首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Sweet receptors have remained elusive. In Xenopus oocytes sulfonyl amide sweeteners but not sweet compounds belonging to other chemical classes dose dependently induced membrane chloride currents via the inositol trisphosphate/calcium pathway. Induction of membrane currents was exclusively observed following extracellular application of sulfonyl amides but not by intracellular pressure injection, suggesting the involvement of a plasma membrane receptor. The presence of this receptor in oocytes and the observed seasonal variation of the sweet response offers an opportunity for a molecular cloning approach.  相似文献   

2.
The receptor for bombesin and the related peptide, gastrin-releasing peptide (GRP) has been induced in frog oocytes by injection of polyA+ RNA from rat brain. The primed oocytes responded to peptides of the bombesin family (GRP, neuromedin C of bombesin) by showing dose-dependent oscillations in membrane currents as recorded by the voltage-clamp method. The induced membrane changes were suppressed when oocytes were pretreated with a bombesin-receptor antagonist.  相似文献   

3.
Previous studies revealed a linkage of the kainate receptor GluR6 with autism, a pervasive developmental disorder. Mutational screening in autistic patients disclosed the amino acid exchange M836I in a highly conserved domain of the cytoplasmic C-terminal region of GluR6. Here, we show that this mutation leads to GluR6 gain-of-function. By using the two-electrode voltage clamp technique we observed a significant increase of current amplitudes of mutant GluR6 compared to wild type GluR6. Western blotting of oocytes injected with mutant or wild type GluR6 cRNA and transfection of EGFP-tagged GluR6 receptors into COS-7 cells revealed an enhanced plasma membrane expression of GluR6(M836I) compared to wild type GluR6. Membrane expression of GluR6(M836I) but not of wild type GluR6 seems to be regulated by Rab11 as indicated by our finding that GluR6(M836I) but not wild type GluR6 showed increased current amplitudes and protein expression when coexpressed with Rab11. Furthermore, injection of GTP plus Rab11A protein into oocytes increased current amplitudes in GluR6(M836I) but not in wild type GluR6. By contrast, Rab5 downregulated the currents in oocytes expressing wild type GluR6 but had only little, statistically not significant effects on currents in oocytes expressing GluR6(M836I). Our data on altered functional properties of GluR6(M836I) provide a functional basis for the postulated linkage of GluR6 to autism. Furthermore, we identified new mechanisms determining the plasma membrane abundance of wild type GluR6 and GluR6(M836I).  相似文献   

4.
The present study investigated the effects of amyloid-beta peptides on nicotinic ACh receptors (Torpedo, alpha 4 beta 2, and alpha 7 receptors) and AMPA receptors expressed in Xenopus oocytes by monitoring whole-cell membrane currents. Ten-minutes treatment with amyloid-beta(1-42) (1 microM) inhibited Torpedo ACh receptor currents, reaching 53% of original levels 30 min after treatment. Amyloid-beta(1-40) inhibited the currents in a dose-dependent manner (0.1-10 microM) during treatment, gradually reversing after treatment. Amyloid-beta(1-40) and amyloid-beta(1-42) (0.1 microM) depressed alpha 4 beta 2 receptor currents to each 69% and 62% of original levels at 10-min treatment and lesser depression was obtained with alpha 7 receptors. Amyloid-beta(1-42) (0.1 microM) did not significantly inhibit AMPA receptor currents, but amyloid-beta(1-40) (0.1 microM) potentiated the currents to 145-191% of original levels. Amyloid-beta peptides, thus, exert their diverse actions on nicotinic ACh receptors and AMPA receptors, and the inhibitory actions on nicotinic ACh receptors may account for the deterioration of learning and memory in Alzheimer's disease.  相似文献   

5.
The mouse potassium channel Kir2.3 possesses conserved extracellular cysteine residues at positions 113 and 145. We have investigated the role of these cysteines in structure/function and membrane trafficking. Cysteine to serine mutations resulted in the absence of potassium currents in oocytes and co-expression of these mutants with wild-type channel showed a dominant negative inhibition of wild-type currents. FLAG-tagged channels expressed in oocytes were detected in the cell membrane by anti-FLAG antibody for wild-type and mutant channels. In vitro translation using the reticulocyte lysate system showed that mutation of these residues did not affect processing nor insertion into membranes. Cysteine residues at 113 and 145 are therefore required for function of the Kir2.3 channel but not for processing into the cell membrane; disulfide bonds between subunits are unlikely.  相似文献   

