首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pan L  Chen S  Weng C  Call G  Zhu D  Tang H  Zhang N  Xie T 《Cell Stem Cell》2007,1(4):458-469
It is widely postulated that tissue aging could be, at least partially, caused by reduction of stem cell number, activity, or both. However, the mechanisms of controlling stem cell aging remain largely a mystery. Here, we use Drosophila ovarian germline stem cells (GSCs) as a model to demonstrate that age-dependent decline in the functions of stem cells and their niche contributes to overall stem cell aging. BMP signaling activity from the niche significantly decreases with age, and increasing BMP signaling can prolong GSC life span and promote their proliferation. In addition, the age-dependent E-cadherin decline in the stem cell-niche junction also contributes to stem cell aging. Finally, overexpression of SOD, an enzyme that helps eliminate free oxygen species, in either GSCs or their niche alone can prolong GSC life span and increase GSC proliferation. Therefore, this study demonstrates that stem cell aging is controlled extrinsically and intrinsically in the Drosophila ovary.  相似文献   

2.
The aging of tissue-specific stem and progenitor cells is believed to be central to the pathophysiological conditions arising in aged individuals. While the mechanisms driving stem cell aging are poorly understood, mounting evidence points to age-dependent DNA damage accrual as an important contributing factor. While it has been postulated that DNA damage may deplete stem cell numbers with age, recent studies indicate that murine hematopoietic stem cell (HSC) reserves are in fact maintained despite the accrual of genomic damage with age. Evidence suggests this to be a result of the quiescent (G0) cell cycle status of HSC, which results in an attenuation of checkpoint control and DNA damage responses for repair or apoptosis. When aged stem cells that have acquired damage are called into cycle under conditions of stress or tissue regeneration however, their functional capacity was shown to be severely impaired. These data suggest that age-dependent DNA damage accumulation may underlie the diminished capacity of aged stem cells to mediate a return to homeostasis after acute stress or injury. Moreover, the cytoprotection afforded by stem cell quiescence in stress-free, steady-state conditions suggests a mechanism through which potentially dangerous lesions can accumulate in the stem cell pool with age.  相似文献   

3.
Somatic stem cells mediate tissue maintenance for the lifetime of an organism. Despite the well-established longevity that is a prerequisite for such function, accumulating data argue for compromised stem cell function with age. Identifying the mechanisms underlying age-dependent stem cell dysfunction is therefore key to understanding the aging process. Here, using a model carrying a proofreading-defective mitochondrial DNA polymerase, we demonstrate hematopoietic defects reminiscent of premature HSC aging, including anemia, lymphopenia, and myeloid lineage skewing. However, in contrast to physiological stem cell aging, rapidly accumulating mitochondrial DNA mutations had little functional effect on the hematopoietic stem cell pool, and instead caused distinct differentiation blocks and/or disappearance of downstream progenitors. These results show that intact mitochondrial function is required for appropriate multilineage stem cell differentiation, but argue against mitochondrial DNA mutations per se being a primary driver of somatic stem cell aging.  相似文献   

4.
5.
人类及其他生物随时间推移逐渐发生细胞功能丧失,即细胞衰老.这个过程如突显在某个组织器官,则可引起这个组织和器官的衰老性疾病.然而,最近的研究表明,哺乳动物在出生之前胚胎发育的生理条件下,即已经出现细胞和组织的复制性衰老现象.机制研究显示多种分子从细胞(核)内外引起生理性和应激性细胞复制性衰老.而自然界中某些生物随时间推移生命力增强、并不发生衰老.这些现象的分子机制,还有如发生在脑及代谢性疾病中的非复制性细胞衰老等,都还是个谜.本文就近期衰老的机制、细胞衰老的类型以及某些衰老相关疾病的分子基础的最新研究进展做一个扼要综述.论文包含以下几个部分:a.细胞衰老的定义、分类和机制;b.生理性衰老:发育中程序化衰老;c.内环境稳态与组织器官衰老;d.一型细胞复制性衰老及相关疾病:端粒长度与预测衰老及肿瘤预后、特发性肺纤维化、高血压;e.二型非复制性细胞衰老及相关疾病:帕金森病、糖尿病;f.衰老与长寿的物种多样性.  相似文献   

