首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Estrogen receptors α (ER-α) and β (ER-β) play distinct biological roles in onset and progression of hormone-responsive breast cancer, with ER-β exerting a modulatory activity on ER-α-mediated estrogen signaling and stimulation of cell proliferation by mechanisms still not fully understood. We stably expressed human ER-β fused to a tandem affinity purification-tag in estrogen-responsive MCF-7 cells and applied tandem affinity purification and nanoLC-MS/MS to identify the ER-β interactome of this cell type. Functional annotation by bioinformatics analyses of the 303 proteins that co-purify with ER-β from nuclear extracts identify several new molecular partners of this receptor subtype that represents nodal points of a large protein network controlling multiple processes and functions in breast cancer cells.  相似文献   

2.
Du J  Zhou N  Liu H  Jiang F  Wang Y  Hu C  Qi H  Zhong C  Wang X  Li Z 《PloS one》2012,7(4):e35957
Estrogen receptor α (ERα) is a marker predictive for response of breast cancers to endocrine therapy. About 30% of breast cancers, however, are hormone- independent because of lack of ERα expression. New strategies are needed for re-expression of ERα and sensitization of ER-negative breast cancer cells to selective ER modulators. The present report shows that arsenic trioxide induces reactivated ERα, providing a target for therapy with ER antagonists. Exposure of ER-negative breast cancer cells to arsenic trioxide leads to re-expression of ERα mRNA and functional ERα protein in in vitro and in vivo. Luciferase reporter gene assays and 3-(4,5-dimethylthiazol-2-yl)- 5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assays show that, upon exposure to arsenic trioxide, formerly unresponsive, ER-negative MDA-MB-231 breast cancer cells become responsive to ER antagonists, 4-hydroxytamoxifen and ICI 182,780. Furthermore, methylation- specific PCR and bisulfite-sequencing PCR assays show that arsenic trioxide induces partial demethylation of the ERα promoter. A methyl donor, S-adenosylmethionine (SAM), reduces the degree of arsenic trioxide-induced re-expression of ERα and demethylation. Moreover, Western blot and ChIP assays show that arsenic trioxide represses expression of DNMT1 and DNMT3a along with partial dissociation of DNMT1 from the ERα promoter. Thus, arsenic trioxide exhibits a previously undefined function which induces re-expression ERα in ER-negative breast cancer cells through demethylation of the ERα promoter. These findings could provide important information regarding the application of therapeutic agents targeting epigenetic changes in breast cancers and potential implication of arsenic trioxide as a new drug for the treatment of ER-negative human breast cancer.  相似文献   

3.
Chan HS  Chang SJ  Wang TY  Ko HJ  Lin YC  Lin KT  Chang KM  Chuang YJ 《PloS one》2012,7(1):e30397
Serine protease PRSS23 is a newly discovered protein that has been associated with tumor progression in various types of cancers. Interestingly, PRSS23 is coexpressed with estrogen receptor α (ERα), which is a prominent biomarker and therapeutic target for human breast cancer. Estrogen signaling through ERα is also known to affect cell proliferation, apoptosis, and survival, which promotes tumorigenesis by regulating the production of numerous downstream effector proteins.In the present study, we aimed to clarify the correlation between and functional implication of ERα and PRSS23 in breast cancer. Analysis of published breast cancer microarray datasets revealed that the gene expression correlation between ERα and PRSS23 is highly significant among all ERα-associated proteases in breast cancer. We then assessed PRSS23 expression in 56 primary breast cancer biopsies and 8 cancer cell lines. The results further confirmed the coexpression of PRSS23 and ERα and provided clinicopathological significance. In vitro assays in MCF-7 breast cancer cells demonstrated that PRSS23 expression is induced by 17β-estradiol-activated ERα through an interaction with an upstream promoter region of PRSS23 gene. In addition, PRSS23 knockdown may suppress estrogen-driven cell proliferation of MCF-7 cells.Our findings imply that PRSS23 might be a critical component of estrogen-mediated cell proliferation of ERα-positive breast cancer cells. In conclusion, the present study highlights the potential for PRSS23 to be a novel therapeutic target in breast cancer research.  相似文献   

4.
5.
6.
Adiponectin, the most abundant protein secreted by adipose tissue, exhibits insulin-sensitizing, anti-inflammatory, antiatherogenic, and antiproliferative properties. In addition, it appears to play an important role also in the development and progression of several obesity-related malignancies, including breast cancer.

