共查询到20条相似文献,搜索用时 19 毫秒
1.
2.
Inhibition of cell survival signal protein kinase B/Akt by curcumin in human prostate cancer cells 总被引:11,自引:0,他引:11
Although curcumin has been shown to inhibit prostate tumor growth in animal models, its mechanism of action is not clear. To better understand the anti-cancer effects of curcumin, we investigated the effects of curcumin on cell survival factor Akt in human prostate cancer cell lines, LNCaP, PC-3, and DU-145. Our results demonstrated differential activation of Akt. Akt was constitutively activated in LNCaP and PC-3 cells. Curcumin inhibited completely Akt activation in both LNCaP and PC-3 cells. The presence of 10% serum decreased the inhibitory effect of curcumin in PC-3 cells whereas complete inhibition was observed in 0.5% serum. Very little or no activation of Akt was observed in serum starved DU-145 cells (0.5% serum). The presence of 10% serum activated Akt in DU-145 cells and was not inhibited by curcumin. Results suggest that one of the mechanisms of curcumin inhibition of prostate cancer may be via inhibition of Akt. To our knowledge this is the first report on the curcumin inhibition of Akt activation in LNCaP and PC-3 but not in DU-145 cells. 相似文献
3.
中药鸦胆子是一种常用的抗肿瘤中草药,鸦胆子苦醇是来源于鸦胆子的主要成分。该研究探讨了鸦胆子苦醇(brusatol)对人前列腺癌DU145细胞的生长抑制及其作用机制。采用四甲基偶氮唑盐(MTT)法检测鸦胆子苦醇对不同细胞株的生长抑制情况,以及不同浓度的鸦胆子苦醇对DU145细胞的增殖抑制率;应用Hoechst 33258染色法观察鸦胆子苦醇处理DU145细胞后所发生的形态学变化;分别采用PI单染及AnnexinV-FITC双染法流式细胞术分析细胞周期分布个凋亡率的变化;以Western blot测定鸦胆子苦醇对MAPK信号通路相关蛋白表达的影响。结果表明:鸦胆子苦醇对人前列腺癌DU145细胞的抑制作用更为显著,并且可以时间和剂量依赖性地抑制人前列腺癌DU145细胞的生长,其半数有效抑制浓度IC50为(0.27±0.04)μmol·L-1;鸦胆子处理DU145细胞后,Hoechst 33258染色可见到明显的凋亡特征;细胞周期图中可见明显的亚二倍体峰,且随着作用时间的延长凋亡比例增加,FCM检测鸦胆子苦醇作用24 h后凋亡图中,可见凋亡的发生;Western blot检测表明鸦胆子苦醇处理后可使磷酸化的p38和JNK表达增加,使磷酸化的ERK表达降低。鸦胆子苦醇能显著抑制DU145细胞增殖,诱导DU145细胞凋亡。磷酸化的P38和JNK的表达增加,但磷酸化的ERK表达下降,这表明MAPK途径的活化可能是鸦胆子苦醇对DU145细胞生长抑制的作用机制之一。因此,鸦胆子苦醇是潜在的抗前列腺癌药物,有必要进一步在动物水平阐明其抗前列腺癌活性。 相似文献
4.
Levent Elmas Mücahit Secme Ramazan Mammadov Umut Fahrioglu Yavuz Dodurga 《Journal of cellular biochemistry》2019,120(3):3506-3513
Coriander (Coriandrum sativum L.) is such an herb from the Apiaceae family, used both for its medicinal and nutritional properties for many centuries. In this study, the effects of C. sativum extract on gene expression, viability, colony formation, migration, and invasion of PC-3 and LNCaP prostate cancer cell lines have been investigated. The half maximal inhibitory concentration (IC50) dose in PC-3 and LNCaP cells was detected to be 2 and 5 mg/mL at the 24th hour, respectively. C. sativum extracts have been observed to cause a significant decrease in the expression of Akt and Bcl-2 in the PC-3 cells and just Akt in LNCaP cells while increasing in the expression of p53, caspase-9, caspase-10, PTEN, DR5, TRADD, PUMA, and NOXA. DR4 expression was increased in LNCaP cell line but not PC-3, and APAF and BID had increased expression in PC-3 but not the LNCaP cells. Our observations have shown that C. sativum extract decreased colony formation while inhibiting cell invasion and migration. Cell migration was hindered in PC-3 but not the LNCaP cells. In conclusion, this data present a valuable addition to the very limited data available out there on the potential use of C. sativum in prostate cancer treatment. 相似文献
5.
