首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Control and cholesterol-depleted human erythrocytes were loaded with permeant Ca2+ chelators (Benz2-AM or Quin2-AM) in order to increase their exchangeable Ca2+ pool and to measure both Ca2+ fluxes and [Ca]i (free cytoplasmic calcium concentration). The fluxes were independent of the concentration and of the nature of the intracellular chelator. The ATP content was not decreased by more than 50% under our experimental conditions. Cholesterol depletion (up to 28%) induced a decrease in both Ca2+ fluxes and [Ca]i which was proportional to the extent of the depletion. It is shown that cholesterol depletion primarily altered the properties of the system responsible for Ca2+ entry causing a diminution of the [Ca]i. This, in turn, induced a diminution of the activity of the Ca2+ pump without affecting the properties of this pump.  相似文献   

2.
A rise in cytosolic Ca(2+) concentration is used as a key activation signal in virtually all animal cells, where it triggers a range of responses including neurotransmitter release, muscle contraction, and cell growth and proliferation [1]. During intracellular Ca(2+) signaling, mitochondria rapidly take up significant amounts of Ca(2+) from the cytosol, and this stimulates energy production, alters the spatial and temporal profile of the intracellular Ca(2+) signal, and triggers cell death [2-10]. Mitochondrial Ca(2+) uptake occurs via a ruthenium-red-sensitive uniporter channel found in the inner membrane [11]. In spite of its critical importance, little is known about how the uniporter is regulated. Here, we report that the mitochondrial Ca(2+) uniporter is gated by cytosolic Ca(2+). Ca(2+) uptake into mitochondria is a Ca(2+)-activated process with a requirement for functional calmodulin. However, cytosolic Ca(2+) subsequently inactivates the uniporter, preventing further Ca(2+) uptake. The uptake pathway and the inactivation process have relatively low Ca(2+) affinities of approximately 10-20 microM. However, numerous mitochondria are within 20-100 nm of the endoplasmic reticulum, thereby enabling rapid and efficient transmission of Ca(2+) release into adjacent mitochondria by InsP(3) receptors on the endoplasmic reticulum. Hence, biphasic control of mitochondrial Ca(2+) uptake by Ca(2+) provides a novel basis for complex physiological patterns of intracellular Ca(2+) signaling.  相似文献   

3.
4.
O Dar  I Pecht 《FEBS letters》1992,310(2):123-128
The relationship between the Fc epsilon receptor mediated stimulation of mast cells and the Ca2+ signal it induces were studied using thapsigargin (TG), a blocker of the endoplasmic reticulum Ca2+ pump. TG induced, in mucosal mast cells (RBL-2H3 line), a dose-dependent and an InsP3-independent increase in [Ca2+]i (from resting levels of 83-150 nM to 600-680 nM), and a secretory response amounting to 30-50% of that observed upon Fc epsilon RI clustering. The TG induced rise of [Ca2+]i is most probably provided by both arrest of its uptake by the endoplasmic reticulum and influx from the medium. Thus, Ca2+ influx in mast cells may be modulated by the [Ca2+]i level.  相似文献   

5.
Stimulation of fura-2-loaded human neutrophils with formylmethionyl-leucyl-phenylalanine (FMLP) or ionomycin elevated the cytosolic free Ca2+ concentration, [Ca2+], to a maintained elevated level. Activation of protein kinase C (C-kinase) with phorbol 12-myristate 13-acetate, 4 beta-phorbol 12,13-didecanoate or dioctanoylglycerol caused decreases in [Ca2+]i from this level. 4 alpha-Phorbol didecanoate, which does not activate C-kinase, had no effect. These results confirm previous reports that C-kinase activation decreases neutrophil [Ca2+]i by stimulating removal of Ca2+ from the cytosol. Further experiments showed that activation of C-kinase attenuated the component of the FMLP-stimulated [Ca2+]i rise that was dependent on external Ca2+. C-kinase activation also inhibited FMLP-stimulated entry of the quenching cation, Mn2+, used as an indicator of bivalent-cation entry. In contrast, C-kinase activation caused only a partial inhibition of FMLP-stimulated release of Ca2+ from intracellular stores. 4 alpha-Phorbol didecanoate was ineffective in inhibiting Ca2+ entry, Mn2+ entry and intracellular Ca2+ release. Addition of FMLP also stimulated a decrease in the ionomycin-elevated [Ca2+]i, and this effect was blocked by staurosporine, a protein kinase inhibitor. These results show that, in addition to stimulating Ca2+ efflux, C-kinase activation in neutrophils inhibits FMLP-stimulated entry of bivalent cations, and partially inhibits intracellular release of Ca2+. Further, FMLP itself can modulate [Ca2+]i by activation of C-kinase.  相似文献   

