首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fimbrial filaments assembled by distinct chaperone pathways share a common mechanism of intersubunit interaction, as elucidated for colonization factor antigen I (CFA/I), archetype of enterotoxigenic Escherichia coli (ETEC) Class 5 fimbriae. We postulated that a highly conserved beta-strand at the major subunit N-terminus represents the donor strand, analogous to interactions within Class I pili. We show here that CFA/I fimbriae utilize donor strand complementation to promote proper folding of and interactions between CFA/I subunits. We constructed a series of genetic variants of CfaE, the CFA/I adhesin, incorporating a C-terminal extension comprising a flexible linker and 10-19 of the N-terminal residues of CfaB, the major subunit. Variants with a donor strand complement (dsc) of >or= 12 residues were recoverable from periplasmic fractions. Genetic disruption of the donor beta-strand reduced CfaE recovery. A hexahistidine-tagged variant of dsc19CfaE formed soluble monomers, folded into beta-sheet conformation, displayed adhesion characteristic of CFA/I, and elicited antibodies that inhibited mannose-resistant haemagglutination by ETEC expressing CFA/I, CS4 and CS14 fimbriae. Immunoelectron microscopy indicated that CfaE was confined to the distal fimbrial tip. Our findings provide the basis to elucidate structure and function of this class of fimbrial adhesins and assess the feasibility of an adhesin-based vaccine.  相似文献   

2.
CfaE is the minor, tip-localized adhesive subunit of colonization factor antigen I fimbriae (CFA/I) of enterotoxigenic Escherichia coli and is thought to be essential for the attachment of enterotoxigenic E. coli to the human small intestine early in diarrhea pathogenesis. The crystal structure of an in cis donor strand complemented CfaE was determined, providing the first atomic view of a fimbrial subunit assembled by the alternate chaperone pathway. The in cis donor strand complemented variant of CfaE structure consists of an N-terminal adhesin domain and a C-terminal pilin domain of similar size, each featuring a variable immunoglobulin-like fold. Extensive interactions exist between the two domains and appear to rigidify the molecule. The upper surface of the adhesin domain distal to the pilin domain reveals a depression consisting of conserved residues including Arg(181), previously shown to be necessary for erythrocyte adhesion. Mutational analysis revealed a cluster of conserved, positively charged residues that are required for CFA/I-mediated hemagglutination, implicating this as the receptor-binding pocket. Mutations in a few subclass-specific residues that surround the cluster displayed differential effects on the two red cell species used in hemagglutination, suggesting that these residues play a role in host or cell specificity. The C-terminal donor strand derived from the major subunit CfaB is folded as a beta-strand and fits into a hydrophobic groove in the pilin domain to complete the immunoglobulin fold. The location of this well ordered donor strand suggests the positioning and orientation of the subjacent major fimbrial subunit CfaB in the native assembly of CFA/I fimbriae.  相似文献   

3.
定居因子CFA/I和CS6是肠毒素大肠杆菌 (ETEC)中重要的两种优势抗原 ,是ETEC疫苗研制的首选组分。采用基因重组技术将二者构建在以asd基因为选择标记的重组质粒上 ,与asd基因缺失突变型减毒福氏志贺氏菌FWL0 1构成宿主 载体平衡致死系统。实验结果表明 ,重组疫苗候选株能够稳定表达CFA/I和CS6抗原 ,并可在菌体表面形成相应菌毛。重组菌口服免疫BALB/c小鼠后 ,可诱生相应的抗CFA/I和CS6的特异性血清抗体IgG和分泌型抗体sIgA ,说明以志贺氏菌为载体 ,可以构建同时表达多个定居因子抗原的ETEC多价菌苗  相似文献   