Here, we demonstrated that adiponectin induces a dichotomic effect on breast cancer growth. Indeed, it stimulates growth in ERα+ MCF-7 cells while inhibiting proliferation of ERα? MDA-MB-231 cells. Notably, only in MCF-7 cells adiponectin exposure exerts a rapid activation of MAPK phosphorylation, which is markedly reduced when knockdown of the ERα gene occurred. In addition, adiponectin induces rapid IGF-IR phosphorylation in MCF-7 cells, and the use of ERα siRNA prevents this effect. Moreover, MAPK activation induced by adiponectin was reversed by IGF-IR siRNA. Coimmunoprecipitation studies show the existence of a multiprotein complex involving AdipoR1, APPL1, ERα, IGF-IR, and c-Src that is responsible for MAPK signaling activation in ERα+ positive breast cancer cells. It is well known that in addition to the rapid effects through non-genomic mechanisms, ERα also mediates nuclear genomic actions. In this concern, we demonstrated that adiponectin is able to transactivate ERα in MCF-7 cells. We showed the classical features of ERα transactivation: nuclear localization, downregulation of mRNA and protein levels, and upregulation of estrogen-dependent genes. Thus, our study clarifies the molecular mechanism through which adiponectin modulates breast cancer cell growth, providing evidences on the cell-type dependency of adiponectin action in relationship to ERα status.  相似文献   

7.
8.
MicroRNAs (miRNAs) play an important regulatory role in breast tumorigenesis. Previously, we found that let-7 miRNAs were downregulated significantly in formalin-fixed paraffin-embedded (FFPE) breast cancer tissues. In this study, we further found that endogenous levels of let-7b and let-7i miRNAs are inversely correlated with levels of estrogen receptor (ER)-a36, a new variant of ER-α66, in the FFPE tissue set. Bioinformatic analysis suggested that ER-α36 may be another target of let-7 miRNAs. To test this hypothesis, cotransfection of let-7 mimics or inhibitors together with full-length or a fragment of ER-α36 3'UTR luciferase construct was performed, and we found that let-7b and let-7i mimics suppressed the activity of reporter gene significantly, which was enhanced remarkably by let-7b and let-7i inhibitors. Both mRNA and protein expression of ER-α36 were inhibited by let-7 mimics and enhanced by let-7 inhibitors. Furthermore, ER-α36 mediated nongenomic MAPK and Akt pathways were weakened by let-7b and let-7i mimics in triple negative breast cancer cell line MDA-MB-231. The reverse correlation between let-7 miRNAs and ER-α36 also exists in Tamoxifen (Tam)-resistant MCF7 cell line. Transfection of let-7 mimics to Tam-resistant MCF7 cells downregulated ER-α36 expression and enhanced the sensitivity of MCF7 cells to Tam in estrogen-free medium, which could be restored by overexpression of ER-α36 constructs without 3'UTR. Our results suggested a novel regulatory mechanism of let-7 miRNAs on ER-α36 mediated nongenomic estrogen signal pathways and Tam resistance.  相似文献   

9.
10.
11.
P Saha  S Fortin  V Leblanc  S Parent  E Asselin  G Bérubé 《Steroids》2012,77(11):1113-1122
Doxorubicin (DOX) is an important medicine for the treatment of breast cancer, which is the most frequently diagnosed and the most lethal cancer in women worldwide. However, the clinical use of DOX is impeded by serious toxic effects such as cardiomyopathy and congestive heart failure. Covalently linking DOX to estrogen to selectively deliver the drug to estrogen receptor-positive (ER(+)) cancer tissues is one of the strategies under investigation for improving the efficacy and decreasing the cardiac toxicity of DOX. However, conjugation of drug performed until now was at 3- or 17-position of estrogen, which is not ideal since the hydroxyl groups at this position are important for receptor binding affinity. In this study, we designed, prepared and evaluated in vitro the first estrogen-doxorubicin conjugates at 16α-position of estradiol termed E-DOXs (8a-d). DOX was conjugated using a 3-9 carbon atoms alkylamide linking arm. E-DOXs were prepared from estrone using a seven-step procedure to afford the desired conjugates in low to moderate yields. The antiproliferative activities of the E-DOX 8a conjugate through a 3-carbon spacer chain on ER(+) MCF7 and HT-29 are in the micromolar range while inactive on M21 and the ER(-) MDA-MB-231 cells (>50μM). Compound 8a exhibits a selectivity ratio (ER(+)/ER(-) cell lines) of >3.5. Compounds 8b-8d bearing alkylamide linking arms ranging from 5 to 9 carbon atoms were inactive at the concentrations tested (>50μM). Interestingly, compounds 8a-8c exhibited affinity for the estrogen receptor α (ERα) in the nanomolar range (72-100nM) whereas compound 8d exhibited no affinity at concentrations up to 215nM. These results indicate that a short alkylamide spacer is required to maintain both antiproliferative activity toward ER(+) MCF7 and affinity for the ERα of the E-DOX conjugates. Compound 8a is potentially a promising conjugate to target ER(+) breast cancer and might be useful also for the design of more potent E-DOX conjugates.  相似文献   

12.
13.
14.
Estrogen signaling is considered to play an important role in spermatogenesis, spermiogenesis and male fertility. Estrogens can act via the two nuclear estrogen receptors ESR1 (ERα) and ESR2 (ERβ) or via the intracellular G-protein-coupled estrogen receptor 1 (GPER, formerly GPR30). Several reports on the localization and expression of all three receptors in the human testis have been published but are controversial particularly in case of ERα. Contrary to previous studies, we decided therefore to evaluate expression of all three receptors in the testis by a number of different methods and in comparison with MCF-7 cells. Using qPCR, we could show that mRNA expression of ERα is considerably lower and expression of ERβ and GPER much higher in the testis than in MCF-7 cells. RT-PCR after laser-assisted microdissection of tubular and interstitial compartments from normal and Sertoli cell only syndrome testes plus in situ hybridization and immunohistochemical analyses of the same samples demonstrated that there is very low expression of ERα in germ cells and in single interstitial cells, very high expression of ERβ in germ cells and Sertoli cells and high expression of GPER in interstitial cells and less in Sertoli cells.  相似文献   