Cathepsins L and B are lysosomal cysteine proteinases whose activities and cellular location are altered in many types of cancers and cancer cell lines. Cathepsins L and B play an unspecified role in cancer invasion and metastasis. The purpose of our study was to determine whether cathepsins L and B are important for the ability of two prostate cancer cell lines, PC3 and DU 145, to invade the basement membrane-like preparation, Matrigel®. Exposure of PC3 and DU145 to the irreversible cysteine proteinase inhibitor, E64, decreases the invasive ability of DU145, but not PC3. PC3 and DU145 were treated with the phorbol ester analogue, phorbol 12-myristate 13-acetate (PMA), a known tumor promoter that activates protein kinase C and contributes to the metastatic phenotype. PMA increased secreted cathepsin L+B activity and the invasive ability of PC3 and DU145; co-exposure to E64 and PMA decreased both cathepsin L+B activity and invasion. We conclude that DU145 requires cathepsin L+B activity more than PC3 for the invasion of the Matrigel®. When the amount of secreted cathepsin L+B activity is increased by PMA treatment, however, PC3 becomes dependent on cathepsin L+B for invasion. Our study demonstrates that modulation of the amount of secreted cathepsin L+B activity influences the invasive phenotype of PC3 and DU145. 相似文献
6.
U.A. Sanli C. Erten E. Cengiz B. Karaca S. Uzunoglu R. Uslu 《Cell biology international》2009,33(11):1165-1172
Possible synergistic cytotoxic and apoptotic effects of gossypol with zoledronic acid on DU-145 cells were explored, along with the rationale behind any observed synergism due to the different apoptotic proteins involved. XTT cell proliferation assay was used to assess the cytotoxicity, and DNA fragmentation and caspase 3/7 activity were measured to verify apoptosis. Human Apoptosis Array was used to evaluate apoptotic proteins. The synergistic cytotoxic combination treatment had a versatile effect on apoptotic proteins, through inhibition of anti-apoptotic proteins (including cIAP-1, cIAP-2, survivin, livin, claspin, p53, p21, PON-2 and heat shock proteins) and concurrently the induction of pro-apoptotic proteins (Bad, Bax, Fas, FADD, cleaved caspase-3 and p27). Both drugs had a minimal toxicity profile comparing to cytotoxic agents. Combination treatments targeting many pivotal apoptosis-related proteins may be a rationale option for treatment of prostate cancer. 相似文献
7.
Magatti M De Munari S Vertua E Parolini O 《Journal of cellular and molecular medicine》2012,16(9):2208-2218
Cells derived from the amniotic foetal membrane of human term placenta have drawn particular attention mainly for their plasticity and immunological properties, which render them interesting for stem-cell research and cell-based therapeutic applications. In particular, we have previously demonstrated that amniotic mesenchymal tissue cells (AMTC) inhibit lymphocyte proliferation in vitro and suppress the generation and maturation of monocyte-derived dendritic cells. Here, we show that AMTC also significantly reduce the proliferation of cancer cell lines of haematopoietic and non-haematopoietic origin, in both cell-cell contact and transwell co-cultures, therefore suggesting the involvement of yet-unknown inhibitory soluble factor(s) in this 'cell growth restraint'. Importantly, we provide evidence that the anti-proliferative effect of AMTC is associated with induction of cell cycle arrest in G0/G1 phase. Gene expression analyses demonstrate that AMTC can down-regulate cancer cells' mRNA expression of genes associated with cell cycle progression, such as cyclins (cyclin D2, cyclin E1, cyclin H) and cyclin-dependent kinase (CDK4, CDK6 and CDK2), whilst they up-regulate cell cycle negative regulator such as p15 and p21, consistent with a block in G0/G1 phase with no progression to S phase. Taken together, these findings warrant further studies to investigate the applicability of these cells for controlling cancer cell proliferation in vivo. 相似文献
8.