6.
Neomycin, injected into ascidian oocytes to a final concentration of 10–50 mM, inhibits both the fertilization current and the surface contraction, showing that phosphoinositide hydrolysis is required for these early activation events. Sperm-activated fertilization currents are not inhibited in the presence of 100 μg/ml intracellular heparin, suggesting that these currents are not directly gated by InsP3. The sulfhydryl reagent thimerosal at 100 μM, in contrast, significantly increases the fertilization current presumably by sensitizing the channel receptor. Since heparin inhibits the surface contraction, InsP3 receptors are shown to play a role in the propagation of the activation response in ascidian oocyte. Depleting intracellular calcium stores by microinjecting 50 mM EGTA into oocytes does not activate fertilization channels; however, subsequent fertilization of these EGTA loaded oocytes leads to a significantly larger and faster fertilization current. Thus in contrast to somatic cells studied to date, second messenger operated plasma membrane channels in ascidian oocytes are not gated by calcium released from intracellular stores. © 1994 Wiley-Liss, Inc.  相似文献   

7.
8.
In the present study we investigated the modulation of hypothalamic NMDA receptor-mediated currents by cyclic AMP-dependent protein kinase (PKA) using the two-electrode voltage-clamp technique in XENOPUS: oocytes injected with rat hypothalamic mRNA. Application of forskolin, which activates PKA by means of cyclic AMP stimulation, caused a transient increase of NMDA-induced currents, whereas the inactive forskolin analogue 1,9-dideoxyforskolin had no effect. Incubation of oocytes with a membrane-permeable analogue of cyclic AMP, 8-bromoadenosine 3',5' -cyclic monophosphate, potentiated NMDA responses even more prominently than with forskolin. NMDA-induced currents recorded from XENOPUS: oocytes injected with cRNA encoding the NMDA receptor subunits NR1, NR2A, and/or NR2B, mainly found in rat hypothalamus, were not affected by PKA activation but were increased by protein kinase C (PKC) stimulation. It is interesting that inhibition of endogenous protein phosphatase 1 and/or 2A by calyculin A resulted in a similar enhancement of hypothalamic NMDA-induced currents. Preinjection of oocytes with calyculin A impeded the PKA- but not the PKC-mediated potentiation of hypothalamic NMDA-induced currents. We propose the involvement of an additional third messenger in the PKA effect, which acts most likely via the inhibition of tonically active protein phosphatase 1 and/or 2A.  相似文献   

9.
将从正常大鼠和热损伤大鼠的中枢纹状体提取的poly(A) mRNA ,注入非洲爪蟾卵母细胞表达。用电生理方法检测多巴胺诱发的膜电位和电流的变化 ,分析热损伤对中枢多巴胺受体表达的影响。结果表明 ,注射大鼠纹状体mRNA后 ,卵母细胞的静息电位与注射前没有变化 ,但多巴胺能诱发膜电流。经验证 ,此受体电流的主要载流离子是Cl-。注射热损伤大鼠纹状体mRNA的卵母细胞对多巴胺反应的敏感性降低 ,与正常大鼠组相比有显著性差异。因此可以断定 ,热损伤对大鼠纹状体中多巴胺受体的基因表达产生了明显的影响 ,并可能有离子通道的参与。  相似文献   

10.
Zhao YQ  Zhang BL  Wang LM  Xing C  Li M  Fan M 《生理学报》2000,52(4):287-289
将从下沉大鼠和热损伤大鼠的中枢纹状体提取的poly(A)^+mRNA,注入非洲爪蟾卵母细胞表达。用电生理方法检测多巴胺诱发的膜电位和电流的变化,分析热损伤对中枢多巴胺受体表达的影响。结果表明,注射大鼠纹状体mRNA后,卵母细胞的静息电位与注射 前没有变化,但多巴胺能诱发膜电流。经验证,此受体电流的主要载流离子是C1^-。注射热务大鼠纹状体mRNA的卵母细胞对多巴胺反应的敏感性降低,与正常大鼠组相比  相似文献   

