共查询到20条相似文献,搜索用时 0 毫秒
1.
Matthieu Jules Ludovic Le Chat Stéphane Aymerich Dominique Le Coq 《Journal of bacteriology》2009,191(9):3168-3171
We present here experimental evidence that the Bacillus subtilis ywjI gene encodes a class II fructose-1,6-bisphosphatase, functionally equivalent to the fbp-encoded class III enzyme, and constitutes with the upstream gene, murAB, an operon transcribed at the same level under glycolytic or gluconeogenic conditions.Under glycolytic growth conditions, unidirectional phosphorylation of fructose-6-phosphate to fructose-1,6-bisphosphate is catalyzed by the 6-phosphofructokinase (EC 2.7.1.11). Under gluconeogenic growth conditions, the opposite reaction is catalyzed by the fructose-1,6-bisphosphatase (FBPase) (EC 3.1.3.11) and is required for the synthesis of fructose-6-phosphate and derived metabolites, such as cell wall precursors. Escherichia coli possesses two FBPases: the class I FBPase, encoded by fbp, is highly similar to eukaryotic enzymes, and the class II FBPase (GlpX) (3) has homologues in nearly all prokaryotic genera but in only a few eukaryotes (a green alga, an amoeba, and a moss) and a few archaean species (of the Methanosarcina genus). Biochemical, physiological, and genetic studies allowed the characterization of a Bacillus subtilis enzyme which defined a new class of bacterial FBPases (class III) not structurally related to those previously described and found mainly in Firmicutes (5-7). The gene encoding this activity was identified and, although structurally unrelated to the E. coli class I FBPase gene, was also named fbp (8). In E. coli, the major FBPase is the class I Fbp, whereas the class II GlpX seems to play a minor role (3). In other organisms, the major or even the only FBPase belongs to the class II GlpX family: Bacillus cereus possesses two glpX-like genes and no class I or class III FBPase-encoding gene (26); in Mycobacterium tuberculosis, FBPase activity is encoded only by a glpX-like gene, which has been shown to complement an E. coli mutant lacking such activity (18); in Corynebacterium glutamicum, the only FBPase, essential for growth on gluconeogenic carbon sources, belongs to class II (19). It has been shown that a B. subtilis fbp mutant was still able to grow on substrates such as d-fructose, glycerol, or l-malate as the sole carbon source, which indicated that this mutant could bypass the FBPase reaction during gluconeogenesis (6). Random mutagenesis (ethyl methanesulfonate treatment) performed with this fbp mutant enabled the definition of a B. subtilis locus (bfd) whose additional mutation prevented growth on gluconeogenic carbon sources, but this locus had not been characterized further (7). Determination of the nucleotide sequence of the whole B. subtilis chromosome (16) led to the identification of a putative gene, ywjI, encoding a protein displaying strong homologies with GlpX family members (e.g., 54% identity and 74% similarity with GlpX from C. glutamicum). This gene has therefore been annotated glpX, encoding a class II FBPase, but such annotation has never been validated by genetic or biochemical experimental evidence. In this work, we present experimental evidence that ywjI indeed encodes a class II FBPase. 相似文献
2.
3.
4.
Philippe Margot Michael Wahlen Ahmad Gholamhuseinian Patrick Piggot Dimitri Karamata 《Journal of bacteriology》1998,180(3):749-752
Bacillus subtilis cell wall-bound protein CWBP33 is encoded by lytE, a gene expressed during the exponential growth phase. Sequence analysis of LytE, a 33-kDa protein, reveals two domains. The N-terminal domain contains a threefold-repeated motif common to several peptidoglycan binding proteins, while the C-terminal domain, probably carrying the catalytic activity, has homology with certain exoproteins. Zymographs unambiguously reveal that the absence of CWBP33, due to inactivation of lytE, is accompanied by the loss of a lytic activity. In lytE mutants, the cell autolysis rate is significantly decreased, although autolysis of corresponding, purified cell walls does not seem to be affected. 相似文献
5.
6.
The Caenorhabditis Elegans Sel-1 Gene, a Negative Regulator of Lin-12 and Glp-1, Encodes a Predicted Extracellular Protein 总被引:2,自引:0,他引:2 下载免费PDF全文
The Caenorhabditis elegans lin-12 and glp-1 genes encode members of the LIN-12/NOTCH family of receptors. The sel-1 gene was identified as an extragenic suppressor of a lin-12 hypomorphic mutant. We show in this report that the sel-1 null phenotype is wild type, except for an apparent elevation in lin-12 and glp-1 activity in sensitized genetic backgrounds, and that this genetic interaction seems to be lin-12 and glp-1 specific. We also find that sel-1 encodes a predicted extracellular protein, with a domain sharing sequence similarity to predicted proteins from humans and yeast. SEL-1 may interact with the LIN-12 and GLP-1 receptors and/or their respective ligands to down-regulate signaling. 相似文献
7.
8.
9.