Kampa M Papakonstanti EA Alexaki VI Hatzoglou A Stournaras C Castanas E 《Experimental cell research》2004,294(2):434-445
Neuropeptides influence cancer cell replication and growth. Opioid peptides, and opiergic neurons are found in the prostate gland, and they are proposed to exert a role in tumor regulation, influencing cancer cell growth, as opioid agonists inhibit cell growth in several systems, including the human prostate cancer cell line LNCaP. In the same cell line, the existence of membrane testosterone receptors was recently reported, which increase, in a non-genomic manner, the secretion of PSA, and modify actin cytoskeleton dynamics, through the signaling cascade FAK-->PI-3 kinase-->Cdc42/Rac1. In the present work, we present data supporting that the general opioid agonist Ethylketocyclazocine (EKC) decreases testosterone-BSA (a non-internalizable testosterone analog) induced PSA secretion. Furthermore, we report that this opioid affects this non-genomic testosterone action, by modifying the distribution of the actin cytoskeleton in the cells, disrupting the above signaling cascade. In addition, after long (>24 h) incubation, opioids decrease the number of membrane testosterone receptors, and reverse their effect on the signaling molecules. In conclusion, our results provide some new insights of a possible action of opioids in prostate cancer control by interfering with the action and the expression of membrane testosterone receptors and signaling. 相似文献
9.
Gunadharini DN Arunkumar A Krishnamoorthy G Muthuvel R Vijayababu MR Kanagaraj P Srinivasan N Aruldhas MM Arunakaran J 《Cell biochemistry and function》2006,24(5):407-412
Garlic has been used throughout the world to treat coughs, toothache, earache, dandruff, hypertension, hysteria, diarrhoea, dysentery, diptheria, vaginitis and many other conditions. Garlic contains a complex mixture of oil and water-soluble organosulfur compounds. Diallyl disulfide (DADS), an oil-soluble constituent of garlic seems to be effective in reducing tumour cells originating from colon, lung and skin. Hence our present study focuses on the dose-dependent effect of DADS on an androgen-dependent prostate cancer cell line. Various concentrations of DADS ranging from 25 to 100 microM were given to LNCaP cells and the activity of lactate dehydrogenase (LDH) prostatic acid phosphatase (PAcP) and the level of prostate specific antigen were studied. DADS reduced the secretory activity of LNCaP cells with the gradual increase in dosage. DADS was found to act as a good antiproliferative agent, which was confirmed by proliferation assay. DADS also induced apoptosis and nuclear segmentation in the higher doses. 相似文献
10.
Bone metastases from prostate cancer cause abnormal new bone formation, however, the factors involved and the pathways leading to the response are incompletely defined. We investigated the mechanisms of osteoblast stimulatory effects of LNCaP prostate carcinoma cell conditioned media (CM). MC3T3-E1 osteoblastic cells were cultured with CM from confluent LNCaP cells. LNCaP CM stimulated MAP kinase, cell proliferation (3H-thymidine incorporation), and protein synthesis (14C-proline incorporation) in the MC3T3-E1 cells. The increases in cell proliferation and protein synthesis were prevented by inhibition of the MAP kinase pathway. IGF-I mimicked the effects of the CM on the MC3T3-E1 cells and inhibition of IGF-I action decreased the LNCaP CM stimulation of 3H-thymidine and 14C-proline incorporation and MAP kinase activity. The findings indicate that IGF-I is an important factor for the stimulatory effects of LNCaP cell CM on cell proliferation and protein synthesis in osteoblastic cells, and that MAP kinase is a component of the signaling pathway for these effects. 相似文献
11.
Doxorubicin kinetics and effects on lung cancer cell lines using in vitro Raman micro‐spectroscopy: binding signatures,drug resistance and DNA repair 下载免费PDF全文
Zeineb Farhane Franck Bonnier Orla Howe Alan Casey Hugh J. Byrne 《Journal of biophotonics》2018,11(1)
Raman micro‐spectroscopy is a non‐invasive analytical tool, whose potential in cellular analysis and monitoring drug mechanisms of action has already been demonstrated, and which can potentially be used in pre‐clinical and clinical applications for the prediction of chemotherapeutic efficacy. To further investigate such potential clinical application, it is important to demonstrate its capability to differentiate drug mechanisms of action and cellular resistances. Using the example of Doxorubicin (DOX), in this study, it was used to probe the cellular uptake, signatures of chemical binding and subsequent cellular responses, of the chemotherapeutic drug in two lung cancer cell lines, A549 and Calu‐1. Multivariate statistical analysis was used to elucidate the spectroscopic signatures associated with DOX uptake and subcellular interaction. Biomarkers related to DNA damage and repair, and mechanisms leading to apoptosis were also measured and correlated to Raman spectral profiles. Results confirm the potential of Raman spectroscopic profiling to elucidate both drug kinetics and pharmacodynamics and differentiate cellular drug resistance associated with different subcellular accumulation rates and subsequent cellular response to DNA damage, pointing towards a better understanding of drug resistance for personalised targeted treatment.
12.
13.
