首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Mbeunkui F  Goshe MB 《Proteomics》2011,11(5):898-911
To evaluate the implementation of various denaturants and their efficacy in bottom-up membrane proteomic methods using LC-MS analysis, microsomes isolated from tomato roots were treated with MS-compatible surfactants (RapiGest SF Surfactant from Waters and PPS Silent Surfactant from Protein Discovery), a chaotropic reagent (guanidine hydrochloride), and an organic solvent (methanol). Peptides were analyzed in triplicate sample and technical replicates by data-independent LC-MS(E) analysis. Overall, 2333 unique peptides matching to 662 unique proteins were detected with the order of denaturant method efficacy being RapiGest SF Surfactant, PPS Silent Surfactant, guanidine hydrochloride, and methanol. Using bioinformatic analysis, 103 proteins were determined to be integral membrane proteins. When normalizing the data as a percentage of the overall number of peptides and proteins identified for each method, the order for integral membrane protein identification efficacy was methanol, guanidine hydrochloride, RapiGest SF Surfactant, and PPS Silent Surfactant. Interestingly, only 8% of the proteins were identified in all four methods with the silent surfactants having the greatest overlap at 17%. GRAVY analysis at the protein and peptide level indicated that methanol and guanidine hydrochloride promoted detection of hydrophobic proteins and peptides, respectively; however, trypsin activity in the presence of each denaturant was determined as a major factor contributing to peptide identification by LC-MS(E) . These results reveal the complementary nature of each denaturant method, which can be used in an integrated approach to provide a more effective bottom-up analysis of membrane proteomes than can be achieved using only a single denaturant.  相似文献   

2.
The 2‐D peptide separations employing mixed mode reversed phase anion exchange (MM (RP‐AX)) HPLC in the first dimension in conjunction with RP chromatography in the second dimension were developed and utilised for shotgun proteome analysis. Compared with strong cation exchange (SCX) typically employed for shotgun proteomic analysis, peptide separations using MM (RP‐AX) revealed improved separation efficiency and increased peptide distribution across the elution gradient. In addition, improved sample handling, with no significant reduction in the orthogonality of the peptide separations was observed. The shotgun proteomic analysis of a mammalian nuclear cell lysate revealed additional proteome coverage (2818 versus 1125 unique peptides and 602 versus 238 proteins) using the MM (RP‐AX) compared with the traditional SCX hyphenated to RP‐LC‐MS/MS. The MM analysis resulted in approximately 90% of the unique peptides identified present in only one fraction, with a heterogeneous peptide distribution across all fractions. No clustering of the predominant peptide charge states was observed during the gradient elution. The application of MM (RP‐AX) for 2‐D LC proteomic studies was also extended in the analysis of iTRAQ‐labelled HeLa and cyanobacterial proteomes using nano‐flow chromatography interfaced to the MS/MS. We demonstrate MM (RP‐AX) HPLC as an alternative approach for shotgun proteomic studies that offers significant advantages over traditional SCX peptide separations.  相似文献   

3.
The iTRAQ technique is popular for the comparative analysis of proteins in different complex samples. To increase the dynamic range and sensitivity of peptide identification in shotgun proteomics, SCX chromatography is generally used for the fractionation of iTRAQ-labeled peptides before LC-MS/MS analysis. However, SCX suffers from clustering of similarly charged peptides and the need to desalt fractions. In this report, SCX is compared with the alternative ERLIC method for fractionating iTRAQ-labeled peptides. The simultaneous effect of electrostatic repulsion and hydrophilic interaction in ERLIC results in peptide elution in order of decreasing pI and GRAVY values (increasing polarity). Volatile solvents can be used. We applied ERLIC to iTRAQ-labeled peptides from rat liver tissue, and 2745 proteins and 30,016 unique peptides were identified with high confidence from three technical replicates. This was 12.9 and 49.4% higher, respectively, than was obtained using SCX. In addition, ERLIC is appreciably better at the identification of highly hydrophobic peptides. The results indicate that ERLIC is a more convenient and more effective alternative to SCX for the fractionation of iTRAQ-labeled peptides. Quantification data show that both SCX and ERLIC fractionation have no significant effect on protein quantification by iTRAQ.  相似文献   

