首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Although biological invasions pose serious threats to biodiversity, they also provide the opportunity to better understand interactions between the ecological and evolutionary processes structuring populations and communities. However, ecoevolutionary frameworks for studying species invasions are lacking. We propose using game theory and the concept of an evolutionarily stable strategy (ESS) as a conceptual framework for integrating the ecological and evolutionary dynamics of invasions. We suggest that the pathways by which a recipient community may have no ESS provide mechanistic hypotheses for how such communities may be vulnerable to invasion and how invaders can exploit these vulnerabilities. We distinguish among these pathways by formalizing the evolutionary contexts of the invader relative to the recipient community. We model both the ecological and the adaptive dynamics of the interacting species. We show how the ESS concept provides new mechanistic hypotheses for when invasions result in long- or short-term increases in biodiversity, species replacement, and subsequent evolutionary changes.  相似文献   

2.
A proposed unified framework for biological invasions   总被引:1,自引:0,他引:1  
There has been a dramatic growth in research on biological invasions over the past 20 years, but a mature understanding of the field has been hampered because invasion biologists concerned with different taxa and different environments have largely adopted different model frameworks for the invasion process, resulting in a confusing range of concepts, terms and definitions. In this review, we propose a unified framework for biological invasions that reconciles and integrates the key features of the most commonly used invasion frameworks into a single conceptual model that can be applied to all human-mediated invasions. The unified framework combines previous stage-based and barrier models, and provides a terminology and categorisation for populations at different points in the invasion process.  相似文献   

3.
There is growing realisation that integrating genetics and ecology is critical in the context of biological invasions, since the two are explicitly linked. So far, the focus of ecological genetics of invasive alien species (IAS) has been on determining the sources and routes of invasions, and the genetic make-up of founding populations, which is critical for defining and testing ecological and evolutionary hypotheses. However an ecological genetics approach can be extended to investigate questions about invasion success and impacts on native, recipient species. Here, we discuss recent progress in the field, provide overviews of recent methodological advances, and highlight areas that we believe are of particular interest for future research. First, we discuss the main insights from studies that have inferred source populations and invasion routes using molecular genetic data, with particular focus on the role of genetic diversity, adaptation and admixture in invasion success. Second, we consider how genetic tools can lead to a better understanding of patterns of dispersal, which is critical to predicting the spread of invasive species, and how studying invasions can shed light on the evolution of dispersal. Finally, we explore the potential for combining molecular genetic data and ecological network modelling to investigate community interactions such as those between predator and prey, and host and parasite. We conclude that invasions are excellent model systems for understanding the role of natural selection in shaping phenotypes and that an ecological genetics approach offers great potential for addressing fundamental questions in invasion biology.  相似文献   

4.
The triangle conceptual model is a construct that is foundational across several fields of the natural sciences including the study of diseases, invasive species, and fire. The invasion triangle incorporates the complex ecological and evolutionary interactions between the qualities of the abiotic environment, the invader, and the biotic interactions that describes or predicts the impacts of the invasive species. Although the triangle concept is widely used among fields, to date there has not been an analytical implementation of the model. Current modelling in invasion biology often only considers the effects of one or two factors on the outcomes of species introductions. A mathematical implementation of the triangle model will allow a more comprehensive consideration of the various ecological factors. Here, we provide the first mathematical theorem for an interpretation of the invasion triangle that allows for the consideration of time. This new analytical development of the triangle is flexible, and can be used to model the spatial and temporal population dynamics observed in invasions. We also describe the conditions under which invasion is maintained when factors change with opposing effects. In this interpretation, the lower limits for invasion are explicitly defined and each component can move independently. The complexity of the interactions between factors contributing to invasions is integrated into the single model, such as those suggested by major invasion hypotheses. We briefly describe how the theorem can be applied to account for various phenomena in range dynamics using rapid range expansion and the time lag in invasions as examples. Future work can explicitly define the interdependence among components to suit more specific questions.  相似文献   