4.
Entertoxigenic Escherichia coli (ETEC) strains of nineteen serogroups which produced colonization factors (coli-surface-associated antigens CS5, CS6, CS7 and CS17, colonization factor antigen CFA/III and putative colonization factors PCFO159:H4, PCFO166 and PCFO9) were tested for hybridization with a DNA probe containing the cfaD sequence that regulates expression of CFA/I. Strong colony hybridization, similar to that with the CFA/I-positive control strain H10407, occurred with ETEC strains of serogroups O27, O159 and O169 which produced CS6 antigen, and with all the strains which produced PCFO166 fimbriae. Weak colony hybridization, compared to the control strain, was found with ETEC producing CS5 fimbriae with CS6 antigen, CFA/III fimbriae with CS6 antigen, CS7 fimbriae or PCFO159:H4 fimbriae. CS6-antigen-positive strains of serogroups O79, O89 and O148 and all the CS17-antigen-positive and PCFO9-fimbriae-positive strains were negative in colony hybridization tests with the cfaD probe. Plasmid DNA of nine ETEC strains and their colonization-factor-negative derivatives was tested for hybridization with the cfaD probe and with ST and LT oligonucleotide probes. The sequences that hybridized with the cfaD probe were on the plasmids which coded for enterotoxin production. Fifteen strains were transformed with NTP513, a recombinant plasmid which contains the CFA/I region 1 fimbrial subunit operon but lacks a functional cfaD sequence, in order to determine whether DNA in any of these strains could substitute for the cfaD sequence in the regulation of production of CFA/I fimbriae.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
An oligonucleotide, derived from the N-terminal amino acid sequence of the CS1 fimbrial subunit protein was used to identify the subunit gene on recombinant plasmid pDEP23 containing the structural genes of the CS1 fimbrial operon. The nucleotide sequence of the subunit gene (csoA), encoding a protein of 171 amino acids, was determined. Flanking it upstream, a gene (csoB) encoding a protein of 238 amino acids was found. The CsoB and CsoA proteins are homologous to the CfaA and CfaB proteins in the CFA/I fimbrial operon. For all the CS1 producing strains investigated the structural genes are located on plasmids. Like CFA/I fimbriae, CS1 fimbriae are only expressed in the presence of a positive regulator, CfaD for CFA/I and Rns for CS1, respectively. The promoter region upstream of the csoB gene was cloned in front of the promoterless alkaline phosphatase (phoA) gene of the promoter-probe vector pCB267. PhoA activity was enhanced approximately two-fold by the introduction of compatible plasmids containing either rns or cfaD.  相似文献   

6.
Immunoglobulins, prepared from polyclonal rabbit antisera raised against Escherichia coli fimbrial antigens, colonization factor antigen (CFA)/I, and coli-surface-associated antigens (CS)1, CS2 and CS4, were used to assess antigenic cross-reactions between these four fimbrial types by Western immunoblotting. Antibodies in a serum, prepared against CS4, cross-reacted strongly with the fimbrial subunits of CFA/I, CS1 and CS2. Antibodies in sera prepared against CFA/I and CS1 gave weak reactions with CS1 or CFA/I respectively and also with CS2 and CS4, while the antiserum prepared against CS2 did not react. CS4 antiserum also reacted with the CS17 fimbrial subunit, but not with the subunits of fimbrial antigens: CFA/III, CS5, putative colonization factor (PCF) 0159:H4 or PCF0166.  相似文献   

7.
Escherichia coli strains are able to cause intestinal (enteritis, diarrhoeal diseases) and extraintestinal (urinary tract infections, sepsis, meningitis) infections. Most pathogenic E. coli strains produce specific fimbrial adhesins, which represent essential colonization factors: intestinal E. coli strains very often carry transferable plasmids with gene clusters specific for fimbrial adhesins, like K88 and K99, or colonization factor antigens (CFA) I and II. In contrast, the fimbrial gene clusters of extraintestinal E. coli strains, such as P, S, or F1C fimbriae, are located on the chromosomes. The fimbrial adhesin complexes consist of major and minor subunit proteins. Their binding specificity can generally be assayed in hemagglutination tests. In the case of fimbrial adhesins of intestinal E. coli strains, the major subunit proteins preferentially represent the hemagglutinating adhesins, whereas minor subunit proteins are the hemagglutinins of extraintestinal E. coli strains. Recently "alternative" adhesin proteins were identified, which have the capacity to bind to eukaryotic structures different from the receptors of the erythrocytes. Fimbrial adhesins are not constitutively expressed but are stringently regulated on the molecular level. Extraintestinal E. coli wild-type strains normally carry three or more fimbrial adhesin determinants, which have the capacity to influence the expression of one another (cross talk). Furthermore the fimbrial gene clusters undergo phase variation, which seems to be important for their contribution to pathogenesis of E. coli.  相似文献   

8.
Contrary to what would be expected from data in the literature, mutations in the fsoC gene of the F7(1) (fso) P-fimbrial gene cluster do not completely block fimbrial biogenesis. fsoC mutants still express small amounts of fimbriae of normal length, which carry the non-adhesive minor subunit protein, FsoE, but lack the adhesin, FsoG. The FsoC protein operates at the same stage in fimbrial biogenesis as the FsoF and FsoG proteins. The data suggest that FsoC, FsoF and FsoG interact to form an initiation complex for fimbrial biogenesis.  相似文献   