4.
Comprehensive proteome profiling of breast cancer tissue samples is challenging, as the tissue samples contain many proteins with varying concentrations and modifications. We report an effective sample preparation strategy combined with liquid chromatography (LC) electrospray ionization (ESI) quadrupole time-of-flight (QTOF) MS/MS for proteome analysis of human breast cancer tissue. The complexity of the breast cancer tissue proteome was reduced by using protein precipitation from a tissue extract, followed by sequential protein solubilization in solvents of different solubilizing strength. The individual fractions of protein mixtures or subproteomes were subjected to trypsin digestion and the resultant peptides were separated by strong cation exchange (SCX) chromatography, followed by reversed-phase capillary LC combined with high resolution and high accuracy ESI-QTOF MS/MS. This approach identified 14407 unique peptides from 3749 different proteins based on peptide matches with scores above the threshold scores at the 95% confidence level in MASCOT database search of the acquired MS/MS spectra. The false positive rate of peptide matches was determined to be 0.95% by using the target-decoy sequence search strategy. On the basis of gene ontology categorization, the identified proteins represented a wide variety of biological functions, cellular processes, and cellular locations.  相似文献   

5.
This work presents a comparative evaluation of several detergent‐based sample preparation workflows for the MS‐based analysis of bacterial proteomes, performed using the model organism Escherichia coli. Initially, RapiGest‐ and SDS‐based buffers were compared for their protein extraction efficiency and quality of the MS data generated. As a result, SDS performed best in terms of total protein yields and overall number of MS identifications, mainly due to a higher efficiency in extracting high molecular weight (MW) and membrane proteins, while RapiGest led to an enrichment in periplasmic and fimbrial proteins. Then, SDS extracts underwent five different MS sample preparation workflows, including: detergent removal by spin columns followed by in‐solution digestion (SC), protein precipitation followed by in‐solution digestion in ammonium bicarbonate or urea buffer, filter‐aided sample preparation (FASP), and 1DE separation followed by in‐gel digestion. On the whole, about 1000 proteins were identified upon LC‐MS/MS analysis of all preparations (>1100 with the SC workflow), with FASP producing more identified peptides and a higher mean sequence coverage. Each protocol exhibited specific behaviors in terms of MW, hydrophobicity, and subcellular localization distribution of the identified proteins; a comparative assessment of the different outputs is presented.  相似文献   

6.
In-gel digestion is an attractive route in mass spectrometry-based proteomic analysis, which, however, often suffers from a certain amount of sample loss mainly due to insufficient protein digestion and peptide extraction. To address this, herein we establish a partially degradable gel-assisted protein digestion and peptide recovery method by means of a simple replacement of bis-acrylamide (BA) with bis-acrylylcystamine (BAC). Concretely, the protein sample solubilized using high concentrations of sodium dodecyl sulfate (SDS) and urea were directly entrapped and immobilized into BAC-crosslinked gel by vacuum-dried gel absorption followed by fixation treatment. After removal of SDS and urea by repeated washing, the proteins were subjected to in-gel digestion and the gel was reductively treated. The tryptic peptides were recovered from the partial degradation of the gel and analyzed afterwards by capillary liquid chromatography coupled with tandem mass spectrometry (CapLC-MS/MS). Compared with conventional BA-crosslinked gel method, this new method increased the numbers of identified proteins and unique peptides by 20.2% and 20.4%, respectively. The further statistical analysis demonstrated that the method improved the recovery of tryptic peptides particularly larger and/or hydrophobic peptides, thereby significantly facilitating protein identification. Thus, the newly developed method is a promising alternative for BA-crosslinked gel-based shotgun workflows and has potential application in the related fields of protein chemistry and proteomics.  相似文献   

