首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Damgaard C 《Genetics》2000,154(2):813-821
The expected fixation probability of an advantageous allele was examined in a partially self-fertilizing hermaphroditic plant species using the diffusion approximation. The selective advantage of the advantageous allele was assumed to be increased viability, increased fecundity, or an increase in male fitness. The mode of selection, as well as the selfing rate, the population size, and the dominance of the advantageous allele, affect the fixation probability of the allele. In general it was found that increases in selfing rate decrease the fixation probability under male sexual selection, increase fixation probability under fecundity selection, and increase when recessive and decrease when dominant under viability selection. In some cases the highest fixation probability of advantageous alleles under fecundity or under male sexual selection occurred at an intermediary selfing rate. The expected mean fixation times of the advantageous allele were also examined using the diffusion approximation.  相似文献   

2.
Edward Pollak 《Genetics》1987,117(2):353-360
Some stochastic theory is developed for monoecious populations of size N in which there are probabilities beta and 1 - beta of reproduction by selfing and by random mating. It is assumed that beta much greater than N-1. Expressions are derived for the inbreeding coefficient of one random individual and the coefficient of kinship of two random separate individuals at time t. The mean and between-lines variance of the fraction of copies of a locus that are identical in two random separate individuals in an equilibrium population are obtained under the assumption that there is an infinite number of possible alleles. It is found that the theory for random mating populations holds if the effective population number is Ne = N'/(1 + FIS), where FIS is the inbreeding coefficient at equilibrium when N is infinite and N' is the reciprocal of the probability that two gametes contributing to random separate adults come from the same parent. When there is a binomial distribution of successful gametes emanating from each adult, N' = N. An approximation to the probability that an allele A survives if it is originally present in one AA heterozygote is found to be 2(N'/N)(FISS1 + (1 - FIS)S2), where S1 and S2 are the selective advantages of AA and AA in comparison with AA. In the last section it is shown that if there is partial full sib mating and binomial offspring distributions Ne = N/(1 + 3FIS).  相似文献   

3.
E. Pollak 《Genetics》1988,120(1):303-311
It is assumed that a population has M males in every generation, each of which is permanently mated with c-1 females, and that a proportion beta of matings are between males and their full sisters or half-sisters. Recurrence equations are derived for the inbreeding coefficient of one random individual, coefficients of kinship of random pairs of mates and probabilities of allelic identity when the infinite alleles model holds. If Ft is the inbreeding coefficient at time t and M is large, (1-Ft)/(1-Ft-1)----1-1/(2Ne) as t increases. The effective population number Ne = aM/[1 + (2a-1)FIS], where FIS is the inbreeding coefficient at equilibrium when M is infinite and the constant a depends upon the conditional probabilities of matings between full sibs and the two possible types of half-sibs. When there are M permanent couples, an approximation to the probability that an allele A survives if it is originally present in one AA heterozygote is proportional to FISs1 + (1-FIS)s2, where s1 and s2 are the selective advantages of AA and AA in comparison with AA. The paper concludes with a comparison between the results when there is partial selfing, partial full sib mating (c = 2) and partial sib mating when c is large.  相似文献   

4.
On the Origin of Meiotic Reproduction: A Genetic Modifier Model   总被引:2,自引:1,他引:1       下载免费PDF全文
We study the conditions under which a rare allele that modifies the relative rates of meiotic reproduction and apomixis increases in a population in which meiotic reproduction entails selfing as well as random outcrossing. A distinct locus, at which mutation maintains alleles that are lethal in homozygous form, determines viability. We find that low viability of carriers of the lethal alleles, high rates of selfing, dominance of the introduced modifier allele, and lower rates of recombination promote the evolution of meiosis. Meiotic reproduction can evolve even in the absence of linkage between the modifier and the viability locus. The adaptive value of meiotic reproduction depends on the relative viabilities of offspring derived by meiosis and by apomixis, and on associations between the modifier and the viability locus. Meiotic reproduction, particularly under selfing, generates more diverse offspring, including those with very high and very low viability. Elimination of offspring with low viability generates positive associations between enhancers of meiotic reproduction and high viability. In addition, partial selfing generates positive associations in heterozygosity (identity disequilibrium) between the modifier and the viability locus, even in the absence of linkage. The two kinds of associations together can compensate for initial reductions in mean offspring viability under meiotic reproduction.  相似文献   