9.
The genes determining the biosynthesis of the colonization factor CS5 have been cloned from Escherichia coli 0115:H40:PCF8775 isolated during an outbreak of diarrhoea among aboriginal children in Central Australia. Electron microscopy has shown purified CS5 to be of semi-rigid fimbrial type. NH2-terminal analysis has shown the CS5 determinant to be distinct from other fimbriae, although there is some conservation of certain residues. Expression in minicells of the cloned fimbrial genes encoded on pPM1312 has shown that proteins of 70 and 46.5 kD which co-purity with the 23 kD major fimbrial subunit protein are also co-expressed along with proteins of 45, 31, 17 and 14 kD. The major CS5 subunit is synthesized in precursor form (approximately 26 kD). A synthetic oligonucleotide to the NH2-terminal amino acid coding sequence of the purified protein has been used in Southern hybridization analyses to define the region on pPM1312 encoding the structural gene for the major pilin subunit.  相似文献   

10.
Despite sharing the name and the ability to mediate mannose-sensitive adhesion, the type 1 fimbrial FimH adhesins of Salmonella Typhimurium and Escherichia coli share only 15% sequence identity. In the present study, we demonstrate that even with this limited identity in primary sequence, these two proteins share remarkable similarity of complex receptor binding and structural properties. In silico simulations suggest that, like E. coli FimH, Salmonella FimH has a two-domain tertiary structure topology, with a mannose-binding pocket located on the apex of a lectin domain. Structural analysis of mutations that enhance S. Typhimurium FimH binding to eukaryotic cells and mannose-BSA demonstrated that they are not located proximal to the predicted mannose-binding pocket but rather occur in the vicinity of the predicted interface between the lectin and pilin domains of the adhesin. This implies that the functional effect of such mutations is indirect and probably allosteric in nature. By analogy with E. coli FimH, we suggest that Salmonella FimH functions as an allosteric catch bond adhesin, where shear-induced separation of the lectin and pilin domains results in a shift from a low affinity to a high affinity binding conformation of the lectin domain. Indeed, we observed shear-enhanced binding of whole bacteria expressing S. Typhimurium type 1 fimbriae. In addition, we observed that anti-FimH antibodies activate rather than inhibit S. Typhimurium FimH mannose binding, consistent with the allosteric catch bond properties of this adhesin.  相似文献   

11.
Infections with enterotoxigenic Escherichia coli (ETEC) are a major cause of travelers' diarrhea worldwide. Colonization of the small intestine mucosa is dependent on specific colonization factor antigens (CFA) and coli surface (CS) antigens. CFA/1, CS3, and CS6 are the most prevalent fimbrial antigens found in clinical isolates. The goal of our study was to visualize the morphology of CS3 and CS6 fimbriae in wild-type and recombinant E. coli strains by means of transmission electron microscopy in conjunction with negative staining and immunolabeling. Corresponding ETEC genes were cloned into E. coli K12 strain DH10B. Expression of fimbriae was dependent on culture conditions and sample handling. Specific immunolabeling of fimbriae unequivocally demonstrated the presence of all types of surface antigens investigated. Negative staining was effective in revealing CS3 but not CS6. In addition, this technique clearly demonstrated differences in the morphology of genetically and immunologically identical CS3 surface antigens in wild-type and recombinant strains. This paper provides a basis for the assessment of recombinant vaccines.  相似文献   

12.
The 987P fimbrial gene cluster has recently been shown to contain eight genes (fasA to fasH) clustered on large plasmids of enterotoxigenic Escherichia coli and adjacent to a Tn1681-like transposon encoding the heat-stable enterotoxin STIa. Different genetic approaches were used to study the relationship between 987P fimbriation and adhesion. TnphoA mutagenesis, complementation assays, and T7 RNA polymerase-promoted gene expression indicated that all of the fas genes were involved in fimbrial expression and adhesion. In contrast to other fimbrial systems, the lack of expression of any single fas gene never resulted in the dissociation of fimbriation and adhesion, indicating that the adhesin is required for fimbrial expression and suggesting that FasA, the fimbrial structural subunit itself, is the adhesin. In addition, fimbrial length was shown to be modulated by the levels of expression of different fas genes.  相似文献   