6.
We report here the use of the fluorescent Ca2+-chelator fura-2 to directly measure free Ca2+ concentration within intact human erythrocytes and the influence of viscosity on the fluorescence of this probe. The bright fluorescence of fura-2 has permitted the use of low concentrations of indicator and cells, thus minimizing the screening effect and the intrinsic fluorescence of haemoglobin. Erythrocytes (10(8) cells/ml) were loaded with 0.5 microM fura-2AM then diluted at 10(7) cells per ml for measurements. The extracellular signal was suppressed by addition of manganese ions just before recording spectra. Under these conditions, a blood sample of 100 microliter was sufficient for analysis. To study the influence of viscosity on fura-2 fluorescence, gelatin and polyvinylpyrrolidone at various concentrations were added to a physiological buffer to perform fura-2-Ca fluorescence standard curves. Fluorescence intensities and the apparent affinity constant for Ca2+ were modified by viscosity. When intra-erythrocytic viscosity was simulated with 21 g/l polyvinylpyrrolidone to obtain a mean viscosity of 14 mPa.s similar to that observed in human erythrocytes, the mean value of free Ca2+ concentration measured in erythrocytes from healthy subjects was 78 +/- 16 nM (mean +/- S.D., n = 29).  相似文献   

7.
Elevated levels of intracellular Ca2+ activate a K+-selective permeability in the membrane of human erythrocytes. Currents through single channels were analysed in excised inside-out membrane patches. The effects of several ions that are known to inhibit K+ fluxes are described with respect to the single-channel events. The results suggest that the blocking ions can partly move into the channels (but cannot penetrate) and interact with other ions inside the pore. The reduction of single-channel conductance by Cs+, tetraethylammonium and Ba2+ and of single-channel activity by quinine and Ba2+ is referred to different rates of access to the channel. The concentration- and voltage-dependent inhibition by ions with measurable permeability (Na+ and Rb+) can be explained by their lower permeability, with single-file movement and ionic interactions inside the pore.  相似文献   

8.
The role of intracellular Ca2+ pools in oscillations of the cytosolic Ca2+ concentration ([Ca2+]c) triggered by Ca2+ influx was investigated in mouse pancreatic B-cells. [Ca2+]c oscillations occurring spontaneously during glucose stimulation or repetitively induced by pulses of high K+ (in the presence of diazoxide) were characterized by a descending phase in two components. A rapid decrease in [Ca2+]c coincided with closure of voltage-dependent Ca2+ channels and was followed by a slower phase independent of Ca2+ influx. Blocking the SERCA pump with thapsigargin or cyclopiazonic acid accelerated the rising phase of [Ca2+]c oscillations and increased their amplitude, which suggests that the endoplasmic reticulum (ER) rapidly takes up Ca2+. It also suppressed the slow [Ca2+]c recovery phase, which indicates that this phase corresponds to the slow release of Ca2+ that was taken up by the ER during the upstroke of the [Ca2+]c transient. Glucose promoted the buffering capacity of the ER and amplified the slow [Ca2+]c recovery phase. The slow phase induced by high K+ pulses was not affected by modulators of Ca2+- or inositol 1,4,5-trisphosphate-induced Ca2+ release, did not involve a depolarization-induced Ca2+ release, and was also observed at the end of a rapid rise in [Ca2+]c triggered from caged Ca2+. It is attributed to passive leakage of Ca2+ from the ER. We suggest that the ER displays oscillations of the Ca2+ concentration ([Ca2+]ER) concomitant and parallel to [Ca2+]c. The observation that thapsigargin depolarizes the membrane of B-cells supports the proposal that the degree of Ca2+ filling of the ER modulates the membrane potential. Therefore, [Ca2+]ER oscillations occurring during glucose stimulation are likely to influence the bursting behavior of B-cells and eventually [Ca2+]c oscillations.  相似文献   

