首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the mechanisms underlying the neuroprotective effect of L-serine, permanent focal cerebral ischemia was induced by occlusion of the middle cerebral artery while monitoring cerebral blood flow (CBF). Rats were divided into control and L-serine-treated groups after middle cerebral artery occlusion. The neurological deficit score and brain infarct volume were assessed. Nissl staining was used to quantify the cortical injury. L-serine and D-serine levels in the ischemic cortex were analyzed with high performance liquid chromatography. We found that L-serine treatment: 1) reduced the neurological deficit score, infarct volume and cortical neuron loss in a dose-dependent manner; 2) improved CBF in the cortex, and this effect was inhibited in the presence of apamin plus charybdotoxin while the alleviation of both neurological deficit score and infarct volume was blocked; and 3) increased the amount of L-serine and D-serine in the cortex, and inhibition of the conversion of L-serine into D-serine by aminooxyacetic acid did not affect the reduction of neurological deficit score and infarct volume by L-serine. In conclusion, improvement in regional CBF by L-serine may contribute to its neuroprotective effect on the ischemic brain, potentially through vasodilation which is mediated by the small- and intermediate-conductance Ca2+-activated K+ channels on the cerebral blood vessel endothelium.  相似文献   

2.
Our present study was performed to investigate whether hydroxyethylpuerarin (HEP) has a neuroprotective effect on brain injury after focal cerebral ischemia/reperfusion by middle cerebral artery occlusion (MCAO) in adult male Wistar rats. Animals were subjected to one hour of middle cerebral artery occlusion and 48 hours of reperfusion with the pretreatment of drugs (HEP 15, 30, 60 mg/ kg or nimodipine 0.4 mg/kg i.v.) or vehicle. The behavioral tests were used to evaluate the damage to central nervous system. The percentage of brain infarct area was assessed in the brain slices stained with 2% solution of 2, 3, 5-triphenyl tetrazolium chloride (TTC). The pathologic histological changes were observed by H&E staining and the occurrence of apoptosis was determined by flow cytometry. The results showed that pretreatment with HEP at doses of 15, 30, 60 mg/kg exhibited significant neuroprotective effects on rats against focal cerebral ischemia-reperfusion injury by markedly decreasing neurological deficit scores and the percentage of infarct area, reducing necrosis and apoptosis of neurons. All these findings suggest that HEP might provide neuroprotection against focal cerebral ischemia/reperfusion injury probably through its antioxidant and anti-inflammatory property.  相似文献   

3.
In patients with stroke and neurodegenerative diseases, overactivation of poly(ADP-ribose) polymerase-1 (PARP-1) causes harmful effects by inducing apoptosis, necrosis, neuroinflammation, and immune dysregulation. The current study investigated the neuroprotective effect of a novel PARP-1 inhibitor, JPI-289, in an animal model of ischemic stroke. A transient middle cerebral artery occlusion (tMCAO, 2 h) model was used to determine the therapeutic effect and the most effective dose and time window of administration of JPI-289. We also investigated the long-term outcomes of treatment with JPI-289 by diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) MRI and by measuring neurological function at 24 h, 7 days, and 28 days after MCAO. The most effective dose and time window of administration of JPI-289 was 10 mg/kg administered 2 h after MCAO with reperfusion. Twenty-four hours after MCAO, infarct volume was reduced by 53% and the number of apoptotic cells was reduced by 56% compared with control. JPI-289 also reduced infarct volume by 16% in the permanent MCAO model. In an MRI-based study, initial infarct volume, as measured using DWI, was similar in the control and JPI-289-treated groups. However, infarct volume and brain swelling were significantly reduced in the group treated with JPI-289 (2 h) at 24 h and 7 days after MCAO. Neurological functions also improved in the group treated with JPI-289 (2 h) until 28 days after MCAO. Inhibition of PARP-1 has neuroprotective effects (reduction of infarct volume and brain swelling) in both tMCAO and pMCAO models of ischemic stroke.  相似文献   