7.
A high-throughput on-line capillary array-based two-dimensional liquid chromatography (2D-LC) system coupled with MALDI-TOF-TOF-MS proteomics analyzer for comprehensive proteomic analyses has been developed, in which one capillary strong-cation exchange (SCX) chromatographic column was used as the first separation dimension and 18 parallel capillary reversed-phase liquid chromatographic (RPLC) columns were integrated as the second separation dimension. Peptides bound to the SCX phase were "stepped" off using multiple salt pulses followed by sequentially loading of each subset of peptides onto the corresponding precolumns. After salt fractionation, by directing identically split solvent-gradient flows into 18 channels, peptide fractions were concurrently back-flushed from the precolumns and separated simultaneously with 18 capillary RP columns. LC effluents were directly deposited onto the MALDI target plates through an array of capillary tips at a 15-s interval, and then alpha-cyano-4-hydroxycinnamic acid (CHCA) matrix solution was added to each sample spot for subsequent MALDI experiments. This new system allows an 18-fold increase in throughput compared with serial-based 2D-LC system. The high efficiency of the overall system was demonstrated by the analysis of a tryptic digest of proteins extracted from normal human liver tissue. A total of 462 proteins was identified, which proved the system's promising potential for high-throughput analysis and application in proteomics.  相似文献   

8.
In the mammalian central nervous system, the structure known as the postsynaptic density (PSD) is a dense complex of proteins whose function is to detect and respond to neurotransmitter released from presynaptic axon terminals. Regulation of protein phosphorylation in this molecular machinery is critical to the activity of its components, which include neurotransmitter receptors, kinases/phosphatases, scaffolding molecules, and proteins regulating cytoskeletal structure. To characterize the phosphorylation state of proteins in PSD samples, we combined strong cation exchange (SCX) chromatography with IMAC. Initially, tryptic peptides were separated by cation exchange and analyzed by reverse phase chromatography coupled to tandem mass spectrometry, which led to the identification of phosphopeptides in most SCX fractions. Because each of these individual fractions was too complex to characterize completely in single LC-MS/MS runs, we enriched for phosphopeptides by performing IMAC on each SCX fraction, yielding at least a 3-fold increase in identified phosphopeptides relative to either approach alone (SCX or IMAC). This enabled us to identify at least one site of phosphorylation on 23% (287 of 1,264) of all proteins found to be present in the postsynaptic density preparation. In total, we identified 998 unique phosphorylated peptides, mapping to 723 unique sites of phosphorylation. At least one exact site of phosphorylation was determined on 62% (621 of 998) of all phosphopeptides, and approximately 80% of identified phosphorylation sites are novel.  相似文献   

9.
A system which consisted of multidimensional liquid chromatography (Yin-yang MDLC) coupled with mass spectrometry was used for the identification of peptides and phosphopeptides. The multidimensional liquid chromatography combines the strong-cation exchange (SCX), strong-anion exchange (SAX), and reverse-phase methods for the separation. Protein digests were first loaded on an SCX column. The flow-through peptides from SCX were collected and further loaded on an SAX column. Both columns were eluted by offline pH steps, and the collected fractions were identified by reverse-phase liquid chromatography tandem mass spectrometry. Comprehensive peptide identification was achieved by the Yin-yang MDLC-MS/MS for a 1 mg mouse liver. In total, 14 105 unique peptides were identified with high confidence, including 13 256 unmodified peptides and 849 phosphopeptides with 809 phosphorylated sites. The SCX and SAX in the Yin-Yang system displayed complementary features of binding and separation for peptides. When coupled with reverse-phase liquid chromatography mass spectrometry, the SAX-based method can detect more extremely acidic (pI < 4.0) and phosphorylated peptides, while the SCX-based method detects more relatively basic peptides (pI > 4.0). In total, 134 groups of phosphorylated peptide isoforms were obtained, with common peptide sequences but different phosphorylated states. This unbiased profiling of protein expression and phosphorylation provides a powerful approach to probe protein dynamics, without using any prefractionation and chemical derivation.  相似文献   