11.
Fully grown oocytes of Xenopus laevis undergo resumption of the meiotic cycle when treated with the steroid hormone progesterone. Previous studies have shown that meiotic maturation results in profound downregulation of specific endogenous membrane proteins in oocytes. To determine whether the maturation impacts the functional properties of exogenously expressed membrane proteins, we used cut-open recordings from Xenopus oocytes expressing several types of Na(+) and K(+) channels. Treatment of oocytes with progesterone resulted in a downregulation of heterologously expressed Na(+) and K(+) channels without a change in the kinetics of the currents. The time course of progesterone-induced ion channel inhibition was concentration dependent. Complete elimination of Na(+) currents temporally coincided with development of germinal vesicle breakdown, while elimination of K(+) currents was delayed by approximately 2 h. Coexpression of human beta(1)-subunit with rat skeletal muscle alpha-subunit in Xenopus oocytes did not prevent progesterone-induced downregulation of Na(+) channels. Addition of 8-bromo-cAMP to oocytes or injection of heparin before progesterone treatment prevented the loss of expressed currents. Pharmacological studies suggest that the inhibitory effects of progesterone on expressed Na(+) and K(+) channels occur downstream of the activation of cdc2 kinase. The loss of channels is correlated with a reduction in Na(+) channel immunofluorescence, pointing to a disappearance of the ion channel-forming proteins from the surface membrane.  相似文献   

12.
13.
14.
A serum factor is recognized to interact with a protein kinase C (PKC) pathway. Indeed, treatment with fetal bovine serum enhanced ACh-evoked currents by PKC activation in the neuronal nicotinic ACh receptors (α7) andTorpedoACh receptors expressed inXenopusoocytes. In addition, potentiation of ACh-evoked currents induced by fetal bovine serum was observed also in the mutantTorpedoACh receptors lacking potent PKC phosphorylation sites at Ser333on the α subunit and Ser377on the δ subunit; the potentiation was inhibited by the PKC inhibitor, PKC inhibitor peptide (PKCI), indicating that ACh receptor currents were enhanced by PKC activation but not by PKC phosphorylation of the receptors. On the other hand, fetal bovine serum enhanced kainate-evoked currents in oocytes expressing the α-amino3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, GluR1,3. The enhancement was not affected by the PKC inhibitors, PKCI or GF109203X, and instead, was inhibited by the Ca2+/calmodulin-dependent kinase II (CaMKII) inhibitor, KN-62. These results suggest that serum is not only involved in PKC activation but in CaMKII activation, and that thereby ACh receptor currents and AMPA receptor currents are each potentiated.  相似文献   

15.
As neuroactive steroids modulate several ionotropic receptors, we assessed whether the ATP-gated currents elicited by P2X4 receptors are modulated by these compounds. We transfected HEK293 cells or injected Xenopus laevis oocytes with the cDNA coding for rat P2X4 receptor. Application of 0.1–10 μM alfaxolone potentiated within 60-s the 1 μM ATP-evoked currents with a maximal potentiation of 1.8 and 2.6-fold in HEK293 or oocytes cells respectively. Allopregnalolone or 3α, 21-dihydroxy-5α-pregnan-20-one (THDOC) also potentiated the ATP-gated currents but with a maximal effect only averaging 1.25 and 1.35-fold respectively. In contrast, 0.3–10 μM pregnanolone, but not its sulfated derivative, inhibited the ATP-gated currents; the maximal inhibition reached 40% in both cell types. THDOC, but not other neurosteroids increased significantly the τoff of the ATP-evoked currents, revealing another mode of neurosteroid modulation. Sexual steroids such as 17β-estradiol or progesterone were inactive revealing explicit structural requirements. Alfaxolone or THDOC at concentrations 30- to 100-fold larger than required to modulate the receptor, gated the P2X4 receptor eliciting ATP-like currents that were reduced with suramin or brilliant blue G, but potentiated the P2X4 receptor more than 10-fold by 10 μM zinc. In conclusion, neurosteroids rapidly modulate via non-genomic mechanisms and with nanomolar potencies, the P2X4 receptor interacting likely at distinct modulator sites.  相似文献   

16.
17.
Xenopus laevis oocytes are commonly used to study the biophysical and pharmacological properties of foreign ion channels and receptors, but little is known about those endogenously expressed in their enveloping layer of follicular cells (FCs). Whole-cell recordings and the perforated patch-clamp technique in cultured FCs held at −60 mV revealed that ATP (20–250 μM) generates inward currents of 465 ± 93 pA (mean ± standard error) in ∼60% of the FCs studied, whereas outward currents of 317 ± 100 pA were found in ∼5% of the cells. The net effect of ATP on the FCs was to activate both mono- and biphasic inward currents, with an associated increase in membrane chloride conductance. Two-microelectrode voltage-clamp recordings of nude oocytes held at −60 mV disclosed that ATP elicited biphasic inward currents, corresponding to the well-known Fin and Sin-like currents. ATP receptor antagonists like suramin, TNP-ATP, and RB2 did not inhibit any of these responses. On the other hand, when using wholecell recordings, 1 μM Ang II yielded smooth inward currents of 157 ± 45 pA in ∼16% of the FC held at −60 mV. The net Ang II response, mediated by the activation of the AT1 receptor, was a chloride current inhibited by 10 nM ZD7155. This study will help to better understand the roles of ATP and Ang II receptors in the physiology of X. laevis oocytes.  相似文献   