5.
Although urban ecosystems are hotspots for biological invasions, the field of invasion science has given scant attention to invasion dynamics and the challenges facing managers in towns and cities. This paper provides an introduction to the growing challenges of understanding and managing invasive species in urban systems, and the context for a special issue of Biological Invasions, comprising 17 papers, that arose from a workshop on “Non-native species in urban environments: patterns, processes, impacts and challenges” held in Stellenbosch, South Africa, in November 2016. Contributions explore the following key questions: Are patterns and processes of urban invasions different from invasions in other contexts? Why is it important to manage non-native species in urban ecosystems? What are the special management needs in an urban context? How can we bridge the gaps between science, management, and policy with regards to biological invasions in urban ecosystems? The papers in this special issue show that patterns and processes of urban invasions differ in many ways from invasions in other contexts, and that managing invasive species in cities poses unique and increasingly complex challenges. Progress in urban invasion science requires further work to: (1) address key limitations that hinder our understanding of invasion dynamics in cities; (2) clarify whether fundamental concepts in the field of invasion science are appropriate for urban ecosystems; (3) integrate insights from invasion science with those from the burgeoning literature on the “Anthropocene biosphere”, novel ecosystems, social–ecological systems, human–wildlife conflicts, urban green infrastructure, urban planning and design, and ecosystem services/disservices.  相似文献   

6.
Biological invasions can transform our understanding of how the interplay of historical isolation and contemporary (human‐aided) dispersal affects the structure of intraspecific diversity in functional traits, and in turn, how changes in functional traits affect other scales of biological organization such as communities and ecosystems. Because biological invasions frequently involve the admixture of previously isolated lineages as a result of human‐aided dispersal, studies of invasive populations can reveal how admixture results in novel genotypes and shifts in functional trait variation within populations. Further, because invasive species can be ecosystem engineers within invaded ecosystems, admixture‐induced shifts in the functional traits of invaders can affect the composition of native biodiversity and alter the flow of resources through the system. Thus, invasions represent promising yet under‐investigated examples of how the effects of short‐term evolutionary changes can cascade across biological scales of diversity. Here, we propose a conceptual framework that admixture between divergent source populations during biological invasions can reorganize the genetic variation underlying key functional traits, leading to shifts in the mean and variance of functional traits within invasive populations. Changes in the mean or variance of key traits can initiate new ecological feedback mechanisms that result in a critical transition from a native ecosystem to a novel invasive ecosystem. We illustrate the application of this framework with reference to a well‐studied plant model system in invasion biology and show how a combination of quantitative genetic experiments, functional trait studies, whole ecosystem field studies and modeling can be used to explore the dynamics predicted to trigger these critical transitions.  相似文献   

7.
Understanding species invasion is a central problem in ecology because invasions of exotic species severely impact ecosystems, and because invasions underlie fundamental ecological processes. However, the influence on invasions of phenotypic plasticity, a key component of many species interactions, is unknown. We present a model in which phenotypic plasticity of a resident species increases its ability to oppose invaders, and plasticity of an invader increases its ability to displace residents. Whereas these effects are expected due to increased fitness associated with phenotypic plasticity, the model additionally reveals a new and unforeseen mechanism by which plasticity affects invasions: phenotypic plasticity increases the steepness of the fitness surface, thereby making invasion more difficult, even by phenotypically plastic invaders. Our results should apply to phenotypically plastic responses to any fluctuating environmental factors including predation risk, and to other factors that affect the fitness surface such as the generalism of predators. We extend the results to competition, and argue that phenotypic plasticity's effect on the fitness surface will destabilize coexistence at local scales, but stabilize coexistence at regional scales. Our study emphasizes the need to incorporate variable interaction strengths due to phenotypic plasticity into invasion biology and ecological theory on competition and coexistence in fragmented landscapes.  相似文献   

8.
Invasion biology suffers from a lack of the ability to predict the outcome of particular invasions because of reliance on verbal models and lack of rigorous experimental data at the appropriate scale. More progress is likely to be made by considering invasions as population-level phenomena and initially focusing on specific taxa or particular categories of invasions. To this end, we propose a simple conceptual framework to motivate studies of invasion by salmonids (salmon, trout, grayling, and whitefish) in streams that emphasizes population-level mechanisms affecting native species and promoting spread by the invader. Specifically, the only direct mechanisms by which the abundance of the native species can decline are through biotic interactions which cause decreased reproductive rates or survival at specific life stages, net emigration, debilitating or fatal diseases introduced by the invader, or a combination of these factors. Conversely, abundance of the invader must increase by local reproduction, high survival, net immigration, or a combination of these factors. Review of existing salmonid invasion literature suggests that future studies could be improved by using manipulative field experiments at a spatial and temporal scale appropriate to address population-level processes, characterizing how movement affects the establishment and spread of an invader, and including abiotic context in experimental designs. Using the example of brook trout (Salvelinus fontinalis) invasion into streams containing native Colorado River cutthroat trout (Oncorhynchus clarki pleuriticus) in the central Rocky Mountains (USA), we demonstrate how the framework can be used to design a manipulative field experiment to test for population-level mechanisms causing ecological effects and promoting invasion success. Experiments of this type will give invasion ecologists a useful example of how a taxon-specific invasion framework can improve the ability to predict ecological effects, and provide fishery biologists with the quantitative foundation necessary to better manage stream salmonid invasions.  相似文献   

