首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Biodegradation of polycyclic aromatic hydrocarbons by Pichia anomala   总被引:3,自引:0,他引:3  
Pichia anomala 2.2540, isolated from soil contaminated by crude oil, degraded naphthalene, dibenzothiophene, phenanthrene and chrysene, both singly and in combination. The yeast degraded 4.5 mg naphthalene l(-1) within 24 h. Phenanthrene was degraded after a lag of 24 h. When a mixture of all four polycyclic aromatic hydrocarbons was treated at either 0.1-1.6 mg l(-1) or 3.1-5.3 mg l(-1), naphthalene was completely degraded first within 24 h, followed by phenanthrene and dibenzothiophene after 48 h. Chrysene, which remained in the mixture even after 96 h, could be degraded along with naphthalene. Chrysene at 0.7 and 1 mg l(-1), in the presence of 4.3 and 65 mg naphthalene l(-1), respectively, was removed within 96 h.  相似文献   

2.
A methanogenic bacterial consortium was obtained after inoculation of benzoate medium under N2/CO2 atmosphere with intertidal sediment. A hydrogen donating organotroph andMethanococcus mazei were isolated from this enrichment. H2-utilising sulphate reducing bacteria were isolated under H2/CO2 in the absence of organic electron donors. TheMethanococcus was able to produce methane in yeast extract medium under N2/CO2 if the H2 donating organism was present, and sulphate reduction occurred if the hydrogen utilising sulphate reducing bacteria were grown with the H2 donating organism. The ability of the H2 utilising sulphate reducing bacteria to inhibitMethanococcus competitively was shown in cultures containing both of these H2 utilising bacteria.Abbreviations HDO hydrogen donating organism - SRB sulphate reducing bacteria - HSRB hydrogen utilising sulphate reducing bacteria  相似文献   

3.
4.
Several strains of Sphingomonas isolated from deep Atlantic coastal plain aquifers at the US Department of Energy Savannah River Site (SRS) near Aiken, SC were shown to degrade a variety of aromatic hydrocarbons in a liquid culture medium. Sphingomonas aromaticivorans strain B0695 was the most versatile of the five strains examined. This strain was able to degrade acenaphthene, anthracene, phenanthrene, 2,3-benzofluorene, 2-methylnaphthalene, 2,3-dimethylnaphthalene, and fluoranthene in the presence of 400 mg l−1 Tween 80. Studies involving microcosms composed of aquifer sediments showed that S. aromaticivorans B0695 could degrade phenanthrene effectively in sterile sediment and could enhance the rate at which this compound was degraded in nonsterile sediment. These findings indicate that it may be feasible to carry out (or, at least, to enhance) in situ bioremediation of phenanthrene-contaminated soils and subsurface environments with S. aromaticivorans B0695. In contrast, strain B0695 was unable to degrade fluoranthene in microcosms containing aquifer sediments, even though it readily degraded this polynuclear aromatic hydrocarbon (PAH) in a defined liquid growth medium. Journal of Industrial Microbiology & Biotechnology (2001) 26, 283–289. Received 25 September 2000/ Accepted in revised form 08 February 2001  相似文献   

5.
Oil extracts of Ukpeliede spill samples from Niger Delta (Nigeria) were analyzed by gas chromatography. The amount of polycyclic aromatic hydrocarbons (PAHs), especially the lower-molecular-weight naphthene, fluorine, phenathrene, pyrene, and benzo[a]anthracene, decreased within the sampling intervals of 2 months and 5 months. There was a predominance of three-to-six-ring PAHs over the two-ring PAHs. There was marked disappearance of n-C8 to n-C11 hydrocarbon fractions and the acyclic isoprenoids (pristane and phytane). The depletion of these molecules within the two sampling intervals suggests the possible attenuation of hydrocarbons as a result of the environmental modification within the set interval.  相似文献   

6.
Biodegradation of polycyclic aromatic hydrocarbons   总被引:67,自引:0,他引:67  
The intent of this review is to provide an outline of the microbial degradation of polycyclic aromatic hydrocarbons. A catabolically diverse microbial community, consisting of bacteria, fungi and algae, metabolizes aromatic compounds. Molecular oxygen is essential for the initial hydroxylation of polycyclic aromatic hydrocarbons by microorganisms. In contrast to bacteria, filamentous fungi use hydroxylation as a prelude to detoxification rather than to catabolism and assimilation. The biochemical principles underlying the degradation of polycyclic aromatic hydrocarbons are examined in some detail. The pathways of polycyclic aromatic hydrocarbon catabolism are discussed. Studies are presented on the relationship between the chemical structure of the polycyclic aromatic hydrocarbon and the rate of polycyclic aromatic hydrocarbon biodegradation in aquatic and terrestrial ecosystems.  相似文献   