9.
Single IK(Ca) channels of human erythrocytes were studied with the patch-clamp technique to define their modulation by endogenous protein kinase C (PKC). The perfusion of the cytoplasmic side of freshly excised patches with the PKC activator, phorbol 12-myristate 13-acetate (PMA), inhibited channel activity. This effect was blocked by PKC(19-31), a peptide inhibitor specific for PKC. Similar results were obtained by perfusing the membrane patches with the structurally unrelated PKC activator 1-oleoyl-2-acetylglycerol (OAG). Blocking of this effect was induced by perfusion with PKC(19-31) or chelerythrine. Channel activity was not inhibited by the PMA analog 4alpha-phorbol 12,13-didecanoate (4alphaPDD), which has no effect on PKC. Activation of endogenous cAMP-dependent protein kinase (PKA), which is known to up-modulate IK(Ca) channels, restored channel activity previously inhibited by OAG. The application of OAG induced a reversible reduction of channel activity previously up-modulated by the activation of PKA, indicating that the effects of the two kinases are commutative, and antagonistic. Kinetic analysis showed that down-regulation by PKC mainly changes the opening frequency without significantly affecting mean channel open time and conductance. These results provide evidence that an endogenous PKC down-modulates the activity of native IK(Ca) channels of human erythrocytes. Our results show that PKA and PKC signal transduction pathways integrate their effects, determining the open probability of the IK(Ca) channels.  相似文献   

10.
Calcium entry in nonexcitable cells occurs throughCa2+-selective channels activatedsecondarily to store depletion and/or through receptor- orsecond messenger-operated channels. In amphibian liver, hormones thatstimulate the production of adenosine 3',5'-cyclic monophosphate (cAMP) also regulate the opening of an ion gate in theplasma membrane, which allows a noncapacitative inflow ofCa2+. To characterize thisCa2+ channel, we studied theeffects of inhibitors of voltage-dependent Ca2+ channels and of nonselectivecation channels on 8-bromoadenosine 3',5'-cyclicmonophosphate (8-BrcAMP)-dependentCa2+ entry in single axolotlhepatocytes. Ca2+ entry provokedby 8-BrcAMP in the presence of physiologicalCa2+ followed first-order kinetics(apparent Michaelis constant = 43 µM at the cellsurface). Maximal values of cytosolicCa2+ (increment ~300%) werereached within 15 s, and the effect was transient (half time of 56 s).We report a strong inhibition of cAMP-dependentCa2+ entry by nifedipine[half-maximal inhibitory concentration(IC50) = 0.8 µM], byverapamil (IC50 = 22 µM), andby SK&F-96365 (IC50 = 1.8 µM).Depolarizing concentrations of K+were without effect. Gadolinium and the anti-inflammatory compound niflumate, both inhibitors of nonselective cation channels, suppressed Ca2+ influx. This "profile"indicates a novel mechanism ofCa2+ entry in nonexcitable cells.

  相似文献   

11.
Antiproliferative alkyllysophospholipid (ALP) analogs produced multiple effects on the cytosolic Ca+ + concentration ([Ca+ +]i) in an immortalized human breast epithelial cell line (H 184). The addition of small concentrations resulted in a short transient [Ca+ +]i response. With higher concentrations the transient rise was followed by a sustained increase. Pretreatment of cells with the ALP analogs for two minutes inhibited the transient [Ca+ +] response. Increases in [Ca + +]i and inhibition of the transient increase were studied in relation to the dose and structure of several ALP analogs. In a series of alkylphospho-l-serine analogs with different lengths of the alkyl chain we found different dependencies of the stimulatory and inhibitory effects on the dose and the structure. The ability to increase [Ca++ ]i is absent with the C14 and C15 analogs, is low with the C16 and high with the C18 analog. With the exception of the C12 analog, a dose-related inhibition was observed with all derivatives but the effective concentrations differed very strongly and the maximal potency was reached with the C15 and C16 analogs. The antiproliferative action seems to correlate rather with the potency to inhibit the transient [Ca+ +]; response than with its stimulation.  相似文献   