9.
Successful alien species invasion depends on many factors studied mostly in post invasion habitats, and subsequently summarized in frameworks tailored to describe the studied invasion. We used an existing expanded framework with three groups of contributing factors: habitat invisibility, system context and species invasiveness, to analyze the probability of alien species invasions in terrestrial communities of Maritime Antarctic in the future. We focused on the first two factor groups. We tested if the expanded framework could be used under a different scenario. We chose Point Thomas Oasis on King George Island to perform our analysis. Strong geographical barrier, low potential bioclimatic suitability and resource availability associated with habitat invasibility significantly reduce the likelihood of biological invasion in Antarctica. An almost full enemy release (low pressure of consumers), the high patchiness of the habitat, and the prevalence of open gaps also associated with habitat invasibility increase the possibility of invasion. The dynamics of functional connectivity, propagule pressure and spatio-temporal patterns of propagule arrival associated with human activity and climate change belonging to the system context contribute to an increase in the threat of invasions. Due to the still low land transport activity migration pathways are limited and will reduce the spread of alien terrestrial organisms by land. An effective way of preventing invasions in Antarctica seems to lie in reducing propagule pressure and eliminating alien populations as early as possible. The expanded conceptual framework opens up wider possibilities in analyzing invasions taking place in different systems and with multiple taxa.  相似文献   

10.
Although biological invasion has a devastating impact on biodiversity, it also provides a valuable opportunity for natural experiments on evolutionary responses. Alien populations are often subject to strong natural selection when they are exposed to new abiotic and biotic conditions. Native populations can also undergo strong selection when interacting with introduced enemies and competitors. This special feature aims to highlight how evolutionary studies take advantage of biological invasion and, at the same time, emphasizes how studying evolutionary processes deepens our understanding of biological invasions. We hope this special feature stimulates more invasion studies taking evolutionary processes into account. Those studies should provide fundamental information essential for formulating effective measures in conserving native biodiversity, as well as valuable empirical tests for evolutionary theories.  相似文献   

11.
In an effort to understand how to improve student learning about evolution, a focus of science education research has been to document and address students?? naive ideas. Less research has investigated how students reason about alternative scientific models that attempt to explain the same phenomenon (e.g., which causal model best accounts for evolutionary change?). Within evolutionary biology, research has yet to explore how non-adaptive factors are situated within students?? conceptual ecologies of evolutionary causation. Do students construct evolutionary explanations that include non-adaptive and adaptive factors? If so, how are non-adaptive factors structured within students?? evolutionary explanations? We used clinical interviews and two paper and pencil instruments (one open-response and one multiple-choice) to investigate the use of non-adaptive and adaptive factors in undergraduate students?? patterns of evolutionary reasoning. After instruction that included non-adaptive causal factors (e.g., genetic drift), we found them to be remarkably uncommon in students?? explanatory models of evolutionary change in both written assessments and clinical interviews. However, consistent with many evolutionary biologists?? explanations, when students used non-adaptive factors they were conceptualized as causal alternatives to selection. Interestingly, use of non-adaptive factors was not associated with greater understanding of natural selection in interviews or written assessments, or with fewer naive ideas of natural selection. Thus, reasoning using non-adaptive factors appears to be a distinct facet of evolutionary thinking. We propose a theoretical framework for an expert?Cnovice continuum of evolutionary reasoning that incorporates both adaptive and non-adaptive factors, and can be used to inform instructional efficacy in evolutionary biology.  相似文献   

12.
遗传多样性与外来物种的成功入侵: 现状和展望   总被引:3,自引:0,他引:3  
遗传多样性被认为是影响外来种入侵成功的重要因素之一。研究表明, 尽管外来种在入侵过程中可能受到奠基者效应的影响, 但是多次引种、种内或种间杂交等过程使得许多外来种在引入地的遗传多样性水平未必会显著低于原产地, 从而使得外来种可能通过快速进化来适应引入地的新生境。然而, 高水平的遗传多样性并非成功入侵的必要条件, 遗传变异的匮乏对一些外来种的入侵能力没有明显的影响, 甚至在一些生物入侵案例中, 遗传多样性的降低反而促进了入侵成功。针对遗传多样性与入侵成功之间的复杂关系, 本文在评述外来种遗传多样性的研究现状的基础上, 分析了遗传多样性对外来种的短期入侵成功和长期进化的影响机制, 从方法角度探讨了目前研究中存在的若干问题, 并对如何推进入侵生态学研究提出了一些看法。正如一些学者提出的, 入侵生态学需要与生态学其他分支整合起来, 才能加深对生物入侵及其相关的生态和进化过程的理解。  相似文献   