BackgroundCoumarins occurs naturally across plant kingdoms exhibits significant pharmacological properties and pharmacokinetic activity. The conventional, therapeutic agents are often associated with poor stability, absorption and increased side effects. Therefore, identification of a drug that has little or no-side effect on humans is consequential. Here, we investigated the antiproliferative activity of styrene substituted biscoumarin against various human breast cancer cell lines, such as MCF-7, (ER-) MDA-MB-231 and (AR+) MDA-MB-453. Styrene substituted biscoumarin induced cell death by apoptosis in MDA-MB-231 cell line was analyzed.MethodsAntiproliferative activity of Styrene substituted biscoumarin was performed by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Styrene substituted biscoumarin induced apoptosis was assessed by Hoechst staining, Annexin V-fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining and flow cytometric analysis. Migratory and proliferating characteristic of breast cancer cell line MDA-MB-231 was also analyzed by wound healing and colony formation assay. Furthermore, mRNA expression of BAX and BCL-2 were quantified using qRT-PCR and protein expression level analyzed by Western blot.ResultsThe inhibition concentration (IC50) of styrene substituted biscoumarin was assayed against three breast cancer cell lines. The inhibition concentration (IC50) value of styrene substituted biscoumarin toward MDA-MB-231, MDA-MB-453 and MCF-7 cell lines was 5.63, 7.30 and 10.84 μg/ml respectively. Styrene substituted biscoumarin induced apoptosis was detected by Hoechst staining, DAPI/PI analysis and flow-cytometric analysis. The migration and proliferative efficiency of MDA-MB-231 cells were completely arrested upon styrene substituted biscoumarin treatment. Also, mRNA gene expression and protein expression of pro-apoptotic (BAX) and anti-apoptotic (BCL-2) genes were analyzed by qRT-PCR and western blot analysis upon styrene substituted biscoumarin treatment to MDA-MB-231 cells. Our results showed that styrene substituted biscoumarin downregulated BCL-2 gene expression and upregulated BAX gene expression to trigger apoptotic process.ConclusionStyrene substituted biscoumarin could induce apoptosis through intrinsic mitochondrial pathway in breast cancer cell lines, particularly in MDA-MB-231. Our data suggest that styrene substituted biscoumarin may act as a potential chemotherapeutic agent against breast cancer. 相似文献
14.
McIntosh AH Grasela JJ Popham HJ 《In vitro cellular & developmental biology. Animal》2005,41(8-9):298-304
Summary Insect cell lines from Arthropoda represented by Lepidoptera, Coleoptera, Diptera, and Homoptera were evaluated for their
ability to support replication of AcMNPV. In addition, some of the cell lines that were refractive to AcMNPV were tested with
AcMNPV hsp70 Red, a recombinant carrying the red fluorescent protein (RFP) gene, for their ability to express this protein
after inoculation. Of the 10 lepidopteran cell lines tested, only three cell lines from Helicoverpa zea (BCIRL-HZ-AM1), Lymantria dispar (IPLB-LD 65), and Cydia pomonella (CP-169) failed to support detectable viral replication as measured by tissue culture infectious dose 50 (TCID50) assay. Heliothis virescens (BCIRL-HV-AM1) produced the highest viral titer of 2.3±0.1×107 TCID50/ml followed by Heliothis subflexa (BCIRL-HS-AM1) at 4.7±0.1×106 TCID50/ml and Spodoptera frugiperda (IPLB-SF21) at 4.1±0.1×106 TCID50/ml. None of the coleopteran, dipteran, or homopteran cell lines supported AcMNPV replication. However, when studies were
performed using AcMNPV hsp70 Red, the dipteran cell lines Aedes aegypti (ATC-10) and Drosophila melanogaster (line 2), both expressed the RFP as well as the refractive lepidopteran cell lines from H. zea and L. dispar. No RFP expression was observed in any of the coleopteran or homopteran cell lines. Cell lines refractive to AcMNPV did not
appear to be adversely affected by the virus, as judged by their ability to multiply, nor was there any indication of induced
apoptosis, as assessed by deoxyribonucleic acid fragmentation profiles or cell blebbing or both.
Disclaimer: Mention of trade names or commercial product in the publication is solely for the purpose of providing specific
information and does not imply recommendation or endorsement by the U. S. Department of Agriculture. All programs and services
of the U. S. Department of Agriculture are offered on a nondiseriminatory basis without regard to race, color, national origin,
religion, sex, age marital status, or handicap. 相似文献
15.