7.
Degradation of unsaturated hydrocarbons by methanogenic enrichment cultures   总被引:1,自引:0,他引:1  
Abstract The biodegradability of hydrocarbons under anaerobic conditions was studied in enrichment cultures using mineral media inoculated with sewage sludge or sediment samples of limnic and marine origin. No indication of methanogenic degradation was obtained with either n -hexane, n -hexadecane, n -heptadecane, 1-hexene, cis -2-hexene, trans -2-hexene, isoprene, 1-hexine, benzene, toluene, xylene, cyclohexene, cycloheptatriene, cyclopentadiene, styrene, naphthalene, azulene, or β-carotene. Squalene was incompletely converted to methane and carbon dioxide. Complete degradation was observed with 1-hexadecene. Methanogenic subcultures were maintained on 1-hexadecene and squalene. Both enrichments contained after several transfers Methanospirillum hungatei and Methanothrix soehngenii as prevalent methanogenic bacteria. Acetate (≤80 μ M) was the only intermediary product detected indicating that degradation proceeded via hydrogen-dependent syntrophic β-oxidations. Short rods on hexadecene and cocci on squalene were found to be associated with substrate degradation. The results indicate that terminal double bonds can be sufficient to allow methanogenic degradation of hydrocarbons whereas branching and terminal ring closures may significantly contribute to hydrocarbon stability in anoxic environments.  相似文献   

8.
多环芳烃(Polycyclic Aromatic Hydrocarbons,PAHs)的强疏水性是阻止其在土壤和水环境中微生物降解的主要因素.表面活性剂由于能够提高PAHs的表观溶解度而在PAHs的微生物降解中得到了广泛研究.截至目前,有关化学或生物表面活性剂促进PAHs的微生物降解已有大量报道,然而也有学者发现了表面...  相似文献   

9.
3-Methylcyclopropene (3-MCP) binds to the ethylene receptor and blocks it for several days, but concentrationswise is less effective than 1-methylcyclopropene (1-MCP). In diverse ethylene-responsive systems, including ripening of mature-green bananas (Musa sapientum L.), inhibition of growth in etiolated pea (Pisum sativum L.) seedlings, abscission of orange (Citrus sinensis L.) leaf explants and mung bean (Vigna radiata L.) leaves, and wilting of campanula (Campanula carpatica) and kalanchoe (Kalanchoë blossfeldiana) florets, full inhibition of the ethylene response required higher concentrations of 3-MCP. Depending on the experimental system, the effective concentration of 3-MCP was from 5 to 10 times higher than that required for 1-MCP.  相似文献   

10.
Anaerobic degradation of alkylbenzenes with side chains longer than that of toluene was studied in freshwater mud samples in the presence of nitrate. Two new denitrifying strains, EbN1 and PbN1, were isolated on ethylbenzene and n-propylbenzene, respectively. For comparison, two further denitrifying strains, ToN1 and mXyN1, were isolated from the same mud with toluene and m-xylene, respectively. Sequencing of 16SrDNA revealed a close relationship of the new isolates to Thauera selenatis. The strains exhibited different specific capacities for degradation of alkylbenzenes. In addition to ethylbenzene, strain EbN1 utilized toluence, but not propylbenzene. In contrast, propylbenzene-degrading strain PbN1 did not grow on toluene, but was able to utilize ethylbenzene. Strain ToN1 used toluene as the only hydrocarbon substrate, whereas strain mXyN1 utilized both toluene and m-xylene. Measurement of the degradation balance demonstrated complete oxidation of ethylbenzene to CO2 by strain EbN1. Further characteristic substrates of strains EbN1 and PbN1 were 1-phenylethanol and acetophenone. In contrast to the other isolates, strain mXyN1 did not grow on benzyl alcohol. Benzyl alcohol (also m-methylbenzyl alcohol) was even a specific inhibitor of toluene and m-xylene utilization by strain mXyN1. None of the strains was able to grow on any of the alkylbenzenes with oxygen as electron acceptor. However, polar aromatic compounds such as benzoate were utilized under both oxic and anoxic conditions. All four isolates grew anaerobically on crude oil. Gas chromatographic analysis of crude oil after growth of strain ToN1 revealed specific depletion of toluene.  相似文献   