13.
Uropathogenic Escherichia coli frequently express globoside-specific adhesins, shown to mediate binding to uroepithelial cells. For one gene cluster pap, it recently has been demonstrated that globoside binding is not dependent on expression of the pilus subunit gene papA. Instead, two other pap genes papF and papG are specifically required for globoside binding (F. P. Lindberg et al., EMBO J. 3:1167-1173, 1984). By restriction enzyme mapping, DNA hybridization, DNA sequencing, and protein expression in minicells, we show that three gene clusters encoding globoside binding have a very similar structure and gene organization, although they were cloned from different E. coli isolates. Major differences between the adhesin clones were restricted to the central part of the pilin gene (papA) and to one of the two adhesin gene (papG). The three functional units required for biogenesis of globoside-binding pili, i.e., pilin synthesis, pilin export, and pilin assembly, as well as expression of adhesion function, were all trans complementable among the gene clusters.  相似文献   

14.
The S fimbrial adhesin (Sfa) enables Escherichia coli to attach to sialic acid-containing receptor molecules of eukaryotic cells. As previously reported, the genetic determinant coding for the Sfa of an E. coli O6 strain was cloned, the gene coding for the major fimbrial subunit was identified and sequenced and the S specific adhesin was detected. Here we present evidence that in addition to the major subunit protein SfaA three other minor subunit proteins, SfaG (17 kD), SfaS (14 kD) and SfaH (31 kD) can be isolated from the S-specific fimbrial adhesin complex. The genes coding for these minor subunits were identified, mutagenized separately and sequenced. Using haemagglutination tests, electron-microscopy and quantitative ELISA assays with monoclonal anti-SfaA and anti-SfaS antibodies the functions of the minor subunits were determined. It was determined that SfaS is identical to the S-specific adhesin, which also plays a role in determination of the degree of fimbriation of the cell. The minor subunit SfaH also had some influence on the level of fimbriation of the cell, while SfaG is necessary for full expression of S-specific binding. It was further shown that the amino-terminal protein sequence of the isolated SfaS protein was identical to the protein sequence calculated from the DNA sequence of the sfaS gene locus.  相似文献   

15.
Antibodies recognizing the non-adhesive minor P-fimbral subunit protein E and the P-fimbrial adhesin were used in an immunocytochemical analysis of P-fimbrial structure. It was demonstrated that P-fimbriae of the serotypes F71, F72 and F11 carry their adhesin in a complex with protein E. These complexes are commonly found at the tip of the fimbrial structure. In P-fimbriae of serotype F9, expressed by the uropathogenic Escherichia coli strain 21086, adhesin-protein E complexes are localized at the tips as well as along the shafts of the fimbriae. Protein E of F71 fimbriae (FsoE) plays a catalysing role in the biogenesis of the adhesin, but has no effect on the eventual localization of the adhesin.  相似文献   

16.
Enterotoxigenic Escherichia coli (ETEC) are an important cause of diarrheal morbidity in developing countries, especially in children and also of traveler's diarrhea. Colonization factors (CFs) of ETEC, like CFA/I and CS2 which are genetically and structurally related, play a substantial role in pathogenicity, and since intestinal–mucosal immune responses against CFs appear to be protective, much effort has focused on the development of a CF-based ETEC vaccine. We have constructed hybrid operons in which the major CS2 subunit-encoding cotA gene was inserted into the CFA/I operon, either replacing (hybrid I) or being added to the major CFA/I subunit-encoding cfaB gene (hybrid II). Using specific monoclonal antibodies against the major subunits of CFA/I and CS2, high levels of surface expression of both fimbrial subunits were shown in E. coli carrying the hybrid II operon. Oral immunization of mice with formalin-killed bacteria expressing hybrid II fimbriae induced strong CFA/I- and CS2-specific serum IgG + IgM and fecal IgA antibody responses, which were higher than those achieved by similar immunization with the reference strains. Bacteria expressing hybrid fimbriae are potential candidate strains in an oral-killed CF-ETEC vaccine, and the approach represents an attractive and novel means of producing a broad-spectrum ETEC vaccine.  相似文献   

