. Thus, prosaposin and GM2AP can traffic to lysosomes in a MPR independent manner. Previous work has demonstrated that an interaction with sphingomyelin in the Golgi membrane is necessary for the targeting of prosaposin by an unknown receptor. Using a TM4 Sertoli cell line, we tested the hypothesis that prosaposin and GM2AP are targeted to the lysosomal compartment via the sortilin receptor, which has been recently shown to have a GGA binding motif. Interestingly, dominant-negative GGAs, unable to bind clathrin to shuttle from the Golgi, prevented the trafficking of prosaposin and GM2AP to lysosomes. A dominant negative construct of sortilin lacking the GGA binding domain retained prosaposin and GM2AP in the Golgi. In conclusion, our results showed that the trafficking of prosaposin and GM2AP to the lysosome is dependent on sortilin.  相似文献   

16.
We used tandem mass spectrometry with peptide counts to identify and to determine the relative levels of expression of abundant protein components of highly enriched clathrin-coated vesicles (CCVs) from rat liver. The stoichiometry of stable protein complexes including clathrin heavy chain and clathrin light chain dimers and adaptor protein (AP) heterotetramers was assessed. We detected a deficit of clathrin light chain compared with clathrin heavy chain in non-brain tissues, suggesting a level of regulation of clathrin cage formation specific to brain. The high ratio of AP-1 to AP-2 in liver CCVs is reversed compared with brain where there is more AP-2 than AP-1. Despite this, general endocytic cargo proteins were readily detected in liver but not in brain CCVs, consistent with the previous demonstration that a major function for brain CCVs is recycling synaptic vesicles. Finally we identified 21 CCV-associated proteins in liver not yet characterized in mammals. Our results further validate the peptide accounting approach, reveal new information on the properties of CCVs, and allow for the use of quantitative proteomics to compare abundant components of organelles under different experimental and pathological conditions.  相似文献   

17.
18.
Murakami N  Bolton DC  Kida E  Xie W  Hwang YW 《PloS one》2012,7(4):e34845
Dyrk1A phosphorylated multiple proteins in the clathrin-coated vesicle (CCV) preparations obtained from rat brains. Mass spectrometric analysis identified MAP1A, MAP2, AP180, and α- and β-adaptins as the phosphorylated proteins in the CCVs. Each protein was subsequently confirmed by [(32)P]-labeling and immunological methods. The Dyrk1A-mediated phosphorylation released the majority of MAP1A and MAP2 and enhanced the release of AP180 and adaptin subunits from the CCVs. Furthermore, Dyrk1A displaced adaptor proteins physically from CCVs in a kinase-concentration dependent manner. The clathrin heavy chain release rate, in contrast, was not affected by Dyrk1A. Surprisingly, the Dyrk1A-mediated phosphorylation of α- and β-adaptins led to dissociation of the AP2 complex, and released only β-adaptin from the CCVs. AP180 was phosphorylated by Dyrk1A also in the membrane-free fractions, but α- and β-adaptins were not. Dyrk1A was detected in the isolated CCVs and was co-localized with clathrin in neurons from mouse brain sections and from primary cultured rat hippocampus. Previously, we proposed that Dyrk1A inhibits the onset of clathrin-mediated endocytosis in neurons by phosphorylating dynamin 1, amphiphysin 1, and synaptojanin 1. Current results suggest that besides the inhibition, Dyrk1A promotes the uncoating process of endocytosed CCVs.  相似文献   

19.
The HIV-1 Nef protein perturbs the trafficking of membrane proteins such as CD4 by interacting with clathrin-adaptor complexes. We previously reported that Nef alters early/recycling endosomes, but its role at the plasma membrane is poorly documented. Here, we used total internal reflection fluorescence microscopy, which restricts the analysis to a approximately 100 nm region of the adherent surface of the cells, to focus on the dynamic of Nef at the plasma membrane relative to that of clathrin. Nef colocalized both with clathrin spots (CS) that remained static at the cell surface, corresponding to clathrin-coated pits (CCPs), and with approximately 50% of CS that disappeared from the cell surface, corresponding to forming clathrin-coated vesicles (CCVs). The colocalization of Nef with clathrin required the di-leucine motif essential for Nef binding to AP complexes and was independent of CD4 expression. Furthermore, analysis of Nef mutants showed that the capacity of Nef to induce internalization and downregulation of CD4 in T lymphocytes correlated with its localization into CCPs. In conclusion, this analysis shows that Nef is recruited into CCPs and into forming CCVs at the plasma membrane, in agreement with a model in which Nef uses the clathrin-mediated endocytic pathway to induce internalization of some membrane proteins from the surface of HIV-1-infected T cells.  相似文献   

20.
We have used GST pulldowns from A431 cell cytosol to identify three new binding partners for the gamma-adaptin appendage: Snx9, ARF GAP1, and a novel ENTH domain-containing protein, epsinR. EpsinR is a highly conserved protein that colocalizes with AP-1 and is enriched in purified clathrin-coated vesicles. However, it does not require AP-1 to get onto membranes and remains membrane-associated in AP-1-deficient cells. Moreover, although epsinR binds AP-1 via its COOH-terminal domain, its NH(2)-terminal ENTH domain can be independently recruited onto membranes, both in vivo and in vitro. Brefeldin A causes epsinR to redistribute into the cytosol, and recruitment of the ENTH domain requires GTPgammaS, indicating that membrane association is ARF dependent. In protein-lipid overlay assays, the epsinR ENTH domain binds to PtdIns(4)P, suggesting a possible mechanism for ARF-dependent recruitment onto TGN membranes. When epsinR is depleted from cells by RNAi, cathepsin D is still correctly processed intracellularly to the mature form. This indicates that although epsinR is likely to be an important component of the AP-1 network, it is not necessary for the sorting of lysosomal enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号