4.
目的:探讨UCF-101对局灶性脑缺血再灌注大鼠脑内c-Jun氨基末端激酶(JNK)和胞外信号调节酶(ERK)活性的影响,进一步探讨UCF-101对局灶性脑缺血再灌注损伤脑保护作用的机制。方法:采用大脑中动脉线栓法(MCAO)建立大鼠局灶性脑缺血再灌注模型,随机分为假手术组,缺血再灌注组,UCF组,应用TTC检测大鼠脑梗死体积,TUNEL法检测神经元凋亡,Western blot检测ERK和JNK的活性。结果:UCF-101可下调脑缺血再灌注大鼠脑组织JNK蛋白的活性,上调ERK蛋白的活性,并降低梗死体积、坏死和凋亡细胞数。结论:UCF-101对大鼠局灶性脑缺血再灌注损伤有保护作用,抑制JNK凋亡通路、促进ERK生存通路,从而减轻细胞凋亡是其脑保护机制之一。  相似文献   

5.
The purpose of this study was to investigate the effect of (3S)-7-chloro-3-[2-((1R)-1-carboxyethoxy)-4-aminomethylphenyl]aminocarbonylmethyl-1,3,4,5-tetrahydrobenz[c,d]indole-2-carboxylic acid hydrochloride (SM-31900), an antagonist with high selectivity and affinity for the NMDA receptor glycine-binding site, on the cerebral infarct volume in a permanent middle cerebral artery occlusion (MCAo) model, which was constructed by electrocoagulation of a unilateral middle cerebral artery distal to the olfactory tract using spontaneously hypertensive rats (SHRs). To investigate the dose-response characteristics and the therapeutic time window of SM-31900 in this MCAo model, we conducted three experiments, in which the administration of SM-31900 was started 5min (experiment I), 30min (experiment II), or 60min (experiment III) after MCAo, respectively. In all the studies, SM-31900 was administered by intravenous bolus injection followed by continuous intravenous infusion to obtain a steady-state level of this compound in blood immediately after its administration. The treatment with SM-31900 was continued until 24h after MCAo, at which time the cerebral infarct volume was measured. In experiment I, SM-31900 significantly reduced the infarct volume by 37% at a dosage of 0.38mg/kg bolus followed by 1.5mg/kg/h continuous infusion (0.38mg/kg+1.5mg/kg/h). In experiment II, the neuroprotective effect of SM-31900 was also significant, with a 25% reduction in infarct volume at a dosage of 0.38mg/kg+1.5mg/kg/h, and a 40% reduction at 1.5mg/kg+6.0mg/kg/h. Furthermore, even in experiment III, SM-31900 exerted a significant neuroprotective effect, with a 20% reduction at 1.5mg/kg+6.0mg/kg/h. These studies revealed that SM-31900 can exert a neuroprotective effect when it is administered up to at least 60min after the onset of ischemia in the MCAo model, an animal model of stroke, indicating that SM-31900 is a good candidate for treating acute brain ischemia.  相似文献   

6.
Endogenous levels of the endocannabinoid anandamide, and the activities of the synthesizing and hydrolyzing enzymes, i.e. N-acylphosphatidylethanolamine-hydrolyzing phospholipase D and fatty acid amide hydrolase, respectively, were determined in the cortex and the striatum of rats subjected to transient middle cerebral artery occlusion. Anandamide content was markedly increased ( approximately 3-fold over controls; P < 0.01) in the ischemic striatum after 2 h of middle cerebral artery occlusion, but not in the cortex, and this elevation was paralleled by increased activity of N-acylphosphatidylethanolamine-hydrolyzing phospholipase D ( approximately 1.7-fold; P < 0.01), and reduced activity ( approximately 0.6-fold; P < 0.01) and expression ( approximately 0.7-fold; P < 0.05) of fatty acid amide hydrolase. These effects of middle cerebral artery occlusion were further potentiated by 1 h of reperfusion, whereas anandamide binding to type 1 cannabinoid and type 1 vanilloid receptors was not affected significantly by the ischemic insult. Additionally, the cannabinoid type 1 receptor antagonist SR141716, but not the receptor agonist R-(+)-WIN55,212-2, significantly reduced (33%; P < 0.05) cerebral infarct volume detected 22 h after the beginning of reperfusion. A neuroprotective intraperitoneal dose of 17beta-estradiol (0.20 mg x kg(-1)) that reduced infarct size by 43% also minimized the effect of brain ischemia on the endocannabinoid system, in an estrogen receptor-dependent manner. In conclusion, we show that the endocannabinoid system is implicated in the pathophysiology of transient middle cerebral artery occlusion-induced brain damage, and that neuroprotection afforded by estrogen is coincident with a re-establishment of anandamide levels in the ischemic striatum through a mechanism that needs to be investigated further.  相似文献   