6.
Zhao R  Xuan Y  Li X  Xi R 《Aging cell》2008,7(3):344-354
Adult stem cells are important in replenishing aged cells to maintain tissue homeostasis. Aging in turn may exert profound effects on stem cell's regenerative potential, but to date the mechanisms of such stem cell aging are poorly understood, and it is not clear to what extent stem cell aging contributes to tissue or organ aging. Here we show in female Drosophila that germline stem cell (GSC) division rate progressively declines with age, which is accompanied by reduced decapentaplegic (dpp) niche signaling pathway activation within GSCs. Egg production also rapidly declines with age, which is accompanied by both decreased stem cell division and increased incidence of cell death of developing eggs, especially in the oldest females. Genetically increasing dpp expression delays GSC activity decline and transiently increases egg production. We conclude that age-related decline of reproduction is caused by both decreased GSC activity and increased incidence of cell death during oogenesis, while decreased GSC activity is attributed to declined signaling from the regulatory niche. We suggest that niche functional decay may be an important mechanism for stem cell aging and system failure.  相似文献   

7.
The decline of tissue regenerative potential with the loss of stem cell function is a hallmark of mammalian aging. We study Botryllus schlosseri, a colonial chordate which exhibits robust stem cell-mediated regeneration capacities throughout life. Larvae, derived by sexual reproduction and chordate development, metamorphose to clonal founders that undergo weekly formation of new individuals by budding from stem cells. Individuals are transient structures which die through massive apoptosis, and successive buds mature to replicate an entire new body. As a result, their stem cells, which are the only self-renewing cells in a tissue, are the only cells which remain through the entire life of the genotype and retain the effects of time. During aging, a significant decrease in the colonies’ regenerative potential is observed and both sexual and asexual reproductions will eventually halt. When a parent colony is experimentally separated into a number of clonal replicates, they frequently undergo senescence simultaneously, suggesting a heritable factor that determines lifespan in these colonies. The availability of the recently published B. schlosseri genome coupled with its unique life cycle features promotes the use of this model organism for the study of the evolution of aging, stem cells, and mechanisms of regeneration.  相似文献   

8.
9.
Stem cells are a sub population of cell types that form the foundation of our body, and have the potential to replicate, replenish and repair limitlessly to maintain the tissue and organ homeostasis. Increased lifetime and frequent replication set them vulnerable for both exogenous and endogenous agents-induced DNA damage compared to normal cells. To counter these damages and preserve genetic information, stem cells have evolved with various DNA damage response and repair mechanisms. Furthermore, upon experiencing irreparable DNA damage, stem cells mostly prefer early senescence or apoptosis to avoid the accumulation of damages. However, the failure of these mechanisms leads to various diseases, including cancer. Especially, given the importance of stem cells in early development, DNA repair deficiency in stem cells leads to various disabilities like developmental delay, premature aging, sensitivity to DNA damaging agents, degenerative diseases, etc. In this review, we have summarized the recent update about how DNA repair mechanisms are regulated in stem cells and their association with disease progression and pathogenesis.  相似文献   

10.
Long-lived somatic stem cells regenerate adult tissues throughout our lifetime. However, with aging, there is a significant deterioration in the function of stem and progenitor cells, which contribute to diseases of aging. The decision for a long-lived somatic stem cell to become activated and subsequently to undergo either a symmetric or an asymmetric division is a critical cellular decision process. The decision to preferentially divide symmetrically or asymmetrically may be the major fundamental intrinsic difference between normal somatic stem cells and cancer stem cells. Based upon work done primarily in our laboratory over the past 15 years, this article provides a perspective on the critical role of somatic stem cells in aging. In particular, we discuss the importance of symmetric versus asymmetric divisions in somatic stem cells and the role of the differential usage of the highly similar Kat3 coactivators, CREB-binding protein (CBP) and p300, in stem cells. We describe and propose a more complete model for the biological mechanism and roles of these two coactivators, their evolution, and unique roles and importance in stem cell biology. Finally, we discuss the potential to pharmacologically manipulate Kat3 coactivator interactions in endogenous stem cells (both normal and cancer stem cells) to potentially ameliorate the aging process and common diseases of aging.  相似文献   