15.
16.
Ma X  Xie KP  Shang F  Huo HN  Wang LM  Xie MJ 《生理学报》2012,64(2):207-212
The aim of the present study was to investigate the involvements of insulin-like growth factor-1 (IGF-1) and estrogen receptor α (ERα) in the inhibitory effect of wogonin on the breast adenocarcinoma growth. Moreover, the effect of wogonin on the angiogenesis of chick chorioallantoic membrane (CAM) was also investigated. MCF-7 cells (human breast adenocarcinoma cell line) were subjected to several drugs, including IGF-1, wogonin and ER inhibitor ICI182780, alone or in combination. MTT assay was used to detect breast cancer proliferation. Western blot was used to analyze ERα and p-Akt expression levels. CAM models prepared from 6-day chicken eggs were employed to evaluate angiogenesis inhibition. The results showed wogonin and ICI182780 both exhibited a potent ability to blunt IGF-1-stimulated MCF-7 cell growth. Either of wogonin and ICI182780 significantly inhibited ERα and p-Akt expressions in IGF-1-treated cells. The inhibitory effect of wogonin showed no difference from that of ICI182780 on IGF-1-stimulated expressions of ERα and p-Akt. Meanwhile, wogonin at different concentrations showed significant inhibitory effect on CAM angiogenesis. These results suggest the inhibitory effect of wogonin on breast adenocarcinoma growth via inhibiting IGF-1-mediated PI3K-Akt pathway and regulating ERα expression. Furthermore, wogonin has a strong anti-angiogenic effect on CAM model.  相似文献   

17.
18.
Neuroglobin (NGB), an antiapoptotic protein upregulated by 17β-estradiol (E2), is part of E2/estrogen receptor α (ERα) pathway pointed to preserve cancer cell survival in presence of microenvironmental stressors including chemotherapeutic drugs. Here, the possibility that resveratrol (Res), an anticancer plant polyphenol, could increase the susceptibility of breast cancer cells to paclitaxel (Pacl) by affecting E2/ERα/NGB pathway has been evaluated. In MCF-7 and T47D (ERα-positive), but not in MDA-MB 231 (ERα-negative) nor in SK-N-BE (ERα and ERβ positive), Res decreases NGB levels interfering with E2/ERα-induced NGB upregulation and with E2-induced ERα and protein kinase B phosphorylation. Although Res treatment does not reduce cell viability by itself, this compound potentiates Pacl proapoptotic effects. Notably, the increase of NGB levels by NGB expression vector transfection prevents Pacl or Res/Pacl effects. Taken together, these findings indicate a new Res-based mechanism that acts on tumor cells impairing the E2/ERα/NGB signaling pathways and increasing cancer cell susceptibility to chemotherapeutic agent.  相似文献   

19.
The drug resistance and tumor metastasis have been the main obstacles for the longer-term therapeutic effects of tamoxifen (TAM) on estrogen receptor-positive (ER+) breast cancer, but the mechanisms underlying the TAM resistance are still unclear. Here, we demonstrated that the membrane-associated estrogen receptor ER-α36 signaling, but not the G protein-coupled estrogen receptor 1 (GPER1) signaling, might be involved in the TAM resistance and metastasis of breast cancer cells. In this study, a model of ER+ breast cancer cell MCF-7 that involves the up-regulated expression of ER-α36 and unchanged expression of ER-α66 and GPER1 was established via the removal of insulin from the cell culture medium. The mechanism of TAM resistance in the ER+ breast cancer cell line MCF-7 was investigated, and the results showed that the stimulating effect of insulin on susceptibility of MCF-7 to TAM was mediated by ER-α36 and that the expression level of ER-α36 in TAM-resistant MCF-7 cells was also significantly increased. Both TAM and estradiol (E2) could promote the migration of triple negative (ER-α66?/PR?/HER2?) and ER-α36+/GPER1+ breast cancer cells MDA-MB-231. The migration of MDA-MB-231 cells was inhibited by the down-regulated intracellular expression of ER-α36 by transient transfection of specific small interfering RNA, whereas no effect of GPER1 down-regulation was observed. Meanwhile, the effect of TAM on the migration of ER-α36-down-regulated MDA-MB-231 cells was also reduced. Furthermore, it was found that TAM enhanced the distribution of integrin β1 on the cell surface but did not affect the expression of integrin β1 in MDA-MB-231 cells. Collectively, these data suggested that ER-α36 signaling might play critical roles in acquired and de novo TAM resistance and metastasis of breast cancer, and ER-α36 might present a potential biomarker of TAM resistance in the clinical diagnosis and treatment of ER+ breast cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号