5.
A formula is obtained for the probability that two genes at a single locus, sampled at random from a population at time t, are of particular types. The model assumed is a diffusion approximation to a neutral Wright-Fisher model in which mutation is general and not necessarily symmetric. An example is given of a population in which one allele has a high mutation rate, and the others have an equal, low mutation rate. The matrix Q, with elements given by the probability of sampling two alleles of particular types, is calculated exactly and approximately for this case. A formula is given for the distribution of the number of segregating sites occurring in two randomly sampled finite sequences of completely linked sites, with general mutation at a site and identical mutation structure between sites.  相似文献   

6.
A 2-locus model of the evolution of self-incompatibility in a population practicing partial selfing is presented. An allele is introduced at a modifier locus which influences the strength of the rejection reaction expressed by the style in response to antigens recognized in pollen. Two causes of inbreeding depression are investigated. First, offspring viability depends solely on the source (self or non-self) of the fertilizing pollen. Second, offspring viability declines with the expression of recessive deleterious alleles, segregating at a third (disease) locus, which exhibit an imperfect association with antigen alleles. Evolutionary changes occurring at the disease locus are not considered in this study. The condition under which a modifier allele that intensifies the incompatibility reaction increases when rare depends upon the number of antigens, the frequency of recessive deleterious alleles at the disease locus, and the level of association between the antigen locus and the disease locus. It is the improvement of viability among offspring derived by outcrossing, rather than the prevention of self-fertilization, that may represent the primary evolutionary function of genetic incompatibility systems.  相似文献   

7.
Simple theories for the evolution of breeding systems suggest that the fate of an allele that modifies the rate of self-fertilization hinges only on the degree to which selfing reduces opportunities for outcrossing ("pollen discounting") and the extent of inbreeding depression. These theories predict that outcrossing evolves whenever deleterious mutations have a more severe effect in combination than expected from their individual effects. We study the evolutionary dynamics of a modifier of the rate of self-fertilization in populations subject to complete pollen discounting and recurrent mutations which impair viability at a single locus in diploids and at two loci in haploids. Our analysis indicates that genetic associations arising immediately upon the introduction of a rare modifier allele generate substantial quantitative and qualitative departures from expectation. Higher rates of segregation under selfing in our one-locus diploid model generate positive associations between enhancers of selfing and wild-type viability alleles, which in turn favor the evolution of selfing under a wider range of conditions than expected. Greater opportunities for recombination under outcrossing in our two-locus haploid model generate positive associations between enhancers of outcrossing and wild-type viability alleles. These associations favor the evolution of outcrossing under a wider range of conditions, and introduce the possibility of stable mixed mating systems involving both selfing and outcrossing. Our explicit analysis of genetic associations between loci affecting viability and the rate of self-fertilization indicates that modifiers that enhance the production of offspring with very high (and very low) viability by promoting segregation or recombination develop positive associations with high viability. This advantage of producing extremes can compensate for an initial disadvantage in offspring number.  相似文献   

8.
A general model for sample size determination for collecting germplasm   总被引:2,自引:0,他引:2  
The paper develops a general model for determining the minimum sample size for collecting germplasm for genetic conservation with an overall objective of retaining at least one copy of each allele with preassigned probability. It considers sampling from a large heterogeneous 2k-ploid population under a broad range of mating systems leading to a general formula applicable to a fairly large number of populations. It is found that the sample size decreases as ploidy levels increase, but increases with the increase in inbreeding. Under exclusive selfing the sample size is the same, irrespective of the ploidy level, when other parameters are held constant. Minimum sample sizes obtained for diploids by this general formula agree with those already reported by earlier workers. The model confirms the conservative characteristics of genetic variability of polysomic inheritance under chromosomal segregation.  相似文献   

9.
According to the Reduction Principle, when a recombination-reducing allele is introduced near an equilibrium that depends on recombination, that allele will increase in frequency. If the allele increases the recombination rate, it will be expelled from the population. There are known cases where this principle fails. In this respect, an interesting question is what kind of two-sex viability regimes support a general Reduction Principle. In this paper, we construct a model of viabilities, due to two autosomal linked genes, which differ between the sexes, such that recombination is different in the sexes. A complete analysis is provided for the case where recombination is absent in one sex. It is proved that the Reduction Principle is still valid for recombination in the other sex.Research supported in part by NIH grants GM28016 and GM10452  相似文献   