11.
While age-dependent stem cell decline is widely recognized as being a key component of organismal aging, the underlying mechanisms remain elusive. In this issue of Cell Metabolism, Suomalainen and colleagues provide evidence that mitochondrial mutation and associated reactive oxygen species can adversely impact tissue-specific stem and progenitor cell function.  相似文献   

12.
Regeneration of skeletal muscle relies on a population of quiescent stem cells (satellite cells) and is impaired in very old (geriatric) individuals undergoing sarcopenia. Stem cell function is essential for organismal homeostasis, providing a renewable source of cells to repair damaged tissues. In adult organisms, age-dependent loss-of-function of tissue-specific stem cells is causally related with a decline in regenerative potential. Although environmental manipulations have shown good promise in the reversal of these conditions, recently we demonstrated that muscle stem cell aging is, in fact, a progressive process that results in persistent and irreversible changes in stem cell intrinsic properties. Global gene expression analyses uncovered an induction of p16INK4a in satellite cells of physiologically aged geriatric and progeric mice that inhibits satellite cell-dependent muscle regeneration. Aged satellite cells lose the repression of the INK4a locus, which switches stem cell reversible quiescence into a pre-senescent state; upon regenerative or proliferative pressure, these cells undergo accelerated senescence (geroconversion), through Rb-mediated repression of E2F target genes. p16INK4a silencing rejuvenated satellite cells, restoring regeneration in geriatric and progeric muscles. Thus, p16INK4a/Rb-driven stem cell senescence is causally implicated in the intrinsic defective regeneration of sarcopenic muscle. Here we discuss on how cellular senescence may be a common mechanism of stem cell aging at the organism level and show that induction of p16INK4a in young muscle stem cells through deletion of the Polycomb complex protein Bmi1 recapitulates the geriatric phenotype.  相似文献   

13.
Stem cells have essential functions in the development and maintenance of our organs. Improper regulation of adult stem cells and tissue homeostasis can result in cancers and age-dependent decline. Therefore, understanding how tissue-specific stem cells can accurately renew tissues is an important aim of regenerative medicine. The Drosophila midgut harbors multipotent adult stem cells that are essential to renew the gut in homeostatic conditions and upon stress-induced regeneration. It is now a widely used model system to decipher regulatory mechanisms of stem cell biology. Here, we review recent findings on how adult intestinal stem cells differentiate, interact with their environment, and change during aging.  相似文献   

14.
As part of our systematic ongoing studies of mechanisms of cellular and molecular aging, we developed a "biochemical profile" of senescent human red cells. This "red cell aging" panel allows us to assess functional red cell age independent of chronologic age. The panel used to obtain this profile includes IgG binding, phagocytosis, enzyme activity, anion transport, ankyrin binding, and immunoblotting with antibodies to band 3. We used this panel to compare the biochemical profile of glucose 6-phosphate dehydrogenase-deficient and hemoglobin K?ln cells containing high molecular weight protein polymers or hemoglobin precipitates with that of normal senescent cells. We found no evidence in support of the concept that aggregation of band 3 plays a role in the mechanism for generating senescent cell antigen. Observations such as these support the hypothesis that degradation of band 3, rather than aggregation is a critical event in IgG binding and normal erythrocyte aging.  相似文献   