18.
Sodium-dependent dicarboxylate transporters located in the basolateral membrane (NaDC-3) of renal proximal tubule cells maintain the driving force for exchange of organic anions and drugs against alpha-ketoglutarate via organic anion transporters OAT1 and OAT3. So far, information on direct interaction of drugs with the cloned NaDC-3 was missing. Here we tested the interaction of non-steroidal anti-inflammatory drugs (NSAIDs) and benzylpenicillin with NaDC-3 cloned from winter flounder (fNaDC-3) and human (hNaDC-3) kidneys. Flufenamate and benzylpenicillin inhibited [14C]succinate uptake in oocytes expressing fNaDC-3. Flufenamate elicited Na(+)-dependent currents in oocytes expressing fNaDC-3 with a reversal potential around -60 mV. Raising extracellular K+ concentration depolarized fNaDC3-expressing oocytes more in the presence of flufenamate than in its absence, an effect not seen with water-injected control oocytes. These findings suggest that flufenamate via interaction with fNaDC-3 increased the K+ conductance. Acetylsalicylate, indomethacin, and salicylate showed small potential-dependent inward currents in fNaDC-3 but not in hNaDC-3 expressing oocytes. Benzylpenicillin induced voltage-dependent inward currents which were Na(+)-dependent in oocytes expressing fNaDC-3. The currents were, however, much smaller than those induced by succinate, reflecting probably a low fit of the monovalent benzylpenicillin to the dicarboxylate binding site. The data show hitherto unknown effects of monovalent anionic drugs on a transporter for divalent di- and tricarboxylates.  相似文献   

19.
BACKGROUND: Serum- and glucocorticoid-inducible kinase-1 (SGK1) increases CFTR Cl currents in Xenopus oocytes by an unknown mechanism. Because SGK increases the plasma membrane expression of other ion channels, the goal of this paper was to test the hypothesis that SGK1 stimulates CFTR Cl currents by increasing the number of CFTR Cl channels in the plasma membrane. METHODS: CFTR Cl currents were measured in Xenopus oocytes by the two-electrode voltage clamp technique, and CFTR in the plasma membrane was determined by laser scanning confocal microscopy. RESULTS: wt-SGK1 stimulated CFTR Cl currents by 42% and increased the amount of CFTR in the plasma membrane by 35%. A kinase-dead SGK mutant (K127N) had a dominant-negative effect on CFTR, reducing CFTR Cl currents by 38%. In addition, deletion of the C-terminal PDZ-interacting motif (SGK1-DeltaSFL) increased CFTR Cl currents by 108%. Thus, SGK1-DeltaSFL was more effective than wt-SGK1 in stimulating CFTR Cl currents. Neither wt-SGK nor the K127N mutant had any effect on Cl currents in oocytes when expressed alone in the absence of CFTR. CONCLUSION: SGK1 stimulates CFTR Cl currents in Xenopus oocytes by increasing the number of channels in the plasma membrane. Moreover, the effect of SGK may be mediated by protein-protein interactions involving the PDZ interacting motif.  相似文献   

20.
1. Nicotinic acetylcholine receptors (nAChR)4 from BC3H1 cells (which express a skeletal muscle-type receptor) and from Torpedo californica electric organ were expressed in Xenopus laevis oocytes and studied with a voltage-clamp technique. 2. We found that bath application of ATP in the micromolar to millimolar range increased the ACh-elicited current in both muscle and electrocyte receptors. The effect of ATP increased with successive applications. This "use-dependent" increase in potentiation was Ca2+ dependent, while the potentiation itself was not. 3. Four other nucleotides were tested on muscle nAChR: ADP, AMP, adenosine, and GTP. Of these, only ADP was a potentiator, but its effect was not use dependent. Neither ATP nor ADP affected the resting potential of the oocyte membrane. 4. ADP potentiated the response to suberyldicholine and nicotine, as well as ACh. 5. Finally, ADP reversed the phencyclidine-induced block of ACh currents in oocytes expressing muscle nAChR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号