13.
Invasion research today integrates active fields like biogeography, nature conservation, ecology, and evolutionary biology, and each of these fields contributes its own conceptual and terminological background. In this essay we advance the view that this is the reason why discussions on terminology keep flaring up time and time again. Our basic argument is that biological invasions cannot be perceived and defined independent of the specific research motivation. There are different, but equally valuable perspectives on biological invasions, each entailing a specific opinion about what the peculiarity of invasions is. We argue that a uniform usage of terms is not feasible, and even not desirable for invasion research, and suggest that the existing plurality of terms and concepts should be taken as an incentive to discuss the implications of different definitions. A stronger awareness and acknowledgement of the concepts underlying the terms used in interrelated research fields will enhance communication and promote progress in invasion research towards integrative, problem-oriented transdisciplinarity.  相似文献   

14.
Invasion biology is a growing discipline with clear ecological, social and economic implications. A wide range of research effort is thus required to address the invasion problem, and literature on the topic is extensive. However, the extent to which the invasion biology research is addressing the challenges associated with management and mitigation of the impacts of invasions has been questioned. Using bibliometric analysis, we investigated the extent to which the literature on the subject contributes to implementation of knowledge generated, by addressing aspects of management, policy, and/or implementation; the impact of these papers as indicated by the number of citations they attract; and the geopolitical scale of focus of invasion ecology papers, particularly those that attempt to bridge the knowing-doing gap. We then compared these findings with the information needs of conservation practitioners. We first looked globally at popular search engines and then narrowed our focus to South Africa—one of three regions outside USA where researchers producing highly cited papers in invasion ecology are well represented. At this level, we conducted a content analysis of invasion ecology-related papers, of which at least one author was affiliated to a South African institution. The knowledge base in the field of invasion biology is comprised largely of research oriented towards “knowing”, while research aimed at strategically applying or implementing that knowledge is poorly represented in the scientific literature, and the scale of its emphasis is not local. Conservation practitioners clearly indicate a need for basic knowledge. However, invasion science must develop channels for effective engagement to ensure that the research is contextualised, and will deal with the complex ecological, social and economic challenges posed by invasions.  相似文献   

15.
How can one understand the increasing interest in “urban invasions”, or biological invasions in urban environments? We argue that interest in urban invasions echoes a broader evolution in how ecologists view “the city” in relation to “the natural”. Previously stark categorical distinctions between urban and natural, human and wild, city and ecology have floundered. Drawing on conceptual material and an analysis of key texts, we first show how the ecological sciences in general—and then invasion science in particular—previously had a blind spot for cities, despite a number of important historical and continental European exceptions. Then, we document the advent of an urban turn in ecology and, more recently, in invasion ecology, and how this has challenged fundamental concepts about “nativity”, “naturalness”, and human agency in nature. The urban turn necessitates more explicit and direct attention to human roles and judgements. Ecology has moved from contempt (or indifference) for cities, towards interest or even sympathy.  相似文献   

16.
Invasive species that successfully establish, persist, and expand within an area of introduction, in spite of demographic bottlenecks that reduce their genetic diversity, represent a paradox. Bottlenecks should inhibit population growth and invasive expansion, as a decrease in genetic diversity should result in inbreeding depression, increased fixation of deleterious mutations by genetic drift (drift load), and reduced evolutionary potential to respond to novel selection pressures. Here, we focus on the problems of inbreeding depression and drift load in introduced populations as key components of the Genetic Paradox of Invasions (GPI). We briefly review published explanations for the GPI, which are based on various mechanisms (invasion history events, reproductive traits, genetic characteristics) that mediate the avoidance of inbreeding depression and drift load. We find that there is still a substantial lack of explanation and empirical evidence for explaining the GPI for strongly bottlenecked invasions, or for during critical invasion phases (e.g. initial colonization, leading edges of range expansion) where strong genetic depletion, inbreeding depression and drift load occurs. Accordingly, we suggest that discussion of the GPI should be revived to find additional mechanisms applicable to explaining invasion success for such species and invasion phases. Based on a synthesis of the literature on the population genetics of invaders and the ecology of invaded habitats, we propose that inbreeding × environment (I × E) interactions are one such mechanism that may have strong explanatory power to address the GPI. Specifically, we suggest that a temporary or permanent release from stress in invaded habitats may alleviate the negative effects of genetic depletion on fitness via I × E interactions, and present published empirical evidence supporting this hypothesis. We additionally discuss that I × E interactions can result in rapid evolutionary changes, and may even contribute to adaptation of invaders in the absence of high genetic variation. With a view to encouraging further empirical research, we propose an experimental approach to investigate the occurrence of I × E interactions in ongoing invasions. Revived research on the GPI should provide new fundamental insights into eco‐evolutionary invasion biology, and more generally into the evolutionary consequences of the interactions between inbreeding and environment.  相似文献   