11.
The fate of benzene, ethylbenzene, toluene, xylenes (BTEX) compounds through biodegradation was investigated using two different bacteria, Ralstonia picketti (BP-20) and Alcaligenes piechaudii (CZOR L-1B). These bacteria were isolated from extremely polluted soils contaminated with petroleum hydrocarbons. PCR and Fatty Acid Methyl Ester (FAME) were used to identify the isolates. In this study, BTEX biodegradation, applied as a mixture or as individual compounds by the bacteria was evaluated. Both bacteria were shown to degrade each of the BTEX compounds individually and in mixture. However, Alcaligenes piechaudii was a better degrader of BTEXs both in the mixture and individually. Differences between BTEX biodegradation in the mixture and individually were observed, especially in the case of benzene. The degradation of all BTEXs in the mixture was lower than the degradation of individual compounds for both bacteria tested. In the all experiments, toluene and m + p- xylenes were better removed than the other BTEXs. No intermediates of biodegradation were detected. Biosurfactant production was observed by culture techniques. In addition, 3-hydroxy fatty acids, important in biosurfactant production, were observed by FAME analysis. The test results indicate that the bacteria could contribute to bioremediation of aromatic hydrocarbon pollution.  相似文献   

12.
微生物降解多环芳烃的研究进展   总被引:11,自引:1,他引:11  
多环芳烃是一类长久存在于环境中,具有毒性、致突变与致癌等特性的环境优先污染物。本文对降解多环芳烃的微生物类群进行了阐述,介绍了在土壤与厌氧条件下细菌降解多环芳烃的研究情况,最后介绍了降解多环芳烃的相关酶类以及分子生物学的研究,并对消除环境中多环芳烃的相关生物技术提出展望。  相似文献   

13.
AIMS: Our goal was to characterize a newly isolated strain of Mycobacterium austroafricanum, obtained from manufactured gas plant (MGP) site soil and designated GTI-23, with respect to its ability to degrade polycyclic aromatic hydrocarbons (PAHs). METHODS AND RESULTS: GTI-23 is capable of growth on phenanthrene, fluoranthene, or pyrene as a sole source of carbon and energy; it also extensively mineralizes the latter two in liquid culture and is capable of extensive degradation of fluorene and benzo[a]pyrene, although this does not lead in either of these cases to mineralization. Supplementation of benzo[a]pyrene-containing cultures with phenanthrene had no significant effect on benzo[a]pyrene degradation; however, this process was substantially inhibited by the addition of pyrene. Extensive and rapid mineralization of pyrene by GTI-23 was also observed in pyrene-amended soil. CONCLUSIONS: Strain GTI-23 shows considerable ability to mineralize a range of polycyclic aromatic hydrocarbons, both in liquid and soil environments. In this regard, GTI-23 differs markedly from the type strain of Myco. austroafricanum (ATCC 33464); the latter isolate displayed no (or very limited) mineralization of any tested PAH (phenanthrene, fluoranthene or pyrene). When grown in liquid culture, GTI-23 was also found to be capable of growing on and mineralizing two aliphatic hydrocarbons (dodecane and hexadecane). SIGNIFICANCE AND IMPACT OF THE STUDY: These findings indicate that this isolate of Myco. austroafricanum may be useful for bioremediation of soils contaminated with complex mixtures of aromatic and aliphatic hydrocarbons.  相似文献   

14.
Fungal laccases are useful for several remarkable transformations, such as bioremediation of polycyclic aromatic hydrocarbons (PAHs), synthesis of phenolic-based resins, oxidation of lignin derivatives and others. Most of these substrates are barely water-soluble, and although polar organic co-solvents may be added to enhance their solubility, transformation rates dramatically decrease due to the negative effect of organic solvents on the protein structure. Laccase from Myceliophthora thermophila variant T2 (MtLT2) has been submitted to laboratory evolution in Saccharomyces cerevisiae with the aim of improving activity and stability in organic co-solvents. Some 4500 clones created by random mutagenesis were screened in two rounds of directed evolution. Libraries were explored under increasing concentrations of acetonitrile and ethanol, and several mutants with improved features were purified and further characterised. Turnover rates of MtLT2 in 30% (v/v) acetonitrile and 50% (v/v) ethanol were increased up to 6.5- and 7.5-fold, respectively. The best variants showed similar rates in 20% (v/v) acetonitrile or 30% (v/v) ethanol as the parent type in aqueous media. Mutant laccases were also tested for the oxidation of anthracene in the presence of 20% (v/v) acetonitrile.  相似文献   

15.
Fungal laccases are useful for several remarkable transformations, such as bioremediation of polycyclic aromatic hydrocarbons (PAHs), synthesis of phenolic-based resins, oxidation of lignin derivatives and others. Most of these substrates are barely water-soluble, and although polar organic co-solvents may be added to enhance their solubility, transformation rates dramatically decrease due to the negative effect of organic solvents on the protein structure. Laccase from Myceliophthora thermophila variant T2 (MtLT2) has been submitted to laboratory evolution in Saccharomyces cerevisiae with the aim of improving activity and stability in organic co-solvents. Some 4500 clones created by random mutagenesis were screened in two rounds of directed evolution. Libraries were explored under increasing concentrations of acetonitrile and ethanol, and several mutants with improved features were purified and further characterised. Turnover rates of MtLT2 in 30% (v/v) acetonitrile and 50% (v/v) ethanol were increased up to 6.5- and 7.5-fold, respectively. The best variants showed similar rates in 20% (v/v) acetonitrile or 30% (v/v) ethanol as the parent type in aqueous media. Mutant laccases were also tested for the oxidation of anthracene in the presence of 20% (v/v) acetonitrile.  相似文献   