10.
In proteomics, a digested cell lysate is often too complex for direct comprehensive mass spectrometric analysis. To reduce complexity, several peptide separation techniques have been introduced including very successful two-dimensional liquid chromatography (2D-LC) approaches. Here, we assess the potential of zwitterionic Hydrophilic Interaction Liquid Chromatography (ZIC-HILIC) as a first dimension for the analysis of complex peptide mixtures. We show that ZIC-HILIC separation is dramatically dependent on buffer pH in the range from 3 to 8, due to deprotonation of acidic amino acids. ZIC-HILIC exhibits a mixed-mode effect consisting of electrostatic and polar interactions. We developed a 2D-LC system that hyphenates ZIC-HILIC off-line with reversed-phase (RP). The two dimensions are fairly orthogonal, and the system performs very well in the analysis of minute amounts of complex peptide mixtures. Applying this method to the analysis of 10 mug of a cellular nuclear lysate, we were able to confidently identify over 1000 proteins. Compared to strong cation exchange chromatography (SCX), ZIC-HILIC shows better chromatographic resolution and absence of clustering of prevalent +2 and +3 charged peptides. At pH 3, ZIC-HILIC separation allows best orthogonality with RP and resembles conventional SCX separation. A significant enrichment of N-acetylated peptides in the first fractions is observed at these conditions. ZIC-HILIC separation at high pH (6.8 and 8), however, enables better chromatography, resulting in more comprehensive data acquisition. With this extended flexibility, we conclude that ZIC-HILIC is a very good alternative for the more conventional SCX in multidimensional peptide separation strategies.  相似文献   

11.
Highly complex protein mixtures can be directly analyzed after proteolysis by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). In this paper, we have utilized the combination of strong cation exchange (SCX) and reversed-phase (RP) chromatography to achieve two-dimensional separation prior to MS/MS. One milligram of whole yeast protein was proteolyzed and separated by SCX chromatography (2.1 mm i.d.) with fraction collection every minute during an 80-min elution. Eighty fractions were reduced in volume and then re-injected via an autosampler in an automated fashion using a vented-column (100 microm i.d.) approach for RP-LC-MS/MS analysis. More than 162,000 MS/MS spectra were collected with 26,815 matched to yeast peptides (7,537 unique peptides). A total of 1,504 yeast proteins were unambiguously identified in this single analysis. We present a comparison of this experiment with a previously published yeast proteome analysis by Yates and colleagues (Washburn, M. P.; Wolters, D.; Yates, J. R., III. Nat. Biotechnol. 2001, 19, 242-7). In addition, we report an in-depth analysis of the false-positive rates associated with peptide identification using the Sequest algorithm and a reversed yeast protein database. New criteria are proposed to decrease false-positives to less than 1% and to greatly reduce the need for manual interpretation while permitting more proteins to be identified.  相似文献   