17.
宾淑英  吴仲真  张鹤  林进添 《昆虫学报》2014,57(9):1094-1104
遗传变异与种群持续性及其进化潜力密切相关,而生物入侵导致种群遗传变异或遗传多样性的改变为研究自然界中各种生态和进化问题提供了理想模式。分子标记技术是调查种群遗传变异的重要工具,揭示了入侵种的入侵过程和结果,并预测未来的发生情况。本综述归纳了分子标记技术在昆虫入侵机制研究中的应用,以典型的研究个案为例,分别综述了分子标记技术在隐蔽入侵的监测应用,分子标记技术在重构入侵历史研究中的推算方式,分子标记技术在探索种群遗传变异与成功入侵机制方面取得的重要进展,并进一步介绍了高分辨率熔解曲线(high-resolution melting, HRM)分析在昆虫入侵研究中的应用前景。  相似文献   

18.
In common garden experiments, a number of genotypes are raised in a common environment in order to quantify the genetic component of phenotypic variation. Common gardens are thus ideally suited for disentangling how genetic and environmental factors contribute to the success of invasive species in their new non-native range. Although common garden experiments are increasingly employed in the study of invasive species, there has been little discussion about how these experiments should be designed for greatest utility. We argue that this has delayed progress in developing a general theory of invasion biology. We suggest a minimum optimal design (MOD) for common garden studies that target the ecological and evolutionary processes leading to phenotypic differentiation between native and invasive ranges. This involves four elements: (A) multiple, strategically sited garden locations, involving at the very least four gardens (2 in the native range and 2 in the invaded range); (B) careful consideration of the genetic design of the experiment; (C) standardization of experimental protocols across all gardens; and (D) care to ensure the biosafety of the experiment. Our understanding of the evolutionary ecology of biological invasions will be greatly enhanced by common garden studies, if and only if they are designed in a more systematic fashion, incorporating at the very least the MOD suggested here.  相似文献   

19.
The concept of a trade-off has long played a prominent role in understanding the evolution of organismal interactions such as mutualism, parasitism, and competition. Given the complexity inherent to interactions between different evolutionary entities, ecological factors may especially limit the power of trade-off models to predict evolutionary change. Here, we use four case studies to examine the importance of ecological context for the study of trade-offs in organismal interactions: (1) resource-based mutualisms, (2) parasite transmission and virulence, (3) plant biological invasions, and (4) host range evolution in parasites and parasitoids. In the first two case studies, mechanistic trade-off models have long provided a strong theoretical framework but face the challenge of testing assumptions under ecologically realistic conditions. Work under the second two case studies often has a strong ecological grounding, but faces challenges in identifying or quantifying the underlying genetic mechanism of the trade-off. Attention is given to recent studies that have bridged the gap between evolutionary mechanism and ecological realism. Finally, we explore the distinction between ecological factors that mask the underlying evolutionary trade-offs, and factors that actually change the trade-off relationship between fitness-related traits important to organismal interactions.  相似文献   

20.
Classical biological control—the introduction of exotic species to permanently control pests—offers an applied framework to test ecological and evolutionary hypotheses derived from invasion biology. One such hypothesis is that intraspecific hybridization can facilitate invasions because hybrids express higher phenotypic mean and/or variance than their parents. We tested this hypothesis using the parasitoid wasp Psyttalia lounsburyi, a candidate biocontrol agent for the olive fly Bactrocera oleae. Under laboratory conditions, we found marked differentiations between two populations of wasps, from South Africa and Kenya, in terms of life history strategies. South African females were better reproducers than Kenyan females, but the opposite was observed for males. Reaction norms showed different effects of developmental temperature on fecundity depending on the genotype. However, neither heterosis nor hybrid breakdown were observed. Hence, in this system, sex-specific effects of hybridization and genotype-by-environment interactions jeopardize any straightforward prediction on the fitness of hybrids. Therefore, our paper contributes to tone down the hybrid advantage hypothesis in invasion biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号