The New Rga Locus Encodes a Negative Regulator of Gibberellin Response in Arabidopsis Thaliana 总被引:8,自引:0,他引:8 下载免费PDF全文
We have identified a new locus involved in gibberellin (GA) signal transduction by screening for suppressors of the Arabidopsis thaliana GA biosynthetic mutant ga1-3. The locus is named RGA for repressor of ga1-3. Based on the recessive phenotype of the digenic rga/ga1-3 mutant, the wild-type gene product of RGA is probably a negative regulator of GA responses. Our screen for suppressors of ga1-3 identified 17 mutant alleles of RGA as well as 10 new mutant alleles at the previously identified SPY locus. The digenic (double homozygous) rga/ga1-3 mutants are able to partially repress several defects of ga1-3 including stem growth, leaf abaxial trichome initiation, flowering time, and apical dominance. The phenotype of the trigenic mutant (triple homozygous) rga/spy/ga1-3 shows that rga and spy have additive effects regulating flowering time, abaxial leaf trichome initiation and apical dominance. This trigenic mutant is similar to wild type with respect to each of these developmental events. Because rga/spy/ga1-3 is almost insensitive to GA for hypocotyl growth and its bolting stem is taller than the wild-type plant, the combined effects of the rga and spy mutations appear to allow GA-independent stem growth. Our studies indicate that RGA lies on a separate branch of the GA signal transduction pathway from SPY, which leads us to propose a modified model of the GA response pathway. 相似文献
10.
The chb operon of Escherichia coli is involved in the utilization of the β-glucosides chitobiose and cellobiose. The function of chbG (ydjC), the sixth open reading frame of the operon that codes for an evolutionarily conserved protein is unknown. We show that chbG encodes a monodeacetylase that is essential for growth on the acetylated chitooligosaccharides chitobiose and chitotriose but is dispensable for growth on cellobiose and chitosan dimer, the deacetylated form of chitobiose. The predicted active site of the enzyme was validated by demonstrating loss of function upon substitution of its putative metal-binding residues that are conserved across the YdjC family of proteins. We show that activation of the chb promoter by the regulatory protein ChbR is dependent on ChbG, suggesting that deacetylation of chitobiose-6-P and chitotriose-6-P is necessary for their recognition by ChbR as inducers. Strains carrying mutations in chbR conferring the ability to grow on both cellobiose and chitobiose are independent of chbG function for induction, suggesting that gain of function mutations in ChbR allow it to recognize the acetylated form of the oligosaccharides. ChbR-independent expression of the permease and phospho-β-glucosidase from a heterologous promoter did not support growth on both chitobiose and chitotriose in the absence of chbG, suggesting an additional role of chbG in the hydrolysis of chitooligosaccharides. The homologs of chbG in metazoans have been implicated in development and inflammatory diseases of the intestine, indicating that understanding the function of E. coli chbG has a broader significance. 相似文献
11.
12.
13.
Regulation of the lic Operon of Bacillus subtilis and Characterization of Potential Phosphorylation Sites of the LicR Regulator Protein by Site-Directed Mutagenesis 下载免费PDF全文
The lic operon of Bacillus subtilis is required for the transport and degradation of oligomeric beta-glucosides, which are produced by extracellular enzymes on substrates such as lichenan or barley glucan. The lic operon is transcribed from a sigma(A)-dependent promoter and is inducible by lichenan, lichenan hydrolysate, and cellobiose. Induction of the operon requires a DNA sequence with dyad symmetry located immediately upstream of the licBCAH promoter. Expression of the lic operon is positively controlled by the LicR regulator protein, which contains two potential helix-turn-helix motifs, two phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) regulation domains (PRDs), and a domain similar to PTS enzyme IIA (EIIA). The activity of LicR is stimulated by modification (probably phosphorylation) of both PRD-I and PRD-II by the general PTS components and is negatively regulated by modification (probably phosphorylation) of its EIIA domain by the specific EII(Lic) in the absence of oligomeric beta-glucosides. This was shown by the analysis of licR mutants affected in potential phosphorylation sites. Moreover, the lic operon is subject to carbon catabolite repression (CCR). CCR takes place via a CcpA-dependent mechanism and a CcpA-independent mechanism in which the general PTS enzyme HPr is involved. 相似文献
14.
15.
《Bioscience, biotechnology, and biochemistry》2013,77(11):2172-2175
A 0.4-kb ScaI-HpaI fragment, 199bp upstream of the structural gene for alkaline endoglucanase, from the alkalophilic Bacillus sp. KSM-64, was found to be essential for the extracellular production of the enzyme by recombinant Bacillus subtilis cells. We constructed a new vector, pHSP64 (5.5 kb), using pHY300PLK and part of the 5′ region of the endoglucanase that contained a possible promoter region. Using recombinant B. subtilis cells that carried this vector, very high production of two endoglucanases and of chloramphenicol acetyltransferase was done. 相似文献
16.
17.
18.
19.