12.
Li X  Gong Y  Wang Y  Wu S  Cai Y  He P  Lu Z  Ying W  Zhang Y  Jiao L  He H  Zhang Z  He F  Zhao X  Qian X 《Proteomics》2005,5(13):3423-3441
Based on the same HUPO reference specimen (C1-serum) with the six proteins of highest abundance depleted by immunoaffinity chromatography, we have compared five proteomics approaches, which were (1) intact protein fractionation by anion-exchange chromatography followed by 2-DE-MALDI-TOF-MS/MS for protein identification (2-DE strategy); (2) intact protein fractionation by 2-D HPLC followed by tryptic digestion of each fraction and microcapillary RP-HPLC/microESI-MS/MS identification (protein 2-D HPLC fractionation strategy); (3) protein digestion followed by automated online microcapillary 2-D HPLC (strong cation-exchange chromatography (SCX)-RPC) with IT microESI-MS/MS; (online shotgun strategy); (4) same as (3) with the SCX step performed offline (offline shotgun strategy) and (5) same as (4) with the SCX fractions reanalysed by optimised nanoRP-HPLC-nanoESI-MS/MS (offline shotgun-nanospray strategy). All five approaches yielded complementary sets of protein identifications. The total number of unique proteins identified by each of these five approaches was (1) 78, (2) 179, (3) 131, (4) 224 and (5) 330 respectively. In all, 560 unique proteins were identified. One hundred and sixty-five proteins were identified through two or more peptides, which could be considered a high-confidence identification. Only 37 proteins were identified by all five approaches. The 2-DE approach yielded more information on the pI-altered isoforms of some serum proteins and the relative abundance of identified proteins. The protein prefractionation strategy slightly improved the capacity to detect proteins of lower abundance. Optimising the separation at the peptide level and improving the detection sensitivity of ESI-MS/MS were more effective than fractionation of intact proteins in increasing the total number of proteins identified. Overall, electrophoresis and chromatography, coupled respectively with MALDI-TOF/TOF-MS and ESI-MS/MS, identified complementary sets of serum proteins.  相似文献   

13.
Zhang N  Chen R  Young N  Wishart D  Winter P  Weiner JH  Li L 《Proteomics》2007,7(4):484-493
Both organic solvent and surfactant have been used for dissolving membrane proteins for shotgun proteomics. In this work, two methods of protein solubilization, namely using 60% methanol or 1% SDS, to dissolve and analyze the inner membrane fraction of an Escherichia coli K12 cell lysate were compared. A total of 358 proteins (1417 unique peptides) from the methanol-solubilized protein mixture and 299 proteins (892 peptides) from the SDS-solubilized sample-were identified by using trypsin digestion and 2-D LC-ESI MS/MS. It was found that the methanol method detected more hydrophobic peptides, resulting in a greater number of proteins identified, than the SDS method. We found that 159 out of 358 proteins (44%) and 120 out of 299 proteins (40%) detected from the methanol- and SDS-solubilized samples, respectively, are integral membrane proteins. Among the 190 integral membrane proteins 70 were identified exclusively in the methanol-solubilized sample, 89 were identified by both methods, and only 31 proteins were exclusively identified by the SDS method. It is shown that the integral membrane proteins reflected the theoretical proteome for number of transmembrane helices, length, functional class, and topology, indicating there was no bias in the proteins identified.  相似文献   

14.
In clinical and diagnostic proteomics, it is essential to develop a comprehensive and robust system for proteome analysis. Although multidimensional liquid chromatography/tandem mass spectrometry (LC/MS/MS) systems have been recently developed as powerful tools especially for identification of protein complexes, these systems still some drawbacks in their application to clinical research that requires an analysis of a large number of human samples. Therefore, in this study, we have constructed a technically simple and high throughput protein profiling system comprising a two-dimensional (2D)-LC/MS/MS system which integrates both a strong cation exchange (SCX) chromatography and a microLC/MS/MS system with micro-flowing reversed-phase chromatography. Using the microLC/MS/MS system as the second dimensional chromatography, SCX separation has been optimized as an off-line first dimensional peptide fractionation. To evaluate the performance of the constructed 2D-LC/MS/MS system, the results of detection and identification of proteins were compared using digests mixtures of 6 authentic proteins with those obtained using one-dimensional microLC/MS/MS system. The number of peptide fragments detected and the coverage of protein sequence were found to be more than double through the use of our newly built 2D-LC/MS/MS system. Furthermore, this multidimensional protein profiling system has been applied to plasma proteome in order to examine its feasibility for clinical proteomics. The experimental results revealed the identification of 174 proteins from one serum sample depleted HSA and IgG which corresponds to only 1 microL of plasma, and the total analysis run time was less than half a day, indicating a fairly high possibility of practicing clinical proteomics in a high throughput manner.  相似文献   