已有研究表明, miR-145在多种肿瘤中低表达, 并与细胞增殖和转移相关。文章通过生物信息学分析并结合体外实验鉴定, 发现DAB2(Disabled homolog 2)为miR-145在肿瘤转移过程中累及的新靶点。DAB2一直被认为是一个重要的抑癌基因, 在多种肿瘤标本中表达低下。然而, 研究发现, 在具高侵袭能力的前列腺癌细胞株PC3中DAB2基因却呈较高水平表达。另外, 外源表达miR-145能显著下调 DAB2表达水平, 并抑制PC3细胞的迁移和侵袭能力, 且这种miR-145诱导的PC3细胞功能缺陷能被DAB2过表达修复。上述结果表明, miR-145能通过靶向调控DAB2而影响高侵袭前列腺癌细胞的迁移和侵袭能力。 相似文献
16.
《Biotechnic & histochemistry》2013,88(1):38-46
AbstractCelecoxib is a clinically available COX-2 inhibitor that has been reported to have antineoplastic activity. It has been proposed as a preventative agent for several types of early neoplastic lesions. Earlier studies have shown that sensitivity of prostatic carcinoma (PCa) to celecoxib is associated with apoptosis; however, these studies have not demonstrated adequately whether this effect is dependent on p53 status. We studied the relation between sensitivity to celecoxib and the phenotypic p53 status of PCa cells lines, LNCaP (wild type p53), PC3 (null p53) and DU145 (mutated p53). Cellular growth was assessed at 24, 48, 72 and 96 h after celecoxib treatment at concentrations of 0, 10, 30, 50, 70 and 100 μM using an MTT assay. Cellular proliferation (Ki-67 expression) was determined by immunocytochemistry. Phenotypic expression of p53 was analyzed by western blotting. The effects of celecoxib on cellular growth and its association with p53 were assessed after down-regulation of p53 using synthetic interfering RNAs (siRNA) in LNCaP cells. Expression of p53 and COX-2 at mRNA levels was assessed by quantitative real time polymerase reaction (qRT-PCR). We found that celecoxib inhibited cellular growth and proliferation in a dose-dependent manner in all three cell lines; LNCaP cells with a native p53 were the most sensitive to celecoxib. We observed a down- regulation effect on p53 in LNCaP cells exposed to ≥ 30 μM celecoxib for 72 h, but found no significant changes in the p53 levels of DU145 cells, which have a mutated p53. Reduced COX-2 expression was found with decreased p53 in LNCaP and PC-3 cells that were exposed to ≥ 20 μM of celecoxib for 72 h, but COX-2 expression was increased in DU145 cells. All three cell lines demonstrated pan-cytotoxicity when exposed to 100 μM celecoxib. When p53 expression was inhibited using siRNA in LNCaP cells, the inhibitory effects on cellular growth usually exerted by celecoxib were not changed significantly. Celecoxib reduces the growth of prostate cancer cell lines in part by decreasing proliferation, which suggests that the inhibition of growth of LNCaP cells by celecoxib is independent of normal levels of native p53. 相似文献
17.
Chandra Prakash Prasad Satyendra Chandra Tripathi Manish Kumar Purusottam Mohapatra 《Biotechnology and bioengineering》2023,120(8):2049-2055
Cancer cell lines play a crucial role as invaluable models in cancer research, facilitating the examination of cancer progression as well as the advancement of diagnostics and treatments. While they may not perfectly replicate the original tumor, they generally exhibit similar characteristics. Low-passage cancer cell lines are generally preferred due to their closer resemblance to the original tumor, as long-term culturing can alter the genetic and molecular profiles of a cell line thereby highlighting the importance of monitoring the passage number (PN). Variations in proliferation, migration, gene expression, and drug sensitivity can be linked to PN differences. PN can also influence DNA methylation levels, metabolic profiles, and the expression of genes/or proteins in cancer cell lines. When conducting research on cancer cell lines, it is crucial for researchers to carefully select the appropriate PN to maintain consistency and reliability of results. Moreover, to ensure dependability and replicability, scientists ought to actively track the growth, migration, and gene/or protein profiles of cancer cell lines at specific PNs. This approach enables the identification of the most suitable range of PNs for experiments, guaranteeing consistent and precise results. Additionally, such efforts serve to minimize disparities and uphold the integrity of research. In this review, we have laid out recommendations for laboratories to overcome these PN discrepancies when working with cancer cell lines. 相似文献
18.
