首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 271 毫秒
1.
Microtubule binding to Smads may regulate TGF beta activity   总被引:16,自引:0,他引:16  
  相似文献   

2.
3.
Smad signal and TGFbeta induced apoptosis in human lymphoma cells   总被引:1,自引:0,他引:1  
Transforming growth factor beta1 (TGF beta1) has antiproliferative and/or apoptotic effect on lymphoid cells. In certain lymphomas exogenous TGF beta1 is able to induce apoptosis, however many lymphoid malignancies are resistant to the endogenous TGF beta1 production. We studied the expression and the activity of TGF beta1 signalling components in B cell lymphoma cell lines (e.g. HT 58 cells) and in isolated human peripheral mononuclear cells (PBMCs) from healthy individual's and B-CLL patient's blood. We found that all signal transducer Smads (Smad2,-3; Smad4) and at least one of the inhibitory Smads (Smad6,-7) were expressed in non-treated lymphoma cells, but the inhibitory Smads did not in normal/control PBMCs. However, after TGF beta1 treatment Smad6 disappeared, while the expression of Smad7 increased in HT 58 cells. The activity of Smad signals was proved by phosphorylation of Smad2, nuclear translocation of Smad2/3, and the increased expression of Smad-dependent gene, TIEG in TGF beta1 treated lymphoma cells. These results showed that Smad signaling is available in certain different human lymphoma cells, however ISmads expression could inhibit the signal transmission. This findings indicates that the lost sensitivity of lymphoma cells toward a physiological regulatory factor could be reversed.  相似文献   

4.
Smad family proteins have been identified as mediators of intracellular signal transduction by the transforming growth factor-beta (TGF-beta) superfamily. Each member of the pathway-restricted, receptor-activated Smad family cooperates and synergizes with Smad4, called co-Smad, to transduce the signals. Only Smad4 has been shown able to function as a common partner of the various pathway-restricted Smads in mammals. Here we have identified a novel Smad4-like molecule in Xenopus (XSmad4beta) as well as a Xenopus homolog of a well established Smad4 (XSmad4alpha). XSmad4beta is 70% identical to XSmad4alpha in amino acid sequence. Both of the Xenopus Smad4s can cooperate with Smad1 and Smad2, the pathway-restricted Smads specific for bone morphogenetic protein and TGF-beta, respectively. However, they show distinct properties in terms of their developmental expression patterns, subcellular localizations, and phosphorylation states. Moreover, XSmad4beta, but not XSmad4alpha, has the potent ability to induce ventralization when microinjected into the dorsal marginal region of the 4-cell stage of the embryos. These results suggest that the two Xenopus Smad4s have overlapping but distinct functions.  相似文献   

5.
6.
7.
8.
Type II alveolar epithelial cells (AEC II) proliferate and transdifferentiate into type I alveolar epithelial cells (AEC I) when the normal AEC I population is damaged in the lung alveoli. We hypothesized that signaling by transforming growth factor beta1 (TGF beta1), through its downstream Smad proteins, is involved in keeping AEC II quiescent in normal cells and its altered signaling may be involved in the trans-differentiation of AEC II to AEC I. In the normal lung, TGF beta1 and Smad4 were highly expressed in AEC II. Using an in vitro cell culture model, we demonstrated that the trans-differentiation of AEC II into AEC I-like cells began with a proliferative phase, followed by a differentiation phase. The expression of TGF beta1, Smad2, and Samd3 and their phosphorylated protein forms, and cell cycle inhibitors, p15(Ink4b) and p21(Cip1), was lower during the proliferative phase but higher during the differentiation phase. Furthermore, cyclin-dependent kinases 2, 4, and 6 showed an opposite trend of expression. TGF beta1 secretion into the media increased during the differentiation phase, indicating an autocrine regulation. The addition of TGF beta1 neutralizing antibody after the proliferative phase and silencing of Smad4 by RNA interference inhibited the trans-differentiation process. In summary, our results suggest that the trans-differentiation of AEC II to AEC I is modulated by signaling through the Smad-dependent TGF beta1 pathway by altering the expression of proteins that control the G1 to S phase entry in the cell cycle.  相似文献   

9.
10.
11.
Cardiac fibroblasts (CFs) can over-proliferate during the progression of cardiac fibrosis, accompanied by a net accumulation of extracellular matrix proteins. Based on the profibrotic actions of transforming growth factor beta 1 (TGFβ1), investigating the mechanisms of TGFβ1 function in CFs may provide new directions to treatment for cardiac fibrosis. microRNAs (miRNAs) could control CFs proliferation or remodeling via binding to 3′-untranslated region of messenger RNA (mRNA) to negatively regulate gene expression. In the present study, we downloaded several microarray analyses results from GEO attempting to identify miRNAs and possible downstream targets that may be involved in TGF-β1 function in CFs and to detect the cellular and molecular functions of the identified miRNA–mRNA axis. Here, we identified miR-675 as a downregulated miRNA by TGFβ1 by bioinformatics analyses and experimental verification. Upon TGFβ1 stimulation, the protein levels of Α-SMAΑ-SMA, collagen I, and POSTN, and the secreted collagen in the cell culture supernatant significantly increased, whereas the miR-675 expression decreased. Smads mediate TGFβ1-induced suppression on miR-675 via binding miR-675 promoter region. miR-675 overexpression could inhibit, whereas miR-675 inhibition could enhance TGFβ1-induced mouse CFs (MCF) remodeling and proliferation. TGFβ receptor 1 (TGFβR1), a critical receptor in TGFβ1/Smad signaling, is a direct downstream target of miR-675. TGFβR1 overexpression significantly reverses the effect of miR-675 overexpression on MCF remodeling and proliferation. In summary, miR-675 targets TGFβR1 to attenuate TGFβ1-induced MCF remodeling and proliferation. We demonstrate a novel mechanism of the Smads/miR-675/TGFβR1 axis modulating TGFβ1-induced MCF remodeling and proliferation.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号