10.
 We deduce and prove a general formula to approximate the change in frequency of a mutant allele under weak selection, when this allele is introduced in small frequency into a population which was previously at a fixation state. We apply the formula to autosomal genes in partial selfing models and to autosomal as well as sex-linked genes in partial sib mating models. It is shown that the fate of a rare mutant allele depends not only on the selection parameters, the inbreeding coefficient and the reproductive values of the sexes in sex-differentiated populations, but also on coefficients of relatedness between mates. This is interpreted as a kin selection effect caused by inbreeding per se. Received: 3 December 2001 / Revised version: 10 April 2002 / Published online: 19 November 2002 Research supported in part by NSERC of Canada and FCAR of Québec. Mathematics Subject Classification (2000): Primary 60J80, Secondary 92D10, 92D25 Keywords or phrases: Adaptive topography – Partial selfing – Partial sib mating – Kin selection  相似文献   

11.
We describe the evolutionary dynamics of a modifier of selfing coevolving with a locus subject to symmetric overdominance in viability under general levels of reduction in pollination success as a consequence of self-fertilization (pollen discounting). Simple models of the evolution of breeding systems that represent inbreeding depression as a constant parameter do not admit the possibility of stable mixed mating systems involving both inbreeding and random mating. Contrary to this expectation, we find that coevolution between a modifier of selfing and a single overdominant locus situated anywhere in the genome can generate evolutionarily attracting mixed mating systems. Two forms of association between the modifier locus and the viability locus promote the evolution of outcrossing. The favored heterozygous genotype at the viability locus develops positive associations with modifier alleles that enhance outcrossing and with the heterozygous genotype at the modifier locus. Associations between outcrossing and high viability evolve immediately upon the introduction of a rare modifier allele, even in the absence of linkage.  相似文献   

12.
It has been hypothesized that the pathogenesis of idiopathic talipes equinovarus (ITEV, or clubfoot) is explained by genetic regulation of development and growth. The objective of the present study was to determine whether a single Mendelian gene explains the probability of having ITEV in a sample of 143 Caucasian pedigrees from Iowa. These pedigrees were ascertained through probands with ITEV. Complex segregation analyses were undertaken using a regressive logistic model. The results of these analyses strongly rejected the hypotheses that the probability of having ITEV in these pedigrees was explained by a non-Mendelian pattern of transmission with residual sibling correlation, a nontransmitted (environmental) factor with residual sibling correlation, or residual sibling correlation alone. These results were consistent with the hypothesis that the probability of having ITEV was explained by the Mendelian segregation of a single gene with two alleles plus the effects of some unmeasured factor(s) shared among siblings. The segregation of alleles at this single Mendelian gene indicated that the disease allele A was incompletely dominant to the nondisease allele B. The disease allele A, associated with ITEV affection, was estimated to occur in the population of inference with a frequency of .007. After adjusting for sex-specific population incidences of ITEV, the conditional probability (penetrance) of ITEV affection given the AA, AB, and BB genotypes was computed to be 1.0, .039, and .0006, respectively. Individual pedigrees in this sample that most strongly supported the single Mendelian gene hypothesis were identified. These pedigrees are candidates for genetic linkage analyses or DNA association studies.  相似文献   

13.
Roze D  Rousset F 《Genetics》2004,167(2):1001-1015
Both the spatial distribution of organisms and their mode of reproduction have important effects on the change in allele frequencies within populations. In this article, we study the combined effect of population structure and the rate of partial selfing of organisms on the efficiency of selection against recurrent deleterious mutations. Assuming an island model of population structure and weak selection, we express the mutation load, the within- and between-deme inbreeding depression, and heterosis as functions of the frequency of deleterious mutants in the metapopulation; we then use a diffusion model to calculate an expression for the equilibrium probability distribution of this frequency of deleterious mutants. This allows us to derive approximations for the average mutant frequency, mutation load, inbreeding depression, and heterosis, the simplest ones being Equations 35-39 in the text. We find that population structure can help to purge recessive deleterious mutations and reduce the load for some parameter values (in particular when the dominance coefficient of these mutations is <0.2-0.3), but that this effect is reversed when the selfing rate is above a given value. Conversely, within-deme inbreeding depression always decreases, while heterosis always increases, with the degree of population subdivision, for all selfing rates.  相似文献   