15.
In the frame of protein identification from mouse adipose tissue, two strategies were compared for the offline elution of peptides from a strong cation exchange (SCX) column in two-dimensional liquid chromatography tandem mass spectrometry (2D–LC–MS/MS) analyses. First, the salt gradient (using K+ as displacing agent) was evaluated from 25 to 500 mM KCl. Then, a less investigated elution mode using a pH gradient (using citric acid and ammonium hydroxide) was carried out from pH 2.5 to 9.0. Equal amounts of peptide digest derived from mouse adipose tissue were loaded onto the SCX column and fractionated according to the two approaches. A total of 15 fractions were collected in two independent experiments for each SCX elution strategy. Then, each fraction was analyzed on a nanoLC–MS/MS platform equipped with a column-switching unit for desalting and enrichment. No substantial differences in peptide quality characteristics (molecular weight, isoelectric point, or GRAVY [grand average of hydropathicity] index distributions) were observed between the two datasets. The pH gradient approach was found to be superior, with 27.5% more unique peptide identifications and 10% more distinct protein identifications compared with the salt-based elution method. In conclusion, our data imply that the pH gradient SCX fractionation is more desirable for proteomics analysis of entire adipose tissue.  相似文献   

16.
In this study we use replicate 2D-LC-MS/MS analyses of crude membranes from B cells derived from a patient with chronic lymphocytic leukemia (CLL) to examine the protein expression profile of CLL B cells. Protein identifications made by replicate 2D-LC-MS/MS analysis of tryptic peptides from detergent solubilized B cell membrane proteins, as well as replicate LC-MS/MS analysis of single off-line strong cation exchange chromatography (SCX) fractions, were analyzed. We show that despite the variance in SCX, capillary LC, and the data-dependent selection of precursor ions, an overlap of 64% between proteins identified in replicate runs was achieved for this system.  相似文献   

17.
Two-dimensional liquid chromatography (2D-LC) coupled on-line with electrospray ionization tandem mass spectrometry (2D-LC-ESI-MS/MS) is a new platform for analysis and identification of proteome. Peptides are separated by 2D-LC and then performed MS/MS analysis by tandem MS/MS. The MS/MS data are searched against database for protein identification. In one 2D-LC-ESI-MS/MS run, we obtained not only the structural information of peptides directly from MS/MS, but also the retention time of peptides eluted from LC. Information on the chromatographic behavior of peptides can assist protein identification in the new platform for proteomics. The retention time of the matching peptides of the identified protein was predicted by the hydrophobic contribute of each amino acid on reversed-phase liquid chromatography (RPLC). By using this strategy proteins were identified by four types of information: peptide mass fingerprinting (PMF), sequence query, and MS/MS ions searched and the predicted retention time. This additional information obtained from LC could assist protein identification with no extra experimental cost.  相似文献   

18.
We report a global proteomic approach for analyzing brain tissue and for the first time a comprehensive characterization of the whole mouse brain proteome. Preparation of the whole brain sample incorporated a highly efficient cysteinyl-peptide enrichment (CPE) technique to complement a global enzymatic digestion method. Both the global and the cysteinyl-enriched peptide samples were analyzed by SCX fractionation coupled with reversed phase LC-MS/MS analysis. A total of 48,328 different peptides were confidently identified (>98% confidence level), covering 7792 nonredundant proteins ( approximately 34% of the predicted mouse proteome). A total of 1564 and 1859 proteins were identified exclusively from the cysteinyl-peptide and the global peptide samples, respectively, corresponding to 25% and 31% improvements in proteome coverage compared to analysis of only the global peptide or cysteinyl-peptide samples. The identified proteins provide a broad representation of the mouse proteome with little bias evident due to protein pI, molecular weight, and/or cellular localization. Approximately 26% of the identified proteins with gene ontology (GO) annotations were membrane proteins, with 1447 proteins predicted to have transmembrane domains, and many of the membrane proteins were found to be involved in transport and cell signaling. The MS/MS spectrum count information for the identified proteins was used to provide a measure of relative protein abundances. The mouse brain peptide/protein database generated from this study represents the most comprehensive proteome coverage for the mammalian brain to date, and the basis for future quantitative brain proteomic studies using mouse models. The proteomic approach presented here may have broad applications for rapid proteomic analyses of various mouse models of human brain diseases.  相似文献   