15.
Stem cells: is there a future in plastics?   总被引:3,自引:0,他引:3  
The concept that ostensibly tissue-specific stem cells can give rise to cells of heterologous lineages has gained support from studies using purified hematopoietic stem cells and sensitive donor-cell tracking methods. The ability to exploit these findings in clinical settings will probably depend on new insights into the mechanisms by which such stem cells or their progeny migrate to sites of organ damage and differentiate to cell types competent to participate in tissue regeneration.  相似文献   

16.
The aging population and the incidence of aging-related diseases such as osteoporosis are on the rise. Aging at the tissue and organ levels usually involves tissue stem cells. Human and animal model studies indicate that aging affects two aspects of mesenchymal stem cell (MSC): a decrease in the bone marrow MSC pool and biased differentiation into adipocyte at the cost of osteoblast, which underlie the etiology of osteoporosis. Aging of MSC cells is also detrimental to some non-skeletal tissues, in particular the hematopoietic system, where MSCs serve as a niche component. In addition, aging compromises the therapeutic potentials of MSC cells, including cells isolated from aged individuals or cells cultured for many passages. Here we discuss the recent progress on our understanding of MSC aging, with a focus on the effects of MSC aging on bone remodeling and hematopoiesis and the mechanisms of MSC aging.  相似文献   

17.
郝祺  黄海霞  汤雪明 《生命科学》2003,15(3):137-142
人们传统观念认为成体干细胞局限于生成它们所在组织的分化细胞类型。但近年来的实验结果表明,从一个组织来的成体干细胞能被诱导分化成另外的一个组织的分化细胞,即成体干细胞具有可塑性。在此,我们对成体干细胞可塑性的证据、几种假设、调控机制和应用前景等方面做一综述。  相似文献   

18.
Stem cells have an innate ability to occupy their stem cell niche, which in turn, is optimized to house stem cells. Organ aging is associated with reduced stem cell occupancy in the niche, but the mechanisms involved are poorly understood. Here, we report that Notch signaling is increased with age in Drosophila female germline stem cells (GSCs), and this results in their removal from the niche. Clonal analysis revealed that GSCs with low levels of Notch signaling exhibit increased adhesiveness to the niche, thereby out-competing their neighbors with higher levels of Notch; adhesiveness is altered through regulation of E-cadherin expression. Experimental enhancement of Notch signaling in GSCs hastens their age-dependent loss from the niche, and such loss is at least partially mediated by Sex lethal. However, disruption of Notch signaling in GSCs does not delay GSC loss during aging, and nor does it affect BMP signaling, which promotes self-renewal of GSCs. Finally, we show that in contrast to GSCs, Notch activation in the niche (which maintains niche integrity, and thus mediates GSC retention) is reduced with age, indicating that Notch signaling regulates GSC niche occupancy both intrinsically and extrinsically. Our findings expose a novel role of Notch signaling in controlling GSC-niche adhesion in response to aging, and are also of relevance to metastatic cancer cells, in which Notch signaling suppresses cell adhesion.  相似文献   

19.
Upon aging, hematopoietic stem cells (HSCs) undergo changes in function and structure, including skewing to myeloid lineages, lower reconstitution potential and loss of protein polarity. While stem cell intrinsic mechanisms are known to contribute to HSC aging, little is known on whether age-related changes in the bone marrow niche regulate HSC aging. Upon aging, the expression of osteopontin (OPN) in the murine bone marrow stroma is reduced. Exposure of young HSCs to an OPN knockout niche results in a decrease in engraftment, an increase in long-term HSC frequency and loss of stem cell polarity. Exposure of aged HSCs to thrombin-cleaved OPN attenuates aging of old HSCs, resulting in increased engraftment, decreased HSC frequency, increased stem cell polarity and a restored balance of lymphoid and myeloid cells in peripheral blood. Thus, our data suggest a critical role for reduced stroma-derived OPN for HSC aging and identify thrombin-cleaved OPN as a novel niche informed therapeutic approach for ameliorating HSC phenotypes associated with aging.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号