14.
A new deterministic method for predicting simultaneous inbreeding coefficients at three and four loci is presented. The method involves calculating the conditional probability of IBD (identical by descent) at one locus given IBD at other loci, and multiplying this probability by the prior probability of the latter loci being simultaneously IBD. The conditional probability is obtained applying a novel regression model, and the prior probability from the theory of digenic measures of Weir and Cockerham. The model was validated for a finite monoecious population mating at random, with a constant effective population size, and with or without selfing, and also for an infinite population with a constant intermediate proportion of selfing. We assumed discrete generations. Deterministic predictions were very accurate when compared with simulation results, and robust to alternative forms of implementation. These simultaneous inbreeding coefficients were more sensitive to changes in effective population size than in marker spacing. Extensions to predict simultaneous inbreeding coefficients at more than four loci are now possible.  相似文献   

15.
A comprehensive understanding of plant mating system evolution requires detailed genetic models for both the mating system and inbreeding depression, which are often intractable. A simple approximation assuming that the mating system evolves by small infrequent mutational steps has been proposed. We examine its accuracy by comparing the evolutionarily stable selfing rates it predicts to those obtained from an explicit genetic model of the selfing rate, when inbreeding depression is caused by partly recessive deleterious mutations at many loci. Both models also include pollen limitation and pollen discounting. The approximation produces reasonably accurate predictions with a low or moderate genomic mutation rate to deleterious alleles, on the order of U = 0.02–0.2. However, for high mutation rates, the predictions of the full genetic model differ substantially from those of the approximation, especially with nearly recessive lethal alleles. This occurs because when a modifier allele affecting the selfing rate is rare, homozygous modifiers are produced mainly by selfing, which enhances the opportunity for purging nearly recessive lethals and increases the marginal fitness of the allele modifying the selfing rate. Our results confirm that explicit genetic models of selfing rate and inbreeding depression are required to understand mating system evolution.  相似文献   

16.
The standard models of selfing in seed plants consider only the ovules, which are assumed to have a constant selfing rate. It has recently become clear, however, that hermaphrodite or monoecious populations frequently show sexual asymmetry (nonconstant pollen:ovule fertilities among individuals). Such asymmetry usually results in pollen selfing rates which differ from those for the ovules and are frequency-dependent even for constant ovule selfing rates. A recent study of selfing rates for all gametes of an individual is extended here to include four selfing rates (for ovules, pollen, all gametes, and zygotes), and simple mathematical relationships linking the four rates are obtained. Unlike earlier models of selfing, it is not assumed that the ovule selfing rate is constant, but instead that this rate, like all the others, is determined by the mobility of the pollen, which in turn is determined by the floral biology and ecology. It is found that all four selfing rates are usually frequency-dependent. The selfing rate for all gametes (the combined selfing rate) is usually intermediate between those for the ovules and pollen, and the zygotic rate is usually the smallest of the four. The exceptions to the above statements occur for relatively extreme situations, such as complete selfing for pollen or ovules, no selfing, or sexual symmetry. Three modes of selfing are considered: prior (PS), competing (CS), and delayed (DS) self-fertilization. It is shown that if there are at least two types with different selfing rates in the population, then the ranking of their selfing rates may depend upon the frequencies of the types (for the combined and the zygotic rates), may be frequency-independent (ovule rate), or may be dependent or independent, according to the mode of selfing (pollen rate). The effects of the various influences on the amount of selfing are by no means negligible. Thus a numerical study shows pollen selfing rates for one type which vary from 0.09 to 0.96, according to its frequency. Another numerical result shows a change in combined selfing rate from 0.13 to 0.86, depending solely on the mode of selfing. Results for Scots Pine show that an ovule selfing rate of 0.5 was accompanied by a combined rate of 0.143.The population selfing rate is not the same as the mean of individual selfing rates, and can only be obtained if female fitnesses as well as ovule selfing rates are known for each type.Previous models of selfing have failed to distinguish between the effects of increased selfing and increased pollen fertility, with the result that increased selfing always resulted in greater fitness. In the present models the two effects are distinguishable, and it is found that increased selfing may result in increased or decreased fitness, depending also on population density and on a form of pollen density. Thus the old dogma that in the absence of viability and fertility selection increased selfing always results in increased fitness is finally refuted, and the importance of the influence of ecological parameters on selfing and fitness is emphasized, since population density and pollen density influence the selfing rates.  相似文献   