19.
The accurate mass and time (AMT) tag strategy has been recognized as a powerful tool for high-throughput analysis in liquid chromatography–mass spectrometry (LC–MS)-based proteomics. Due to the complexity of the human proteome, this strategy requires highly accurate mass measurements for confident identifications. We have developed a method of building a reference map that allows relaxed criteria for mass errors yet delivers high confidence for peptide identifications. The samples used for generating the peptide database were produced by collecting cysteine-containing peptides from T47D cells and then fractionating the peptides using strong cationic exchange chromatography (SCX). LC–tandem mass spectrometry (MS/MS) data from the SCX fractions were combined to create a comprehensive reference map. After the reference map was built, it was possible to skip the SCX step in further proteomic analyses. We found that the reference-driven identification increases the overall throughput and proteomic coverage by identifying peptides with low intensity or complex interference. The use of the reference map also facilitates the quantitation process by allowing extraction of peptide intensities of interest and incorporating models of theoretical isotope distribution.  相似文献   

20.
Metal and metal oxide chelating-based phosphopeptide enrichment technologies provide powerful tools for the in-depth profiling of phosphoproteomes. One weakness inherent to current enrichment strategies is poor binding of phosphopeptides containing multiple basic residues. The problem is exacerbated when strong cation exchange (SCX) is used for pre-fractionation, as under low pH SCX conditions phosphorylated peptides with multiple basic residues elute with the bulk of the tryptic digest and therefore require more stringent enrichment. Here, we report a systematic evaluation of the characteristics of a novel phosphopeptide enrichment approach based on a combination of low pH SCX and Ti(4+)-immobilized metal ion affinity chromatography (IMAC) comparing it one-to-one with the well established low pH SCX-TiO(2) enrichment method. We also examined the effect of 1,1,1,3,3,3-hexafluoroisopropanol (HFP), trifluoroacetic acid (TFA), or 2,5-dihydroxybenzoic acid (DHB) in the loading buffer, as it has been hypothesized that high levels of TFA and the perfluorinated solvent HFP improve the enrichment of phosphopeptides containing multiple basic residues. We found that Ti(4+)-IMAC in combination with TFA in the loading buffer, outperformed all other methods tested, enabling the identification of around 5000 unique phosphopeptides containing multiple basic residues from 400 μg of a HeLa cell lysate digest. In comparison, ~ 2000 unique phosphopeptides could be identified by Ti(4+)-IMAC with HFP and close to 3000 by TiO(2). We confirmed, by motif analysis, the basic phosphopeptides enrich the number of putative basophilic kinases substrates. In addition, we performed an experiment using the SCX/Ti(4+)-IMAC methodology alongside the use of collision-induced dissociation (CID), higher energy collision induced dissociation (HCD) and electron transfer dissociation with supplementary activation (ETD) on considerably more complex sample, consisting of a total of 400 μg of triple dimethyl labeled MCF-7 digest. This analysis led to the identification of over 9,000 unique phosphorylation sites. The use of three peptide activation methods confirmed that ETD is best capable of sequencing multiply charged peptides. Collectively, our data show that the combination of SCX and Ti(4+)-IMAC is particularly advantageous for phosphopeptides with multiple basic residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号