7.
Free radical induced neuronal damage is implicated in cerebral ischemia reperfusion (IR) injury and antioxidants are reported to have neuroprotective activity. Several in vitro and in vivo studies have proved the antioxidant potential of curcumin and its metabolites. Hence, in the present study the neuroprotective potential of curcumin was investigated in middle cerebral artery occlusion (MCAO) induced focal cerebral IR injury. 2 h of MCAO and 22 h of reperfusion resulted in the infarct volume of 210.39 +/- 31.25 mm3. Administration of curcumin 100 and 300 mg/kg, i.p. 30 min. after MCAO produced 37.23 +/- 5.10% and 46.39 +/- 10.23% (p < 0.05) reduction in infarct volume, respectively. Ischemia induced cerebral edema was reduced in a dose dependent manner. Curcumin at 300 mg/kg, i.p. produced 50.96 +/- 6.04% reduction in edema (p < 0.05) volume. Increase in lipid peroxidation after MCAO in ipsilateral and contralateral hemisphere of brain was observed, which was reduced by curcumin (300 mg/kg, i.p.)-treatment. Decrease in superoxide dismutase and glutathione peroxidase activity was observed in ipsilateral hemisphere of MCAO animal. Curcumin-treatment (300 mg/kg, i.p.) prevented IR injury mediated fall in glutathione peroxide activity. Peroxynitrite measured using rhodamine123 fluorescence and anti-nitrotyrosine immunofluorescence indicated increased peroxynitrite formation after IR insult. Curcumin-treatment reduced peroxynitrite formation and hence the extent of tyrosine nitration in the cytosolic proteins. These results suggest the neuroprotective potential of curcumin in cerebral ischemia and is mediated through its antioxidant activity.  相似文献   

8.
This study investigated the neuroprotection provided by cytidine 5'-diphosphocholine (citicoline) during interrupted and uninterrupted occlusion of the basilar artery after subarachnoid hemorrhage (SAH) in 121 hypotensive rats. Animals were anesthetized and the basilar artery was exposed through a transclival approach. Baseline local cerebral blood flow (LCBF) values were recorded, and then the basilar artery was punctured, causing SAH. Blood was drawn to induce hypotension [60-70 mmHg mean arterial blood pressure (MABP)]. Control rats received intraperitoneal (i.p.) injections of 0.5 ml saline immediately after SAH before hypotension induction and after 60 min of occlusion. Experimental rats received 400-mg/kg citicoline i.p. at the same time points. Control group I and treatment group III were subjected to 60 min of interrupted occlusion (5 min of reperfusion after each 10 min of occlusion). Control group II and treatment group IV were subjected to 60 min of uninterrupted occlusion. MABP and LCBF were recorded every 5 minutes. Brain edema was evaluated in seven rats from each group at 24 hours after ischemic injury. At 3 days after occlusion, another set of 28 rats was killed and coronal brain slices were stained to assess infarct volume. The groups' physiological and edema findings were similar. In all groups, LCBF fell immediately after SAH and remained below baseline throughout the experiment. In the citicoline-treated rats, arterial pressure increased significantly after 30-40 min of occlusion, and brain slices showed significantly smaller infarct volumes compared to control slices (p < 0.05). Mortality was significantly lower in the citicoline-treated animals (p < 0.001). The results suggest that citicoline provides significant neuroprotection during cerebral ischemia, and that it significantly reduces mortality. Part of the neuroprotective effect may be mediated by recovery of arterial pressure.  相似文献   