12.
Shmygol A  Wray S 《Cell calcium》2005,37(3):215-223
Release of Ca2+ from sarcoplasmic reticulum (SR) is one of the most important mechanisms of smooth muscle stimulation by a variety of physiologically active substances. Agonist-induced Ca2+ release is considered to be dependent on the Ca2+ content of the SR, although the mechanism underlying this dependence is unclear. In the present study, the effect of SR Ca2+ load on the amplitude of [Ca2+]i transients elicited by application of the purinergic agonist ATP was examined in uterine smooth muscle cells isolated from pregnant rats. Measurement of intraluminal Ca2+ level ([Ca2+]L) using a low affinity Ca indicator, mag-fluo-4, revealed that incubation of cells in a high-Ca2+ (10 mM) extracellular solution leads to a substantial increase in [Ca2+]L (SR overload). However, despite increased SR Ca2+ content this did not potentiate ATP-induced [Ca2+]i transients. Repetitive applications of ATP in the absence of extracellular Ca2+, as well as prolonged incubation in Ca2+-free solution without agonist, depleted the [Ca2+]L (SR overload). In contrast to overload, partial depletion of the SR substantially reduced the amplitude of Ca2+ release. ATP-induced [Ca2+]i transients were completely abolished when SR Ca2+ content was decreased below 80% of its normal value indicating a steep dependence of the IP3-mediated Ca2+ release on the Ca2+ load of the store. Our results suggest that in uterine smooth muscle cells decrease in the SR Ca2+ load below its normal resting level substantially reduces the IP3-mediated Ca2+ release, while Ca2+ overload of the SR has no impact on such release.  相似文献   

13.
Previous studies have shown that inhibition of L-type Ca2+ current (ICa) by cytosolic free Mg2+ concentration ([Mg2+]i) is profoundly affected by activation of cAMP-dependent protein kinase pathways. To investigate the mechanism underlying this counterregulation of ICa, rat cardiac myocytes and tsA201 cells expressing L-type Ca2+ channels were whole cell voltage-clamped with patch pipettes in which [Mg2+] ([Mg2+]p) was buffered by citrate and ATP. In tsA201 cells expressing wild-type Ca2+ channels (1C/2A/2), increasing [Mg2+]p from 0.2 mM to 1.8 mM decreased peak ICa by 76 ± 4.5% (n = 7). Mg2+-dependent modulation of ICa was also observed in cells loaded with ATP--S. With 0.2 mM [Mg2+]p, manipulating phosphorylation conditions by pipette application of protein kinase A (PKA) or phosphatase 2A (PP2A) produced large changes in ICa amplitude; however, with 1.8 mM [Mg2+]p, these same manipulations had no significant effect on ICa. With mutant channels lacking principal PKA phosphorylation sites (1C/S1928A/2A/S478A/S479A/2), increasing [Mg2+]p had only small effects on ICa. However, when channel open probability was increased by 1C-subunit truncation (1C1905/2A/S478A/S479A/2), increasing [Mg2+]p greatly reduced peak ICa. Correspondingly, in myocytes voltage-clamped with pipette PP2A to minimize channel phosphorylation, increasing [Mg2+]p produced a much larger reduction in ICa when channel opening was promoted with BAY K8644. These data suggest that, around its physiological concentration range, cytosolic Mg2+ modulates the extent to which channel phosphorylation regulates ICa. This modulation does not necessarily involve changes in channel phosphorylation per se, but more generally appears to depend on the kinetics of gating induced by channel phosphorylation. voltage-gated Ca2+ channel; cardiac myocytes; human embryonic kidney cells; protein kinase A; protein phosphatase 2A  相似文献   

14.
Brain membranes contain tubulin that can be isolated as a hydrophobic compound by partitioning into Triton X-114. We have previously postulated: (a) that this kind of tubulin is a peripheral membrane protein that arises from microtubules that in vivo interact with membranes and (b) that the hydrophobic behaviour is due to the interaction of tubulin with a membrane component. Here we report the in vitro conversion of hydrophilic into hydrophobic tubulin by incubating microtubule associated proteins (MAPs) free taxol-stabilized microtubules with Triton X-100 solubilized membranes. After incubation, the microtubules were sedimented, depolymerized and subjected to partition into Triton X-114. Part of the tubulin was isolated in the detergent phase and contained, as observed in native membranes, a high proportion of the acetylated isotype. Because of the high proportion of acetylated tubulin the in vitro conversion resembles the in vivo interaction. Electrophoretic analysis of the detergent phase shows, besides tubulin, two major protein bands of 29 and 100 kDa molecular mass. The ability of the solubilized membranes to convert hydrophilic into hydrophobic tubulin is greatly diminished if the solubilized membrane preparation is preincubated in the presence of trypsin or heated at 90°C for 5 min, indicating that the membrane component that confers the hydrophobic behaviour to tubulin is of proteinaceous nature.  相似文献   