17.
Lessard S  Kermany AR 《Genetics》2012,190(2):691-707
We use the ancestral influence graph (AIG) for a two-locus, two-allele selection model in the limit of a large population size to obtain an analytic approximation for the probability of ultimate fixation of a single mutant allele A. We assume that this new mutant is introduced at a given locus into a finite population in which a previous mutant allele B is already segregating with a wild type at another linked locus. We deduce that the fixation probability increases as the recombination rate increases if allele A is either in positive epistatic interaction with B and allele B is beneficial or in no epistatic interaction with B and then allele A itself is beneficial. This holds at least as long as the recombination fraction and the selection intensity are small enough and the population size is large enough. In particular this confirms the Hill-Robertson effect, which predicts that recombination renders more likely the ultimate fixation of beneficial mutants at different loci in a population in the presence of random genetic drift even in the absence of epistasis. More importantly, we show that this is true from weak negative epistasis to positive epistasis, at least under weak selection. In the case of deleterious mutants, the fixation probability decreases as the recombination rate increases. This supports Muller's ratchet mechanism to explain the accumulation of deleterious mutants in a population lacking recombination.  相似文献   

18.
A modified susceptible-infected-recovered (SIR) host-pathogen model is used to determine the influence of plant mating system on the outcome of a host-pathogen interaction. Unlike previous models describing how interactions between mating system and pathogen infection affect individual fitness, this model considers the potential consequences of varying mating systems on the prevalence of resistance alleles and disease within the population. If a single allele for disease resistance is sufficient to confer complete resistance in an individual and if both homozygote and heterozygote resistant individuals have the same mean birth and death rates, then, for any parameter set, the selfing rate does not affect the proportions of resistant, susceptible or infected individuals at equilibrium. If homozygote and heterozygote individual birth rates differ, however, the mating system can make a difference in these proportions. In that case, depending on other parameters, increased selfing can either increase or decrease the rate of infection in the population. Results from this model also predict higher frequencies of resistance alleles in predominantly selfing compared to predominantly outcrossing populations for most model conditions. In populations that have higher selfing rates, the resistance alleles are concentrated in homozygotes, whereas in more outcrossing populations, there are more resistant heterozygotes.  相似文献   

19.
A hybrid DNA (hDNA) model of recombination has been algebraically formulated, which allows the prediction of frequencies of postmeiotic segregation and conversion of a given allele and their probability of being associated with a crossing over. The model considered is essentially the "Aviemore model." In contrast to some other interpretations of recombination, it states that gene conversion can only result from the repair of heteroduplex hDNA, with postmeiotic segregation resulting from unrepaired heteroduplexes. The model also postulates that crossing over always occurs distally to the initiation site of the hDNA. Eleven types of conversion and postmeiotic segregation with or without associated crossover were considered. Their theoretical frequencies are given by 11 linear equations with ten variables, four describing heteroduplex repair, four giving the probability of hDNA formation and its topological properties and two giving the probability that crossing over occurs at the left or right of the converting allele. Using the experimental data of Kitani and coworkers on conversion at the six best studied gray alleles of Sordaria fimicola, we found that the model considered fit the data at a P level above or very close (allele h4) to the 5% level of sampling error provided that the hDNA is partly asymmetric. The best fitting solutions are such that the hDNA has an equal probability of being formed on either chromatid or, alternatively, that both DNA strands have the same probability of acting as the invading strand during hDNA formation. The two mismatches corresponding to a given allele are repaired with different efficiencies. Optimal solutions are found if one allows for repair to be more efficient on the asymmetric hDNA than on the symmetric one. In the case of allele g1, our data imply that the direction of repair is nonrandom with respect to the strand on which it occurs.  相似文献   

20.
A population with u deleterious mutations per genome per generation is considered in which only those individuals that carry less than a critical number k of mutations are viable. Besides a large number of loci subject to mutation and selection, the genome contains one or two special loci responsible for the mode of reproduction. Amphimixis vs. apomixis and amphimixis vs. selfing are considered separately. In the first case, the genome degradation rate v (= u/square root k) is found to play the decisive role, as in the case of recombination. When v greater than 1.25, obligate amphimixis is established. If v decreases below this value, the alleles with first low and then larger penetrance are fixed, until alleles conferring obligate asexual reproduction become advantageous. The proportion of resources allocated to produce seeds also increases with decrease of v. These results are unlikely to depend on the genetic basis of the mode of reproduction. The result of competition between outcrossing and selfing depends on both u and k, as well as on whether the mutations are recessive. The alleles for selfing with low penetrance are selected against if the mutations are at all recessive. The fitness of alleles with high penetrance depends primarily on u, decreasing when u increases. There may exist conditions when only the alleles providing intermediate selfing rates can be fixed in a population. In other cases a population may exist with either obligate outcrossing or selfing at a high rate. Thus, truncation selection against deleterious mutations may be a factor supporting obligate or facultative sex despite the twofold advantage of apomixis or selfing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号