9.
We investigated effects of diazoxide, a selective opener of mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channels, against brain damage after middle cerebral artery occlusion (MCAO) in male Wistar rats. Diazoxide (0.4 or 2 mM in 30 microl saline) or saline (sham) was infused into the right lateral ventricle 15 min before MCAO. Neurological score was improved 24 h later in the animals treated with 2 mM diazoxide (13.8 +/- 0.7, n = 13) compared with sham treatment (9.5 +/- 0.2, n = 6, P < 0.01). The total percent infarct volume (MCAO vs. contralateral side) of sham treatment animals was 43.6 +/- 3.6% (n = 12). Treatment with 2 mM diazoxide reduced the infarct volume to 20.9 +/- 4.8% (n = 13, P < 0.05). Effects of diazoxide were prominent in the cerebral cortex. The protective effect of diazoxide was completely prevented by the pretreatment with 5-hydroxydecanoate (100 mM in 10 microl saline), a selective blocker of mitoK(ATP) channels (n = 6). These results indicate that selective opening of the mitoK(ATP) channel has neuroprotective effects against ischemia-reperfusion injury in the rat brain.  相似文献   

10.
The lack of efficient neuroprotective strategies for neonatal stroke could be ascribed to pathogenic ischemic processes differentiating adults and neonates. We explored this hypothesis using a rat model of neonatal ischemia induced by permanent occlusion of the left distal middle cerebral artery combined with 50 min of occlusion of both common carotid arteries (CCA). Postconditioning was performed by repetitive brief release and occlusion (30 s, 1 and/or 5 min) of CCA after 50 min of CCA occlusion. Alternative reperfusion was generated by controlled release of the bilateral CCA occlusion. Blood-flow velocities in the left internal carotid artery were measured using color-coded pulsed Doppler ultrasound imaging. Cortical perfusion was measured using laser Doppler. Cerebrovascular vasoreactivity was evaluated after inhalation with the hypercapnic gas or inhaled nitric oxide (NO). Whatever the type of serial mechanical interruptions of blood flow at reperfusion, postconditioning did not reduce infarct volume after 72 hours. A gradual perfusion was found during early re-flow both in the left internal carotid artery and in the cortical penumbra. The absence of acute hyperemia during early CCA re-flow, and the lack of NO-dependent vasoreactivity in P7 rat brain could in part explain the inefficiency of ischemic postconditioning after ischemia-reperfusion.  相似文献   

11.
The immunosuppressant cyclosporin A (CsA) has been shown to have neuroprotective action. The inhibition of both calcineurin activation and mitochondrial permeability transition pore (mtPTP) opening are considered the primary neuroprotective mechanisms of CsA. Here we have evaluated the effect of CsA on significantly reducing infarct size induced by transient middle cerebral artery occlusion (MCAO) in rats, and examined variable therapeutic applications for brain infarction. Experimental rats were divided into 12 groups according to: CsA administration time (immediately after occlusion or immediately after reperfusion); dosage (between 10 and 50 mg/kg); route (i.v. or i.p.); and with or without needle insertion, which hypothetically disrupts the blood brain barrier (BBB). Neuroprotective effects of CsA were hardly noticeable when administered immediately after occlusion or by i.v. injection. By needle insertion, CsA administration significantly reduced infarct size, although vehicle treatment also reduced infarct size compared with nontreatment animals, i.e. no needle insertion. These results suggest that needle insertion allows endogenous neuroprotective substances to pass into the brain. Furthermore, single dosages over 30 mg/kg CsA were excessive and negated potential neuroprotective effects. However, two i.p. administrations of 20 mg/kg CsA immediately and 24 hrs after reperfusion significantly ameliorated the infarct size compared to the vehicle-treated group. We conclude that CsA exhibits significant neuroprotective activity, although its therapeutic application for stroke may be limited by very strict and precise management requirements.  相似文献   