15.
BACKGROUND/AIM: The present study aimed at elucidating the mechanism(s) of serotonin (5-HT) efflux induced by thapsigargin from human platelets in the absence of extra-cellular Ca2+. METHODS: Efflux of pre-loaded radiolabeled serotonin was generally determined by filtration techniques. Cytosolic concentrations of Ca2+, Na+ and H+ were measured with appropriate fluorescent probes. RESULTS: 5-HT efflux from control or reserpine-treated platelets--where reserpine prevents 5-HT transport into the dense granules--was proportional to thapsigargin evoked cytosolic [Ca2+]c increase. Accordingly factors as prostacyclin, aspirin and calyculin which reduced [Ca2+]c-increase also inhibited the 5-HT efflux. Thapsigargin, which also caused a remarkable increase in cytosolic [Na+]c, promoted less 5-HT release, in parallel to lower [Na+]c and [Ca2+]c increase, when added to platelet suspensions containing low [Na+]. The Na+/H+ exchanger monensin increased the [Na+]c and induced 5-HT efflux without affecting the Ca2+ level. The 5-HT efflux induced by both [Ca2+] or [Na+]c increase did not depend on pH or membrane potential changes, whereas it decreased in the absence of extra-cellular K+, and increased in the absence of Cl- or Na+. CONCLUSION: Increases in [Ca2+]c and [Na+]c independently induce serotonin efflux through the outward directed plasma membrane serotonin transporter SERT. This event might be physiologically important at the level of capillaries or narrowed arteries where platelets are subjected to high shear stress which causes [Ca2+]c increase followed by 5-HT release which might exert vasodilatation.  相似文献   

16.
One current hypothesis for the initiation of Ca2+ entry into nonelectrically excitable cells proposes that Ca2+ entry is linked to the state of filling of intracellular Ca2+ stores. In the human T lymphocyte cell line Jurkat, stimulation of the antigen receptor leads to release of Ca2+ from internal stores and influx of extracellular Ca2+. Similarly, treatment of Jurkat cells with the tumor promoter thapsigargin induced release of Ca2+ from internal stores and also resulted in influx of extracellular Ca2+. Initiation of Ca2+ entry by thapsigargin was blocked by chelation of Ca2+ released from the internal storage pool. The Ca2+ entry pathway also could be initiated by an increase in the intracellular concentration of Ca2+ after photolysis of the Ca(2+)-cage, nitr-5. Thus, three separate treatments that caused an increase in the intracellular concentration of Ca2+ initiated Ca2+ influx in Jurkat cells. In all cases, Ca(2+)-initiated Ca2+ influx was blocked by treatment with any of three phenothiazines or W-7, suggesting that it is mediated by calmodulin. These data suggest that release of Ca2+ from internal stores is not linked capacitatively to Ca2+ entry but that initiation is linked instead by Ca2+ itself, perhaps via calmodulin.  相似文献   

17.
Thecoupling mechanism between depletion of Ca2+ stores in theendoplasmic reticulum and plasma membrane store-operated ion channelsis fundamental to Ca2+ signaling in many cell types and hasyet to be completely elucidated. Using Ca2+release-activated Ca2+ (CRAC) channels in RBL-2H3 cells asa model system, we have shown that CRAC channels are maintained in theclosed state by an inhibitory factor rather than being opened by theinositol 1,4,5-trisphosphate receptor. This inhibitory role can befulfilled by the Drosophila protein INAD (inactivation-noafter potential D). The action of INAD requires Ca2+ andcan be reversed by a diffusible Ca2+ influx factor. Thusthe coupling between the depletion of Ca2+ stores and theactivation of CRAC channels may involve a mammalian homologue of INADand a low-molecular-weight, diffusible store-depletion signal.