16.
铁还原菌降解石油烃的研究进展   总被引:1,自引:0,他引:1  
张涵  孙珊珊  董浩  承磊  佘跃惠 《微生物学报》2020,60(6):1246-1258
铁还原菌是指能够利用细胞外Fe(III)作为末端电子受体,通过氧化有机物将Fe(III)还原为Fe(II)微生物的总称。铁还原作用广泛存在于土壤、河流、海洋、地表含水层以及高温高压的地下深部油藏。在厌氧或兼性厌氧条件下,Fe(III)还原耦合有机物的降解,对铁、碳元素的生物地球化学循环具有重要意义。本文介绍了铁还原菌的多样性和铁还原作用机理,综述了铁还原菌在石油烃降解方面的研究进展。此外,还总结了铁还原菌在生物修复中的潜在作用,并对未来的研究方向进行了展望。  相似文献   

17.
细菌降解萘、菲的代谢途径及相关基因的研究进展   总被引:2,自引:0,他引:2  
多环芳烃(Polycyclic aromatic hydrocarbons,PAHs)是一类在环境中广泛存在的具有毒性的污染物,微生物降解是其在自然界中降解的主要途径,因而尤为重要。随着研究的深入,关于微生物降解PAHs的分子降解机制、途径等的认识逐渐积累。以下对细菌降解萘、菲的研究进展进行了概述,介绍了萘的水杨酸降解途径,菲的水杨酸、邻苯二甲酸及其他降解途径,同时也包括降解过程中涉及的降解基因簇,如nah-like、phn、phd、nid和nag等以及细菌在PAHs胁迫条件下其他相关基因的表达与调节等方面的最新进展。这些进展可为降解菌株的分子及遗传机制研究提供理论依据,将促进通过基因工程优化降解菌、更有效地检测PAHs环境污染及实现PAHs污染的生物修复。  相似文献   

18.
A partitioning bioreactor, consisting of an aqueous phase containing Sphingomonas aromaticivorans and an immiscible organic phase (dodecane), loaded with naphthalene and phenanthrene, was operated at two scales, 5 l and 150 l. Complete degradation of 15 g and 300 g, respectively, of these polyaromatic hydrocarbon (PAH) mixtures was achieved in 21 h in both cases resulting in a volumetric PAH degradation rate of 238 mg l–1 h–1 based on reactor aqueous volumes.  相似文献   

19.
This work aimed to evaluate the phytoremediation capacity of the alfalfa cultivar Crioula in soils contaminated with polycyclic aromatic hydrocarbons (PAHs), primary pollutants with mutagenic and carcinogenic potential. Alfalfa was grown from seed for 40 days on soil amended with anthracene, pyrene, and phenanthrene. Soil and plant tissue was collected for biometric assay, dry mass analysis, and PAH analysis by liquid chromatography. Increased total PAH concentration was associated with decreases in plant biomass, height, and internode length. The Crioula cultivar had a satisfactory phytoremediation effect, reducing total PAH concentration (300 ppm) in the experimental soil by 85% in 20 days, and by more than 95% in 40 days. The PAH showed a tendency to be removed in the temporal order: phenanthrene before pyrene before anthracene, and the removal ratio was influenced by the initial soil concentration of each PAH.  相似文献   

20.
多环芳烃污染土壤微生物修复研究进展   总被引:7,自引:1,他引:7  
曾军  吴宇澄  林先贵 《微生物学报》2020,60(12):2804-2815
多环芳烃是我国土壤环境质量标准中要求严格管控的一类持久性有机污染物,利用微生物技术修复有机污染土壤具有绿色、经济等突出特点,应用前景广泛。目前多学科的协同发展和新技术的研究应用,为多环芳烃土壤微生物转化机制与污染生态过程等方面带来了新的认识,同时对修复技术的实际应用与调控提供了新的思考方向。本文以多环芳烃污染土壤微生物修复为主体,从污染土壤微生物修复应用技术、多环芳烃微生物降解特征、土壤体系污染物归趋规律与微生物作用及土壤污染微生物群落响应与研究技术等方面进行综合评述,并针对现存应用技术瓶颈和理论空白作进一步思考和展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号