12.
The neuroprotective effects of estrogen were studied in the ischemic model mice by 90 min transient unilateral middle cerebral artery occlusion (MCAO) followed by 22.5 h reperfusion. The total infarct size in C57BL/6 female mice after MCAO and reperfusion was significantly smaller than that in male mice. Intraperitoneal injection of estrogen after the start of reperfusion significantly reduced the infarct volume in the male mice. However, no significant gender difference was found in total infarct size in gamma protein kinase C (PKC)-knockout mice, suggesting that the neuroprotective effects of estrogen are due to the activation of a specific subtype of PKC, gammaPKC, a neuron-specific PKC subtype, in the brain. We demonstrated that exogenous estrogen-induced neuroprotection was attenuated in gammaPKC-knockout mice. Immunocytochemical study showed that gammaPKC was translocated to nerve fiber-like structures when observed shortly after MCAO and reperfusion. We also visualized the rapid and reversible translocation of gammaPKC-GFP (green fluorescent protein) by estrogen stimulation in living CHO-K1 cells. These results suggest that the activation of gammaPKC through the G-protein-coupled estrogen receptors on the plasma membrane is involved in the estrogen-induced neuroprotection against focal brain ischemia.  相似文献   

13.
Germacrone (GM) is an anti-inflammatory compound extracted from Rhizoma curcuma. Here, we strived to investigate the neuroprotective effects of GM in rat models of transient middle cerebral artery occlusion/reperfusion injury. Rats immediately after cerebral ischemia were intraperitoneally injected with GM at doses of 5, 10, and 20 mg/kg. After 1 day of reperfusion, the water content in the brain, infarct volume, and neurological deficits were assessed. Hippocampus neurons were histopathologically examined by hematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Activities of glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-PX) in brain tissue were detected. Real-time PCR and Western blotting were utilized to quantify the expression of apoptosis markers, such as caspase-3, Bax, and Bcl-2. The content of phospho-Akt (p-Akt) was also measured using Western blotting. GM treatment markedly decreased the brain water content, infarct volume and the neurological deficits, which was corroborated by attenuated histopathologic change. MDA levels were reduced and activities of GSH, SOD, and GSH-PX were elevated after GM treatment. Caspase-3 and Bax were decreased, and Bcl-2 was increased at both messenger RNA and protein levels by GM treatment. The p-Akt expression was increased by GM. Our data indicated that the neuroprotective effects of GM may attenuate the injuries from cerebral ischemia/reperfusion in rats through antioxidative and antiapoptotic mechanisms.  相似文献   

14.
Daphnetin (DAP), a coumarin derivative, has been reported to have multiple pharmacological actions including analgesia, antimalarial, anti-arthritic, and anti-pyretic properties. It is unclear whether DAP has neuroprotective effects on ischemic brain injury. In this study, we found that DAP treatment (i.c.v.) reduced the infarct volume at 24 h after ischemia/reperfusion injury and improved neurological behaviors in a middle cerebral artery occlusion mouse model. Moreover, we provided evidences that DAP had protective effects on infarct volume in neonate rats even it was administrated at 4 h after cerebral hypoxia/ischemia injury. To explore its neuroprotective mechanisms of DAP, we examined the protection of DAP on glutamate toxicity-induced cell death in hippocampal HT-22 cells. Our results demonstrated that DAP protected against glutamate toxicity in HT-22 cells in a concentration-dependent manner. Further, we found that DAP maintained the cellular levels of glutathione and superoxide dismutase activity, suggesting the anti-oxidatant activity of DAP. Since DAP has been used for the treatment of coagulation disorder and rheumatoid arthritis for long time with a safety profile, DAP will be a promising agent for the treatment of stroke.  相似文献   