  相似文献   

18.
The role of guard cell chloroplasts in stomatal function is controversial. It is usually assumed that stomatal closure is preceded by a transient increase in cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) in the guard cells. Here, we provide the evidence that chloroplasts play a critical role in the generation of extracellular Ca(2+) ([Ca(2+)](ext))-induced [Ca(2+)](cyt) transients and stomatal closure in Arabidopsis. CAS (Ca(2+) sensing receptor) is a plant-specific putative Ca(2+)-binding protein that was originally proposed to be a plasma membrane-localized external Ca(2+) sensor. In the present study, we characterized the intracellular localization of CAS in Arabidopsis with a combination of techniques, including (i) in vivo localization of green fluorescent protein (GFP) fused gene expression, (ii) subcellular fractionation and fractional analysis of CAS with Western blots, and (iii) database analysis of thylakoid membrane proteomes. Each technique produced consistent results. CAS was localized mainly to chloroplasts. It is an integral thylakoid membrane protein, and the N-terminus acidic Ca(2+)-binding region is likely exposed to the stromal side of the membrane. The phenotype of T-DNA insertion CAS knockout mutants and cDNA mutant-complemented plants revealed that CAS is essential for stomatal closure induced by external Ca(2+). In contrast, overexpression of CAS promoted stomatal closure in the absence of externally applied Ca(2+). Furthermore, using the transgenic aequorin system, we showed that [Ca(2+)](ext)-induced [Ca(2+)](cyt) transients were significantly reduced in CAS knockout mutants. Our results suggest that thylakoid membrane-localized CAS is essential for [Ca(2+)](ext)-induced [Ca(2+)](cyt) transients and stomatal closure.  相似文献   

19.
CGRP is a potent vasodilator with increased levels in fetoplacental circulation during late pregnancy. We have recently demonstrated that acute CGRP exposure to fetoplacental vessels in vitro induced vascular relaxation, but the signaling pathway of CGRP in fetoplacental vasculature remains unclear. We hypothesized that CGRP relaxes fetoplacental vasculature via regulating smooth muscle cytosolic Ca2+ concentrations. In the present study, by using human umbilical vein smooth muscle (HUVS) cells (HUVS-112D), we examined CGRP receptors, cAMP generation, and changes in cellular Ca2+ concentrations on CGRP treatment. These cells express mRNA for CGRP receptor components, calcitonin receptor-like receptor, and receptor activity-modifying protein-1. Direct saturation binding for 125I-labeled CGRP to HUVS cells and Scatchard analysis indicate specificity of the receptors for CGRP [dissociation constant (K(D)) = 67 nM, maximum binding capcity (Bmax) = 2.7 pmol/million cells]. Exposure of HUVS cells to CGRP leads to a dose-dependent increase in intracellular cAMP accumulation, and this increase is prevented by CGRP antagonist CGRP(8-37). Using fura-2-loaded HUVS cells, we monitored the effects of CGRP on intracellular Ca2+ concentration ([Ca2+]i). In the presence of extracellular Ca2+, bradykinin (10(-6) M), a fetoplacental vasoconstrictor, increases HUVS cells [Ca2+]i concentration. CGRP (10(-8) M) abolishes bradykinin-induced [Ca2+]i elevation. When the cells were pretreated with glibenclamide, an ATP-sensitive potassium channel blocker, the CGRP actions on bradykinin-induced Ca2+ influx were profoundly inhibited. In the absence of extracellular Ca2+, CGRP (10(-8) M) attenuated the increase of [Ca2+]i induced by a sarcoplasmic reticulum Ca2+ pump ATPase inhibitor thapsigargin (10(-5) M). Furthermore, Rp-cAMPS, a cAMP-dependent protein kinase A inhibitor, blocks CGRP actions on thapsigargin-induced Ca2+ release from sarcoplasmic reticulum. Our results suggested that CGRP relaxes human fetoplacental vessels by not only inhibiting the influx of extracellular Ca2+ but also attenuating the release of intracellular Ca2+ from the sarcoplasmic reticulum, and these actions might be attributed to CGRP-induced intracellular cAMP accumulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号