Xu XF Zhang ZY Ge JP Cheng W Zhou SW Zhang X Xu Q Wei ZF Gao JP 《The journal of gene medicine》2007,9(12):1065-1070
BACKGROUND: The prostate androgen-regulated (PAR) gene is ubiquitously overexpressed in prostate cancer (PCa) cells and is involved in proliferation of PCa. However, the mechanism by which the modulation of PAR gene expression elicits its biological effects on PCa cells is not well documented. Here, we investigate the mechanism of PAR depletion inhibiting PCa cell growth. METHODS: PAR expression was depleted by small interfering RNA (siRNA) and its subsequent effects on proliferation of PC3 cells were determined by the trypan blue exclusion assay. Flow cytometric analysis provided the evidence for the progression of cell cycle and the induction of apoptosis which was further confirmed by the observation of cleavage of poly(ADP-ribose) polymerase. Western blot analysis was performed to investigate the involvement of critical molecular events known to regulate the cell cycle and the apoptotic machinery. RESULTS: siRNA transfection results in a dose-dependent inhibition of cell growth in PC3 cells by causing G2/M phase cell cycle arrest and apoptosis. The G2/M arrest by PAR depletion was associated with decreased levels of cyclin B1, pCdc2 (Tyr15), Cdc2 and Cdc25C. PAR depletion also was found to result in inhibition of procaspases 9, 8, 6 and 3 with significant increase in the ratio of Bax : Bcl-2. CONCLUSIONS: Our data indicate that PAR depletion induces G2/M arrest via the Cdc25C-Cdc2/cyclin B1 pathway. Furthermore, the results of the present study point toward involvement of pathways mediated by both caspase 8 and caspase 9 in apoptosis induction by PAR depletion. 相似文献
19.
Differential effects on growth, cell cycle arrest, and induction of apoptosis by resveratrol in human prostate cancer cell lines. 总被引:39,自引:0,他引:39
Epidemiologic studies have suggested that nutrition plays an important role in carcinogenesis and that 30% of cancer morbidity and mortality can potentially be prevented with proper adjustment of diets. Resveratrol, a polyphenol present in red wines and a variety of human foods, has recently been reported to exhibit chemopreventive properties when tested in a mouse skin cancer model system. In this study, we investigated the effects of resveratrol on growth, induction of apoptosis, and modulation of prostate-specific gene expression using cultured prostate cancer cells that mimic the initial (hormone-sensitive) and advanced (hormone-refractory) stages of prostate carcinoma. Androgen-responsive LNCaP and androgen-nonresponsive DU-145, PC-3, and JCA-1 human prostate cancer cells were cultured with different concentrations of resveratrol (2. 5 x 10(-5)-10(-7) M). Cell growth, cell cycle distribution, and apoptosis were determined. Addition of 2.5 x 10(-5) M resveratrol led to a substantial decrease in growth of LNCaP and in PC-3 and DU-145 cells, but only had a modest inhibitory effect on proliferation of JCA-1 cells. Flow cytometric analysis showed resveratrol to partially disrupt G1/S transition in all three androgen-nonresponsive cell lines, but had no effect in the androgen-responsive LNCaP cells. In difference to the androgen-nonresponsive prostate cancer cells however, resveratrol causes a significant percentage of LNCaP cells to undergo apoptosis and significantly lowers both intracellular and secreted prostate-specific antigen (PSA) levels without affecting the expression of the androgen receptor (AR). These results suggest that resveratrol negatively modulates prostate cancer cell growth, by affecting mitogenesis as well as inducing apoptosis, in a prostate cell-type-specific manner. Resveratrol also regulates PSA gene expression by an AR-independent mechanism. 相似文献
20.
To investigate the mechanisms involved in PCa (prostate cancer) metastasis and CXCR4 (CXC chemokine receptor-4)-mediated VEGF (vascular endothelial growth factor) and MMP-9 (matrix metalloproteinase-9) expression, we used lentivirus-mediated RNAi (RNA interference) to reduce the expression of CXCR4 in a PCa cell line. We found that the silencing of CXCR4 led to a significant down-regulation of VEGF and MMP-9 at both the mRNA and protein levels compared with the control in vitro. Using an animal model, we confirmed that CXCR4 silencing via subcutaneous injection could reduce tumour growth as well as inhibit metastasis, particularly bone metastasis, of PCa. Using in vivo immunohistochemistry, we also found that the expression of VEGF and MMP-9 were reduced by the knockdown of CXCR4 in the primary tumours of mice. Collectively, our results indicate that CXCR4 plays an important role in PCa metastasis through the up-regulation of VEGF and MMP-9. These findings may aid future intervention strategies. 相似文献