15.
Recent studies have demonstrated that disodium 2,4-disulfophenyl-N-tert-butylnitrone (NXY-059), a novel nitrone with free radical trapping properties, has a considerable neuroprotective effect against cerebral ischemic injury. The mechanisms of its action have not been fully defined. In order to evaluate whether NXY-059 exerts its protective effects by inhibiting the release of cytochrome c, a key initiator of programmed cell death pathway, we have studied the effects of NXY-059 on reducing infarct volume and on inhibiting cytochrome c release from the mitochondria after transient focal cerebral ischemia. Wistar rats were subjected to 2 hr of middle cerebral artery occlusion and perfusion-fixed after 4, 6, 12, and 24 hr of reperfusion. NXY-059 (30 mg/kg) was i.v. injected 1 hr after reperfusion and followed immediately by 30 mg/kg/hr continuous i.v. infusion for the entire reperfusion period. The results showed that NXY-059 reduced infarct volume from 37.2% to 12.5% (p<0.0001). Immunocytochemistry demonstrated that the release of cytochrome c increased at 6 hr, peaked at 12 and 24 hr of reperfusion. NXY-059 treatment prevented ischemia-induced cytochrome c release. NXY-059 may reduce ischemic brain damage through suppressing the cell death pathway that is initiated by cytochrome c release.  相似文献   

16.
The current research was intended to evaluate the impact of 6-shogaol in rodent model of ischemic-reperfusion induced- brain injury and also assessed 6-shogaol enhanced sevoflurane's neuroprotective effects. Ischemic-Reperfusion (I/R) injury was induced by middle cerebral artery occlusion (MCAO) method in Sprague-Dawley rats. A separate group of animal was exposed to sevoflurane (2.5%) post-conditioning for 1 h immediately after reperfusion. The 6-shogaol (25 mg or 50 mg/kg body weight) was orally administered to treatment group rats for 14 days and then subjected to I/R. The 6-shogaol treatment along with/without sevoflurane post-conditioning reduced the number of apoptotic cell counts, brain edema and cerebral infarct volume. The western blotting analysis revealed a significant stimulation of the PI3K/Akt/mTOR signal pathway. RT-PCR and western blotting studies revealed improved expressions of HIF-1α and HO-1 at both gene level and protein levels. I/R induced neurological deficits were also alleviated on sevoflurane post-conditioning with/without 6-shogaol treatment. The present findings revealed that pre-treatment with 6-shogoal enhanced the neuroprotective properties of sevoflurane post-conditioning, illustrated the efficacy of the compound against I/R injury.  相似文献   

17.
Sex steroids are neuroprotective following traumatic brain injury or during neurodegenerative processes. In a recent short-term study, we have shown that 17β-estradiol (E) and progesterone (P) applied directly after ischemia reduced the infarct volume by more than 70%. This protection might primarily result from the anti-inflammatory effects of steroids. Here, we focus on the long-term neuroprotection by both steroids with respect to the infarct volume, functional recovery, and vessel density in the penumbra. The application of E/P during the first 48h after stroke (transient middle cerebral artery occlusion, tMCAO) revealed neuroprotection after two weeks. The infarct area was reduced by 70% and motor activity was preserved compared to placebo-treated animals. Blood vessel density in the penumbra using immunohistochemistry for von Willebrand factor showed increased vessel density after tMCAO which was not affected by hormones. Expression of vascular endothelial growth factor (VEGF) and its receptor (R1) was increased at 24h after tMCAO and up-regulated by E/P but not changed 14 days after stroke. These findings suggest that the neuroprotective potency of both steroids is sustained and persists for at least two weeks. Besides anti-inflammatory and anti-apoptotic actions, angiogenesis in the damaged area appears to be initially affected early after ischemia and is manifested up to two weeks. This article is part of a Special Issue entitled 'Neurosteroids'.  相似文献   