17.
Combining sites of bacterial fimbriae   总被引:1,自引:0,他引:1  
The few known crystal structures of receptor-binding domains of fimbrial tip adhesins, FimH, PapGII, and F17G, tell us that each of these structures is unique and surprising. Despite little to no sequence identity, common to them all is their variable immunoglobulin (Ig)-fold. Nevertheless, their glycan-binding sites have evolved in different locations onto this similar scaffold, and with distinct, highly specific binding properties. Difficult to capture is the often dominant role played by the fimbrial shaft in host cell recognition and biofilm formation. The major pilin FaeG, building up the shaft of F4 fimbriae, also harbors the carbohydrate receptor-binding property and has thereto an enlarged Ig-domain, with the insertion of two beta-strands and two alpha-helices. Bordetella and CFA/I fimbriae combine a tip adhesin with major subunit adhesins. Still other fimbriae incorporate a specialized invasin at the very tip of polyadhesive fibers for uptake of bacteria in cells of the immune system and host epithelia. Finally, glycan recognition by fimbrial adhesins has often been found to coincide with the binding of cell-surface integrins and components of the extracellular matrix, such as collagen IV and laminin.  相似文献   

18.
The K88ab adhesin operon of Escherichia coli encodes for a fimbrial protein (the K88ab adhesin) which is involved in colonization of the porcine intestine. We characterized a structural gene (gene A) which is part of the K88ab adhesin operon and codes for an as yet unidentified polypeptide (pA). A mutation in gene A resulted in accumulation of K88ab adhesin subunits inside the cell. The nucleotide sequence of gene A was determined, and the deduced amino acid sequence suggested that pA is synthesized as a precursor containing a typical N-terminal signal peptide. The molecular weight of pA was calculated to be ca. 17,600. Gene A is preceded by a sequence showing homology with the consensus promoter. Fimbrial subunits from a number of E. coli strains have significant homology at their N- and C-termini. pA also contained some of these conserved sequences and showed a number of other similarities with fimbrial subunits. Therefore, it seems likely that the K88ab adhesin operon codes for a fimbrial subunit (pA) distinct from the K88ab adhesin subunit.  相似文献   

19.
Previous studies have shown that appendage pili of Burkholderia cepacia strains isolated from patients with cystic fibrosis (CF) at The Hospital for Sick Children, Toronto, Canada, mediate adherence to mucus glycoproteins and also enhance adherence to epithelial cells. The specific pilin-associated adhesin molecule is a 22-kDa protein. In the present study we purified the major subunit pilin (17 kDa) and immunolocalized it to peritrichously arranged pili. On the basis of their novel morphological appearance as giant intertwined fibers, we refer to them as cable (Cbl) pili. Using an oligonucleotide probe corresponding to regions of the N-terminal amino acid sequence of the pilin subunit, we detected the encoding cblA gene in a chromosomal DNA library. Sequencing revealed this structural gene to be 555 bp in length, encoding a leader sequence of 19 amino acids, a cleavage site between the alanine at position 19 and the valine at position 20, and a mature pilin sequence of 165 amino acids. The calculated molecular mass is 17.3 kDa. Hydrophobic plus apolar amino acids account for 60% of the total residues. The pilin exhibits some similarities in its amino acid sequence to colonization factor antigen I and CS1 fimbriae of Escherichia coli. With the cblA gene used as a probe, hybridization assays of 59 independent isolates, including those from several geographically separated CF centers, plus environmental and clinical (non-CF) strains, gave positive results with all of the 15 CF-associated B. cepacia isolates from Toronto, plus a single strain from one other CF center (Jackson, Mississippi). The cblA gene is the first pilin subunit gene of B. cepacia to be identified.  相似文献   

20.
Fifty-eight enterotoxigenic Escherichia coli (ETEC) strains, isolated from children with and without diarrhea in Sao Paulo, were examined for the presence of colonization factor antigens (CFAs) and their ability to adhere to HeLa cells. Antisera to CFA/I, the coli surface (CS) antigens CS1CS3, CS2CS3, and CS2 of CFA/II, CFA/III, and CS5CS6 and CS6 of CFA/IV were used. CFAs were identified in 43% of the ETEC strains: 40% of the strains with CFAs harbored CFA/I, 24% carried CFA/II (CS1CS3), 24% carried CFA/IV (CS6), and 12% carried CFA/IV (CS5CS6). CFAs occurred mainly among ETEC strains producing only heat-stable (ST-I) enterotoxin and in strains also producing heat-labile toxin (LT-I). No ETEC strains tested expressed CFA/III. A marked change in serotypes of ST-I-producing strains was found in Sao Paulo between 1979 and 1990. Adherence to HeLa cells was detected in 14% of the ETEC strains. All of them had a diffuse adherence pattern and produced only ST-I, and 88% carried CS6 antigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号