18.
Aspirin reduces the size of infarcts after ischaemic stroke. Although this fact has been attributed to its anti-platelet actions, direct neuroprotective effects have also been reported. We have recently demonstrated that aspirin is neuroprotective by inhibiting glutamate release in 'in vitro' models of brain ischaemia, via an increase in ATP production. The present study was designed to determine whether the inhibition of glutamate release induced by aspirin might be protective in a whole-animal model of permanent focal brain ischaemia. Focal brain ischaemia was produced in male adult Fischer rats by occluding both the common carotid and middle cerebral arteries. Central and serum glutamate levels were determined at fixed intervals after occlusion. The animals were then killed and infarct volume was measured. Aspirin (30 mg/kg i.p. administered 2 h before the occlusion) produced a significant reduction in infarct volume, an effect that correlated with the inhibition caused by aspirin on ischaemia-induced increase in brain and serum glutamate concentrations after the onset of the ischaemia. Aspirin also inhibited ischaemia-induced decrease in brain ATP levels. Our present findings show a novel mechanism for the neuroprotective effects of aspirin, which takes place at concentrations in the anti-aggregant-analgesic range, useful in the management of patients with risk of ischaemic events.  相似文献   

19.
Inflammatory damage plays an important role in cerebral ischemic pathogenesis and represents a new target for treatment of stroke. Shikonin has gained attention for its prominent anti-inflammatory property, but up to now little is known about shikonin treatment in acute ischemic stroke. The aim of this study was to evaluate the potential neuroprotective role of shikonin in cerebral ischemic injury, and investigate whether shikonin modulated inflammatory responses after stroke. Focal cerebral ischemia in male ICR mice was induced by transient middle cerebral artery occlusion. Shikonin (10 and 25 mg/kg) was administered by gavage once a day for 3 days before surgery and another dosage after operation. Neurological deficit, infarct volume, brain edema, blood–brain barrier (BBB) dysfunction, and inflammatory mediators were evaluated at 24 and 72 h after stroke. Compared with vehicle group, 25 mg/kg shikonin significantly improved neurological deficit, decreased infarct volume and edema both at 24 and 72 h after transient ischemic stroke, our data also showed that shikonin inhibited the pro-inflammatory mediators, including TLR4, TNF-α, NF-κB, and phosphorylation of p38MAPK in ischemic cortex. In addition, shikonin effectively alleviated brain leakage of Evans blue, up-regulated claudin-5 expression, and inhibited the over-expressed MMP-9 in ischemic brain. These results suggested that shikonin effectively protected brain against ischemic damage by regulating inflammatory responses and ameliorating BBB permeability.  相似文献   

20.
S.J. Park  K.W. Nam  H.J. Lee  E.Y. Cho  U. Koo  W. Mar   《Phytomedicine》2009,16(11):1042-1051
Large amounts of brain nitric oxide are produced over several hours after a stroke. This probably causes DNA strand nicks, nitration of cytosolic components of neurons, and ultimately neuronal death. Oxymatrine and matrine are two major alkaloids of the Chinese herb Sophora flavescens Ait. (Leguminosae); they have been demonstrated to inhibit liver injury during warm ischemia and reperfusion and to induce apoptosis, respectively, in vivo and in vitro. However, the neuroprotective efficacy of the EtOAc extract of S. flavescens (ESF) without the alkaloids has not been explored. This study investigated the inhibitory efficacy of ESF, which contain two major flavonoids kurarinone (45.5%) and sophoraflavone G (14.7%), in focal cerebral ischemia. Focal cerebral ischemia was induced using the middle cerebral artery occlusion (MCAO) method. After 1.5 h of MCAO and 24 h of reperfusion, the extent of neurological deficits and the infarct volume were measured in Sprague-Dawley rats. Compared with carnosine (50 mg/kg), as positive control ESF (20 mg/kg) significantly reduced infarct volume and neurological deficits. Treatment of human SH-SY5Y cells with sodium nitroprusside (SNP), a nitric oxide donor, decreased cell viability by causing apoptosis-like cell death. ESF significantly inhibited caspase-3-like enzyme activity and DNA fragmentation. The level of active caspase-3 was maximal 6 h after SNP treatment. However, active caspase-3 and apoptosis were dose-dependently inhibited by ESF treatment. Flow cytometry analysis showed that ESF significantly inhibited cell apoptosis (p<0.05) and reduced the apoptotic index by 79.9% (p<0.01). These results indicate that ESF is neuroprotective in focal cerebral ischemia and the flavonoids in ESF might be responsible for its neuroprotective activity in rats, alone or in part.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号